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Abstract. The potential of textile-reinforced concrete is broad: it can be used in new structures
and in the retrofitting of existing structural components. Designing textile-reinforced concrete requires
knowledge about the mechanical properties of different textile types. To this, a standardised tensile test
for fibre strands was used. The test aims to statistically characterise two material properties needed in
design: ultimate tensile strength and the modulus of elasticity. To this, the influence of length and
number of fibre strands were evaluated. The results show that the ultimate tensile strength can be
statistically modelled by a Gumbel distribution and the modulus of elasticity can be characterised
by a Normal distribution. These findings can be used to derive appropriate partial safety factors for
the design value of tensile strength using probabilistic methods, or to directly determine the failure
probability of textile-reinforced concrete components.

Keywords: AR-glass reinforcement, carbon concrete, carbon reinforcement, design provisions, stan-
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1. Introduction
Textile-reinforced concrete (TRC) is a composite con-
struction material that combines the use of a matrix
of fine-grained concrete and mesh-like fibre reinforce-
ments made of alkali-resistant (AR) glass, polymeric,
carbon or basalt, among others. As it has been largely
demonstrated by the scientific community and prac-
titioners, the construction sector has been showing
a growing interested is the use of TRC in structures.
This is mostly due to favourable mechanical properties
of TRC, namely the high tensile strength and dura-
bility [1–9]. In fact, the range of potential civil engi-
neering applications is not exclusive to new structures,
as the carbon concrete bridge in Ebingen (Germany)
[10]; TRC is also a prime alternative to retrofit and
rehabilitate reinforced concrete structures.

Yet, the acceptance and utilisation of TRC struc-
tural solutions depend on the availability of clear
design guidelines, installation procedures and con-
struction specifications. To overcome the lack of clear
design guidelines, normally, building authorities re-
quest proofs of usability [13] by means of individual
approvals (e.g., a "ZiE" in Germany) or even general
permits (e.g., European Technical Assessments). Con-
sequently, load-bearing tests are needed to evaluate
the ultimate and the serviceability limit states, which
can be complex, costly and also slow [3, 12, 14]. Thus,
there is little doubt that alternative design approaches

that do not depend on exhaustive experimental cam-
paigns would be valuable to the structural design
community.

Previous investigations have showed that as op-
posed to steel reinforcement, AR-glass or carbon re-
inforcement has a linear-elastic behaviour without
a pronounced yield plateau and such reinforcement
can have three to seven times higher ultimate tensile
strengths [3, 12]. These properties have motivated
Hinzen [11] to propose a standardised tensile test for fi-
bre strands. This standardised tensile test can support
the derivation of design values of textile reinforcement
(e.g., epoxy resin-soaked AR-glass reinforcement) and
has the benefit to consider the impact of the weaving
structure on the material parameters of fibre strands,
namely damages and distortions during weaving. This
means that the material properties of individual fi-
bres are not necessarily needed for the reinforcement
design [15].

In the context of this investigation, two relevant
textile reinforcement properties were considered – (1)
ultimate tensile strength and (2) modulus of elas-
ticity – whose statistical parameters can be deter-
mined through the standard tensile test. The sta-
tistical characterisation of these properties is vital
for the assessment of failure probabilities of textile-
reinforced concrete members and/or for the calcula-
tion of partial safety factors. As numerous scientific
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Figure 1. (a) Standardised tensile test [11]. (b) Testing grid of AR-glass reinforcement [12].

studies demonstrate (e.g., [16–18]), probability-based
concepts are used during safety level evaluations of
structural components. Thus, there is little doubt
that a probabilistic-based reasoning is essential to de-
rive new design provisions and/or to improve existing
ones.

In this investigation, the results of a standardised
tensile test on an epoxy resin-soaked AR-glass textile
are adopted for the calculation of statistical parame-
ters of ultimate tensile strength and modulus of elas-
ticity. Nonetheless, a similar approach can be adopted
for all epoxy resin-soaked fibre strands. For the sake
of this investigation, it should be made clear that
multiple fibres form a filament and multiple filaments
compose a strand [19]. Finally, it is also relevant to
mention that the results of the experimental campaign
presented in this investigation were partially discussed
in another publication [20].

