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Abstract. The paper is focused on probabilistic assessment and sensitivity analysis of existing
prestressed concrete bridge using surrogate model in form of Polynomial Chaos Expansion (PCE).
The bridge was selected in the framework of the European Project INTERREG AUSTRIA-CZECH
REPUBLIC "TCZ190 SAFEBRIDGE" focused on advanced numerical analysis of existing bridges
represented by non-linear finite element model. In this study, surrogate model in form of PCE was
created, which represents very efficient type of surrogate model. One of significant advantages of PCE is
powerful post-processing including sensitivity and moment analysis of the response, which is important
part of probabilistic analysis. The obtained numerical results of advanced stochastic analysis consisting
of uncertainty quantification and sensitivity analysis of the existing bridge structure are presented in
the paper.
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1. Introduction
The development of computational methods for civil
engineering has become more important than ever,
since it is often necessary to employ advanced numer-
ical methods for the design of new structures in order
to fulfil the significantly increasing economical and
safety requirements in the last decades. Moreover,
there are a lot of structures, especially bridges, built
in the last century, which must often be enhanced
for higher loads assuming actual conditions of the
structures. As a result of these industrial needs, re-
searchers and civil engineers are more interested in
advanced numerical methods to solve the mathemati-
cal models of structures – typically non-linear finite
element method (NLFEM). Although NLFEM is a
very accurate numerical method for solving differential
equations, there is still a lack of knowledge of material
characteristics (e.g. fracture energy), actual geomet-
rical properties (e.g. position of reinforcement) and
even mathematical models of some physical phenom-
ena (e.g. fracture mechanics of quasi-brittle materials)
collectively called uncertainties. As can be seen from
the given examples, uncertainties play an important
role, especially in the case of concrete structures. This
lack of knowledge may generally lead to inaccurate
results and even fatal failures despite the advanced
numerical analysis performed by NLFEM.

In modern structural analysis, uncertainties are rep-
resented by random variables described by specific
probability distribution, the structural system can
then be seen as a mathematical function of a set of
random parameters. Deterministic numerical analy-
sis of structures must thus be enriched by stochastic
analysis. The elementary task of stochastic analysis
is to propagate uncertainties through a mathematical

model in order to obtain statistical and/or sensitivity
information of quantity of interest (QoI). Results of
statistical analysis are important especially for semi-
probabilistic design and assessment of structures, since
it is necessary to estimate design quantile of structural
resistance, which fulfils given safety requirements. Un-
fortunately statistical analysis of complex mathemat-
ical models (e.g. bridges) is highly computationally
demanding or even not feasible in industrial applica-
tions, since the statistical analysis typically consists of
large number of repetitive deterministic calculations.

On the one hand, it is possible to reduce the number
of simulations as much as possible by simplified design
methods such as Taylor Series Expansion or methods
for estimation of coefficient of variation (ECoV). On
the other hand, highly computational requirements
per simulation can be significantly reduced by the
surrogate model, which can be used as a computation-
ally cheap approximation of the original mathematical
model. Although there are various types of surogate
models such as Support Vector Machine, Krigging
or Artificial Neural Networks, it is beneficial to use
approximations which can be easily used for analytical
post-processing such as Polynomial Chaos Expansion
(PCE) originally proposed by Norbert Wiener [1] of-
fering efficient post-processing.

In this paper PCE is employed for sensitivity and
statistical analysis of an existing prestressed con-
crete bridge. The bridge consists of 16 precast post-
tensioned bridge girders and it is loaded by exceptional
load according to national annex in order to estimate
design value of resistance. The bridge is represented
by NLFEM based on theory of non-linear fracture
mechanics of quasi-brittle material. The obtained
results and applied methodlogy might be interesting
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for civil engineers as well as for scientist dealing with
semi-probabilistic analysis of existing structures.

2. Polynomial Chaos Expansion
Evaluation of mathematical model of QoI is often
highly computationally demanding and thus it is nec-
essary to create an efficient approximation. One of
the most popular approach is PCE [1], which repre-
sents the output variable Y as a polynomial expansion
gP CE of an another random variable ξ called the germ
with given distribution

Y = g(X) ≈ gP CE(ξ), (1)

A set of polynomials, orthogonal with respect to the
probability distribution of the germ, are used as a
basis functions. The orthogonality condition for all
j ̸= k is given by the inner product defined for any two
functions ψj and ψk with respect to the probability
density function of ξ

⟨ψj , ψk⟩ =
∫
ψj(ξ)ψk(ξ)pξ(ξ) dξ = 0. (2)

Polynomials ψ orthogonal with respect to a selected
probability distributions pξ can be chosen according
to Wiener-Askey scheme [2] or created directly by
Gram-Schmidt orthogonalization. In this paper we
use normalized polynomials with inner product equal
to the Kronecker delta δjk.

In the case of X and ξ being vectors containing
M random variables, the polynomial Ψ(ξ) is mul-
tivariate and it is built up as a tensor product of
univariate orthogonal polynomials. The quantity of
interest (QoI), i.e. the response of the mathematical
model Y = g(X), can then be represented, according
to Ghanem and Spanos [3], as

Y = g(X) =
∑

α∈NM

βαΨα(ξ), (3)

where α ∈ NM is a set of integers called the multi-
index, βα are deterministic coefficients and Ψα are
multivariate orthogonal polynomials.