2. Description of the standardised
tensile test

2.1. Characterisation of the test setup
The standardised tensile test proposed by Hinzen [11]
was used to determine the behaviour of a textile rein-
forcement (e.g., AR-glass textiles soaked with epoxy
resin). Individual fibre strands with the lengths of 60
mm, 160 mm, 320 mm, and 640 mm were cut out of
the soaked and cured textile. These were used to inves-
tigate the influence of the fibre strand length. Further,
a tension load was directly applied on a reinforced
concrete body through pressure jaws to guarantee
that the strands were evenly loaded. The strain was
registered with two clamp-on strain transducers over
a length of 100 mm (Figure 1). The strain was also
recorded with linear variable differential transformers
(LVDTs) over a reference length of 450 mm. This
experimental setup followed the RILEM recommenda-
tions [21]. Seven tensile test series were conducted on

composite members reinforced with different number
of fibre strands.

2.2. Characterisation of the material
parameters

The results of the standardised tensile tests are shown
in the stress-strain diagram in Figure 2a. An idealised
stress-strain relationship is derived from the measure-
ments, which can be later used for the cross-sectional
design of a component. The textile stress σt is calcu-
lated from the measured force F and the accumulated
fibre strands cross sectional area Ar (Equations 1).

By using the results of the standardised tensile test,
the material behaviour of the fibre strands with a
linear-elastic approach can be determined with Equa-
tions 1 and 2. The parameters are: (i) the mean
value of the modulus of elasticity (or Young’s modu-
lus) Etm, (ii) the ultimate tensile strength ft,u, and
(iii) the ultimate strain εt,u. In principle, only two of
the parameters are required for the characterisation
of the textile reinforcement:

σt = F

Ar
= εt · Etm ≤ ft,u (1)

εt = σt

Etm
≤ εt,u (2)

By assuming a linear-elastic behaviour, the textile
stress value of each strain (Equation 1) and the strain
value of each stress (Equations 2) can be determined
for each point of the stress-strain diagram by using
the mean value of the modulus of elasticity. The
relationship between these parameters is illustrated
in Figure 2b. Equations 2a and 2b guide the design
approach represented in Figure 2a.

2.3. Results of the experimental
campaign

In this experimental campaign, more than 400 stan-
dardised tensile tests were conducted to describe the
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Figure 2. Stress-strain diagrams [12](a) AR-glass reinforcement. (b) Design of textile-reinforced components.
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Figure 3. Ultimate tensile strength [12]: (a) Histogram for the AR-glass reinforcement (empirical and theoretical
values). (b) Probability density function of the AR-glass reinforcement

distribution functions of the material parameters. The
test results were used to evaluate the normality as-
sumption, since previous studies assumed that ulti-
mate tensile strengths follow a Normal distribution
[22],

The measured ultimate tensile strengths were di-
vided into 13 classes (each with a width of 57 N mm−2)
and compiled in a histogram (Figure 3a). The val-
ues were then converted into a frequency density h(x)
by generating the ratio of the relative frequency to
the class width. Through the mean values of each
class, a curve of the frequency density was obtained
as it is illustrated in Figure 3b. Note that the shape
of this curve seems to mirror a Normal distribution.
The expected value was approximated by the arith-
metic mean value µX ≈ x̄X = 1 590 N mm−2 and the
standard deviation was estimated by the empirical

standard deviation σX ≈ s̄X = 138 N mm−2. These
values were considered in the probability density func-
tion of a Normal distribution (see Equation 3) [23].

f(x) = 1
138 ·

√
2 π

exp
(

− (x − 1 590
2 · (138)2

)
(3)

To evaluate the data normality, a goodness-of-fit
test shall be adopted due to the fact that a single anal-
ysis of the graphical plot is not sufficient to confirm
that the ultimate tensile strength follows a Normal
distribution To this, a Chi-Square test was applied,
which did not reject normality (i.e., the p-value of 0.70
is above the significance level of 0.05); the arithmetic
mean value and the empirical standard deviation were
used to approximate the Normal distribution.
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Figure 4. Ultimate tensile strength of the textiles
depending on fibre strand length.

3. Investigation of the influence
of fibre strand length

3.1. Ultimate tensile strength:
experimental investigations

The influence of the fibre strand length on the ulti-
mate tensile strength was investigated for the four
lengths of the AR-glass textile placed in the weft di-
rection (i.e., axial direction of the weft strands). At
least seven samples were used to test each fibre length.
A Normal distribution was assumed to analyse the re-
sults. Figure 4 shows the influence of the fibre strand
length strand length on the ultimate tensile strength.
The mean value decreases with a growing fibre strand
length in a non-linear fashion. It is also visible that
the mean ultimate tensile strength ranges between
1 709 N mm−2 (length = 60 mm) and 1 257 N mm−2

(length = 640 mm). The scale effect, which was previ-
ously investigated by Griffith [24], can explain such
differences, owing to the fact that number of imperfec-
tions rises with a growing length of the strand. More
recently, Bažant ZP (e.g., [25–27]) carried on exten-
sive studies on the size effects. Also Chudoba [28] and
Rypl [29] concluded that the standard deviation is
reduced when the strands have an increased length.

3.2. Modulus of elasticity: experimental
investigation

For the modulus of elasticity, the influence of the
strand length was investigated for the four lengths
of the AR-glass textile placed in the weft direction
(i.e., axial direction of the weft strands). Also here, at
least seven samples were used to test each fibre length.
Likewise, a Normal distribution assumption was con-
sidered for the modulus of elasticity. Similarly to the
ultimate tensile strength, the frequency density curve
obtained mirrors a probability density function of a
Normal distribution. In this curve, the expected value

was approximated by the arithmetic mean value µX

≈ x̄X = 74 618 N mm−2 and the standard deviation
was determined by the empirical standard deviation
σX ≈ s̄X = 1 610 N mm−2. In the distribution fitting
analysis, the Chi-Square test did not reject the nor-
mality assumption (i.e., p-value of 0.07 is above the
significance level of 0.05).

These values seem to confirm that the modulus
of elasticity of fibre strands soaked with epoxy resin
can be characterised by a Normal distribution func-
tion indicating that the statistical parameters can be
characterised with the arithmetic mean value and the
empirical standard deviation. The entire set of results
are available in [14] and in [20].

3.3. Ultimate tensile strength:
theoretical investigations

This section addresses the estimation of the statistical
parameters for any number of strands, n, using the
parameters determined from the experimental tests
and extreme value theory.

To this analysis, it was considered that the strands
are linked in series. Note that in a series system,
the weakest link governs the failure. Furthermore, it
was considered that a normally distributed random
variable X describes the ultimate tensile strength of
each strand.

The calculation of the expected value and the stan-
dard deviation of the ultimate tensile strength of a
single fibre strand can be conducted with the support
of extreme value theory. This theory also supports
the distribution function of multiple fibre strands
connected in series. Thus, the distribution of the
minimum ultimate tensile strength (i.e., governing
the series system) – the minimum Mn – can be also
determined with the extreme value theory. The dis-
tribution function of the minimum FMn(x) expressed
by Equation 4 [30] can be applied to any number of
fibre strands n. The results of the standardised tensile
tests on fibre strands with a length of 160 mm support
the derivation of the cumulative distribution function
FX(x) of the ultimate tensile strength.

P (Mn ≤ x) = FMn
(x) = 1 − [1 − FX(x)]n (4)

Equation 4 is only valid for independent and iden-
tically distributed random variables with a cumula-
tive distribution function FX(x) [23]. All the strands
linked in series have the same distribution function.
By derivating Equation 4, the probability density func-
tion fMn

(x) of the minimum ultimate tensile strength
Mn can be calculated. Equation 5) allows to deter-
mine the probability densities of the extreme value
distributions for different lengths.

fMn
(x) = fX(x) · n · [1 − FX(x)]n−1 (5)

By rearranging Equation 4, the fractiles of the ex-
treme value distribution can be determined:
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Figure 5. Probability density function of the extreme-value function and approximation with Normal and Gumbel
distribution functions [20]: (a) entire distribution and (b) selected area of the distribution at the tails.

FMn(xp) = 1 − [1 − FX(xp)]n = p (6)

FX(xp) = 1 − n
√

1 − p (7)

Equation 8 can be used to determine the fractile
values of the extreme value distribution if the tensile
strength of each link is to be normally distributed:

xp = F −1
X (xp) = µX + σX · Φ−1(1 − n

√
1 − p) (8)

Through Equation 5) it is visible that, as the fibre
length increases, the expected value and the standard
deviation of the extreme value distribution decrease.
Since the density does not present the characteristics
of a Normal distribution, a Gumbel distribution (i.e.,
Generalised Extreme Value distribution, Type-I) [30]
was assumed. This distribution can be easily consid-
ered in the calculations of reliability analysis when
evaluating of the safety level of structural compo-
nents or systems. A Gumbel distribution is typically
characterised by two parameters: a and u and the
probability density function (for data minimum) (see
Equation 9):

f(x) = a · ea·(x−u)−ea.(x−u)
(9)

The ultimate tensile strengths of the 50%-fractile
(median) and the 5%-fractile of the extreme value
distribution are calculated to approximate the extreme
value distribution by a Gumbel distribution through
Equation 5. Then, by using a Gumbel distribution,
these fractiles are assumed for the 50%-fractile and the
5%-fractile respectively. Consequently, the parameters
a and u of the Gumbel distribution can be calculated.

For two different theoretical values of fibre strands n
(n = 25 and n = 100), the probability density functions
of the extreme value distribution were determined

Values of Extr. value Normal Gumbel
x dist. dist. dist.
1 194 0.0011180 0.0012952 0.0009687
1 155 0.0004917 0.0005132 0.0004586
1 128 0.0002604 0.0002322 0.0002688
1 046 0.0000302 0.0000107 0.0000534
974 0.0000034 0.0000003 0.0000128
The values of x correspond to the 5%, 2%, 1%, 0.1%, and
0.01% values of the original extreme value distribution.

Table 1. Extreme value distribution approximated
by a Normal distribution and a Gumbel distribution
for n = 25 fibre strands [20].

(Figure 5a). It is perceived that the activation of
more than 100 fibre strands under a load is highly
unlikely. Both distributions – the Normal and the
Gumbel – were used to determine the probability
density function for each n.

It is widely acknowledged that the behaviour of the
distributions at the tails of the functions is of major
importance (Figure 5b). By observing the results for
n = 25, it is visible that an approximation by a Nor-
mal distribution sits slightly below the curve of the
extreme value distribution. Table 1 shows that for
fractile values smaller than 2%, the Gumbel distribu-
tion is somewhat above the extreme value distribution,
whereas the Normal distribution presents lower values.
Figure 5b shows that the Normal distribution curve
changes its course to below the extreme value distribu-
tion curve at an ultimate tensile strength (i.e., roughly
below 1 150 N mm−2). Note that Normal distributions
are characterised by thinner tails than extreme value
distributions tails. Based on these results, it can be
argued that a Normal distribution can generate un-
derestimated failure probabilities, which can seriously
affect the robustness of reliability analyses. Contrary
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Figure 6. Tension-Strain diagram [12]: a) two and b) eight embedded fibre strands.

to this, a Gumbel distribution seems to be more on
the safe side for the assessment of very low failure
probabilities.

It is widely recognised that in structural design,
the 5%-fractile is a governing value [31, 32], which
is also used as the characteristic tensile strength of
the textile reinforcement f t,k. The design value of
the tensile strength f t,d is calculated by dividing the
characteristic value f t,k by the partial safety factor
γt. By assuming a partial safety factor γt=1.0, the
characteristic value would be equal to the design value.

4. Investigation of the influence
of fibre strand number

4.1. Ultimate tensile strength:
experimental investigations

In this section, the influence of the number of fibre
strands on the ultimate tensile strength is investigated.
To this, uniaxial tensile tests on composite members
(i.e., textile embedded in the concrete matrix ) were
used. The results of 40 tests (i.e., eight series with
five tests each, beginning with one fibre strand and
ending with eight) were considered. The fibre strand
tension (i.e., FS tension) of the strands (i.e., tension
at the strand without concrete) are represented in
Figures 6a and 6b alongside the mean and the single
test results.

Equation 1 was used to determine the textile ten-
sion σt by means of the measured force F and the
accumulated filament cross sectional area Ar.

Figures 6 and 6b show that a textile failure always
occurs in the tensile tests of the composite members.
The black curve shows the mean course of the individ-
ual experiments and the grey curve shows the results
of the individual experiments. In Figure 6a it is also
visible that three cracking states: state I (uncracked),
state IIa (crack formation) and state IIb (stabilised
crack phase). In state IIb, the curve does not flatten,

but runs parallel to the results of the standardised ten-
sile test on the plain fibre strand, which is illustrated
as dashed lines. In both tests, the same modulus of
elasticity for the textile is achieved in state IIb. This
behaviour leads to believe that the results of the test
setup can be used to assess the influence of the num-
ber of fibre strands. Additionally, the number of fibre
strands do not seem to affect the modulus of elasticity.

4.2. Ultimate tensile strength:
theoretical investigations

A mathematical relationship for any number of fibre
strands can be determined by assuming that fibre
strands with the length of 160 mm are theoretically
and successively connected next to one another. Here,
each element follows a Normal distribution, which
was determined with the standardised tensile test for
a single strand. Note that here, a brittle failure oc-
curs as soon as the end of the linear-elastic range
is reached as opposed to steel that follows a ductile
failure behaviour. Each fibre strand in the system is
loaded with the same load during the testing proce-
dures. Yet, the strands have distinct ultimate tensile
strengths as a result of the material variation. When
the ultimate tensile strength of the weakest element
is reached, it suddenly fails, and the force is absorbed
by the remaining elements. A redistribution can only
take place if the remaining fibre strands have sufficient
residual load-bearing capacity, which is only possible
with a high number of fibre strands, or a large varia-
tion of the ultimate tensile strength. Considering a
system with n identical fibre strands, which ultimate
tensile strengths X i follow a cumulative distribution
function FX(x), the ultimate tensile strength R can
be described as [33]:

R = max(n · X̂1, (n − 1) · X̂2, ..., X̂n) (10)
with X̂1, ..., X̂n being the ultimate tensile strength

of the individual strand sorted in ascending order by
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Figure 7. Influence of the fibre strand number on the ultimate tensile strength [20].

No. fibre Expected value (i.e., mean value) 5%-fractile value
strands N mm−2 N mm−2

Simulation Gumbel
dist.

Diff. (%) Simulation Gumbel
dist.

Diff. (%)

5 1 435 1 434 -0.07 1 281 1 270 -0.87
10 1 404 1 383 -1.55 1 282 1 236 -3.71
25 1 367 1 325 -3.21 1 272 1 194 -6.57
50 1 339 1 286 -4.13 1 258 1 165 -7.96
75 1 323 1 265 -4.55 1 247 1 148 -8.63
100 1 311 1 250 -4.90 1 241 1 137 -9.10

Table 2. Ultimate tensile strength: Differences between simulated and theoretical values [20].

size. It can be argued that a safe approximation can
be made by assuming that the weakest link governs the
failure mechanism. Thus, a parallel connection can be
compared to the behaviour of a series connection due
to the nearly ideal brittle behaviour of the components.
Consequently, Equation 4 can be used to determine
the cumulative distribution function of the minima
FMn(x).

4.3. Trade-off between experimental
and theoretical investigations

In this section, the experimental and theoretical in-
vestigations are compared. To this, a chain system
of fibre strands was considered. A Gumbel distribu-
tion was assumed to calculate the theoretical mean
value and the characteristic value of the ultimate ten-
sile strengths (5%-fractile). These values were used
to characterise the ultimate tensile strength, where
the mean value is µX ≈ x̄X = 1 590 N mm−2 and
the empirical standard deviation is σX ≈ s̄X = 138
N mm−2.

Simultaneously, 50 000 simulations were performed
in the statistical software R [34] by using the principles
of Crude Monte-Carlo. Here, it was considered that
when the weakest fibre strand fails and the stresses
are redistributed to the remaining fibre strands of the

system. Additionally, a theoretical expected value was
determined by means of Equation 7 (see Figure 7 and
Table 2).

The results of the simulation seem to indicate that
as the number of fibre strands rises, the average ulti-
mate tensile strength decreases. At some point, the
curves tend to flatten. Consequently, the standard
deviation and the coefficient of variation also decrease
with an increasing number of fibre strands. The ex-
treme value distribution approximated by a Gumbel
distribution loses expression (i.e., decreases at a very
slow pace) for a growing number of fibre strands. The
results in table Table 2 indicate that the differences
between the simulated values and the mathematical
approximation through a Gumbel distribution can go
up to around 9%. A possible explanation is linked
to the fact that the Gumbel distribution does not
consider a redistribution of stresses after the failure of
the first fibre strand. Thus, a Gumbel approximation
seems to be on the safe side.

4.4. Practical implications
As described in [17, 35–37], the design value of the
tensile strength f td is the basis for the structural calcu-
lations with bending and shear load. Yet, a conversion
must be made to enable the use of the standardised
test results in general structural applications.
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This can be achieved by using the 5%-fractile val-
ues; note that the characteristic tensile strength of
the reinforcement f tk form the basis for the design
values of the tensile strength f td. Since the 5%-fractile
needs to be used for the design, the problem is not
as pronounced, as it can be seen in Figure 8, where
the different lengths and numbers of fibre strands are
illustrated. The difference is generated from the 5%-
fractile values of the ultimate tensile strength of n
and (n − 1) fibre strands.

For a small number of fibre strands, the 5%-fractile
of the tensile strength is influenced by the number of
fibre strands (Figure 8). From around five strands,
the curve tends to rapidly flatten and the difference
between the characteristic values becomes gradually
smaller. The gradient is almost constant from a length
of 1 600 mm (i.e., around ten strands). In the case of
the analysed AR-glass, the value is 4.5 N mm−2, which
corresponds to just 2.8h of the mean ultimate tensile
strength. Thus, a reasonable number of fibre strands
is suggested for the calculation of the characteristic
value. This corresponds to the area where the curve
slope of the 5%-fractile becomes almost constant. Yet,
a specific number of strands varies with the practical
problem. The standardised tensile test needs to be
carried out on an individual fibre strand, and then, the
ultimate tensile strength must be adjusted by using
the extreme value theory. With this approximation,
the mean value f tm, the characteristic value f tk , and
finally, the design value f td can be determined.

The design strain εtd is also required for the design
model. It is sufficient to measure the textile tension
and divide it by the modulus of elasticity. The tests
showed that the modulus of elasticity is not influenced
by the number of fibre strands. The mean value from
the standardised test on a single fibre strand can be
used as an appropriate modulus of elasticity.

5. Conclusion
In this paper it was demonstrated that the results
of a standardised tensile test can be used to derive
the statistical values of relevant textile reinforcement
properties. This is particularly relevant for the design
of components with textile reinforcement impregnated
with epoxy resin. By using a reference strand length
of 160 mm in the standardised tensile test, only the
measurements of the ultimate tensile strength and the
modulus of elasticity of a fibre strand are needed.

The test results showed that a fibre strand has a
linear-elastic behaviour until it fails when subjected to
tensile stress. The length and number of fibre strands
seem to influence the ultimate tensile strength. The
expected value and the scatter of the ultimate tensile
strength decrease non-linearly with a growing length
and number of fibre strands. Yet, once a certain
fibre length and number is exceeded, the characteristic
ultimate tensile strength are no longer affected. In this
investigation, it was demonstrated that the statistical
values can be determined for any length and number
of strands by using the extreme value theory. In this
context, calculations are simplified because an extreme
value distribution can be approximated by a Gumbel
distribution. For the modulus of elasticity, the use of
a Normal distribution is recommended.

Acknowledgements
The authors thank the two companies: Solidian GmbH
and FTA-Forschungsgesellschaft für Textiltechnik Albstadt
GmbH for their support in carrying out the fibre strand
tensile tests and providing the textile reinforcements.

References
[1] S. Rempel, N. Will, J. Hegger, P. Beul. Filigrane

Bauwerke aus Textilbeton: Leistungsfähigkeit und
Anwendungspotenzial des innovativen
Verbundwerkstoffs. Beton-und Stahlbetonbau 110(S1):83–
93, 2015. https://doi.org/10.1002/best.201400111.

[2] V. Adam, J. Bielak, C. Dommes, et al. Flexural and
shear tests on reinforced concrete bridge deck slab
segments with a textile-reinforced concrete
strengthening layer. Materials 13(18):4210, 2020.
https://doi.org/10.3390/ma13184210.

[3] J. Bielak, M. Schmidt, J. Hegger, F. Jesse. Structural
behavior of large-scale I-Beams with combined textile
and CFRP reinforcement. Applied Sciences 10(13):4625,
2020. https://doi.org/10.3390/app10134625.

[4] J. Bielak, N. Will, J. Hegger. Zwei Praxisbeispiele zur
Querkrafttragfähigkeit von Brückenplatten aus
Textilbeton. Bautechnik 97(7):499–507, 2020.
https://doi.org/10.1002/bate.202000037.

[5] V. Adam, J. Bielak, N. Will, J. Hegger.
Experimentelle Untersuchungen zur Verstärkung von
Brückenfahrbahnplatten mit Textilbeton. Beton-und
Stahlbetonbau 115(12):952–961, 2020.
https://doi.org/10.1002/best.202000049.

[6] A. Spelter, S. Bergmann, J. Bielak, J. Hegger.
Long-term durability of carbon-reinforced concrete: An
overview and experimental investigations. Applied

182

https://doi.org/10.1002/best.201400111
https://doi.org/10.3390/ma13184210
https://doi.org/10.3390/app10134625
https://doi.org/10.1002/bate.202000037
https://doi.org/10.1002/best.202000049


vol. 36/2022 Statistical characterisation of textile-reinforcement properties

Sciences 9(8):1651, 2019.
https://doi.org/10.3390/app9081651.

[7] A. Spelter, S. Rempel, N. Will, J. Hegger. Prüfkonzept
zur Untersuchung des Dauerstandverhaltens von
textilbewehrtem Beton. Bauingenieur 92(9), 2017.
https://doi.org/10.37544/0005-6650-2017-09-48.

[8] A. Spelter, S. Rempel, N. Will, J. Hegger. Testing
concept for the investigation of the long-term durability
of textile reinforced concrete. Special Publication 326:55–
1, 2018. https://doi.org/10.14359/51711038.

[9] J. Wagner, A. Spelter, J. Hegger, M. Curbach.
Ermüdungsverhalten von Carbonbeton unter
Zugschwellbelastung. Beton-und Stahlbetonbau
115(9):710–719, 2020.
https://doi.org/10.1002/best.201900104.

[10] T. Helbig, K. Unterer, C. Kulas, et al. Fuß- und
Radwegbrücke aus Carbonbeton in Albstadt-Ebingen:
Die weltweit erste ausschließlich carbonfaserbewehrte
Betonbrücke. Beton-und Stahlbetonbau 111(10):676–685,
2016. https://doi.org/10.1002/best.201600058.

[11] M. Hinzen. Prüfmethode zur Ermittlung des
Zugtragverhaltens von textiler Bewehrung für Beton.
Bauingenieur 92(6):289–291, 2017.
https://doi.org/10.37544/0005-6650-2017-06-85.

[12] S. Rempel, M. Ricker. Ermittlung der
Materialkennwerte der Bewehrung für die Bemessung von
textilbewehrten Bauteilen. Bauingenieur 92(6), 2017.
https://doi.org/10.37544/0005-6650-2017-06-76.

[13] R. Alex. Fibre reinforced polymers FRP as
reinforcement for concrete according to German
approvals. In IOP Conference Series: Materials Science
and Engineering, vol. 96, p. 012013. IOP Publishing, 2015.
https://doi.org/10.1088/1757-899x/96/1/012013.

[14] S. Rempel, M. Ricker, J. Hegger. Zur Zuverlässigkeit
der Bemessung von biegebeanspruchten Betonbauteilen
mit textiler Bewehrung. Tech. rep., Lehrstuhl und
Institut für Massivbau, 2019.

[15] S. Voss. Ingenieurmodelle zum Tragverhalten von
Textilbewehrtem Beton. Eigenverlag, Lehrstuhl und
Institut für Massivbau der RWTH Aachen, 2008.

[16] M. Ricker, T. Feiri, K. Nille-Hauf, et al. Enhanced
reliability assessment of punching shear resistance
models for flat slabs without shear reinforcement.
Engineering Structures 226:111319, 2021.
https://doi.org/10.1016/j.engstruct.2020.111319.

[17] S. Rempel, M. Ricker, J. Hegger. Safety concept for
textile-reinforced concrete structures with bending load.
Applied Sciences 10(20):7328, 2020.
https://doi.org/10.3390/app10207328.

[18] E. M. Silva, S. E. Ribeiro, S. Diniz. Reliability-based
design recommendations for deflection control of
fiber-reinforced polymer-reinforced concrete beams.
ACI Structural Journal 117(3), 2020.
https://doi.org/10.14359/51723499.

[19] R. Moceikis, A. Kičaitė, G. Skripkiūnas,
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