Naturally, the approximating function given by
Eq. (3) must be truncated to a finite number of terms
P using e.g. total-order truncation by retaining only
terms whose total degree |α| is less than or equal to
a given p:

AM,p =
{

α ∈ NM : |α| =
M∑

i=1
αi ≤ p

}
. (4)

In case of high p and M , it possible to use additional
“hyperbolic” reduction of the truncated set [4].

2.1. Non-intrusive approach
Truncated PCE can be seen as a linear regression
model with deterministic coefficients β, which can
be thus obtained by ordinary least square (OLS) re-
gression. Estimated β thus minimize the sum of the

squares of the differences between the results of orig-
inal mathematical model Y corresponding to he in-
put random vector X together called the experimen-
tal design (ED) and the results of surrogate model.
Specifically, the vector of deterministic coefficients β
is calculated using data matrix Ψ as

β = (ΨT Ψ)−1 ΨT Y. (5)

The number of deterministic coefficients is directly
connected to P , generally dependent on the number
of input random variables M and the maximum total
degree of polynomials p as can be seen in Eq. 4.
Unfortunately, this leads to computationally highly
demanding problems in case of large stochastic non-
linear models. In order to reduce P , it is possible
to select the best model represented by sparse set of
basis functions. The best model selection is a broad
scientific topic and several methods were proposed,
here we use Least Angle Regression (LAR) [5] to find
an optimal set of PCE terms as proposed by Blatman
and Sudret [4].

2.2. Approximation Error Estimation
Naturally, it is necessary to measure the approxima-
tion error of PCEṠuch a measure can be further used
for construction/selection of the best surrogate model.
However, it might be highly computationally demand-
ing to create a validation set containing several calcu-
lations of the original mathematical model. Therefore,
it is beneficial to utilize accuracy measures, which do
not need any additional simulations. Commonly used
technique is the coefficient of determination R2, which
is well known from machine learning. However, this
measure often leads to over-fitting and thus scientists
are focused on more advanced techniques. The ro-
bust, computationally efficient and generally reliabile
estimator is the leave-one-out cross validation error
Q2. The estimated error is based on residuals between
predictions of the surrogate model and the results of
original mathematical model measured on ED, while
excluding one realization in construction of surrogate
model. The errors are calculated for all realizations in
ED and further the average error is estimated. It is
clear that iterative process of PCEconstructions for all
realizations in ED can be computationally demanding.
Fortunately in case of PCE, it is possible to get Q2

analytically from a single PCEbased on all realizations
in ED as follows [6]:

Q2 = 1 −

1
nsim

∑nsim
i=1

[
g(x(i))−gPCE(x(i))

1−hi

]2

σ2
Y,ED

, (6)

where σ2
Y,ED is a variance of experimental design ob-

tained from results of the original mathematical model
and hi represents the ith diagonal term of the matrix
H = Ψ

(
ΨT Ψ

)−1 ΨT .

136



vol. 36/2022 Probabilistic Assessment of Existing Concrete Bridge

2.3. Statistical Moments
The PCE is famous for statistical analysis thank to
its powerful and efficient post-processing allowing for
analytical derivation of statistical moments of the QoI.
The mean value is obtained from general formula of
the first statistical moments as

µY =
〈
Y 1〉

=
∑

α∈NM

βα

∫
Ψα(ξ) pξ

(
ξ
)

dξ. (7)

Considering the orthonormality of the polynomials∫
Ψα(ξ)pξ

(
ξ
)

dξ = 0 ∀α ̸= 0, Ψ0 ≡ 1,

the original integration is reduced to simple post-
processing of the PCE deterministic coefficients.
Namely, the mean value is equal to the first determin-
istic coefficient of the expansion

µY =
〈
Y 1〉

= β0. (8)

The second raw statistical moment,
〈
Y 2〉

, is written
as〈
Y 2〉

=
∑
α∈A

β2
α

∫
Ψα (ξ)2

pξ (ξ) dξ =
∑
α∈A

β2
α ⟨Ψα,Ψα⟩ .

(9)

Similarly as in case of the mean value, it is possible
to obtain the variance as the sum of all squared de-
terministic coefficients except the intercept (which
represents the mean value), i.e.

σ2
Y =

∑
α∈A
α ̸=0

β2
α. (10)

3. Sensitivity analysis
Once the PCE approximation is constructed, it is
also possible to obtain sensitivity measure of input
random variables. Although there are many sensitivity
techniques beneficially coupled with surrogate models
[7], the following two common and efficient techniques
are employed in this paper: non-parametric rank-order
correlation obtained by MC simulation and Sobol
indices derived directly from PCE coefficients. Results
of both techniques represent different information and
thus they should be combined in order to correctly
investigate the influence of input random variables.

3.1. Non-parametric Rank-order
Correlation

The traditional sensitivity analysis method in statis-
tics is represented by the correlation between an input
variable and the quantity of interest of mathemati-
cal model. Although standard measurement via the
Pearson correlation coefficient is simple and efficient
enough for linear monotonic dependency, it is nec-
essary to utilize a generalized measure for nonlinear
monotonic relationships called the non-parametric

Spearman rank-order correlation technique [8]. Ob-
tained correlation coefficient ρ is in an interval ⟨−1, 1⟩.
The higher absolute value of ρ corresponds to the
stronger relationship between the two variables. If it
is positive, then as an input variable increases, the
QoI tends to increase. If it is negative, then as an
input variable increases, the QoI tends to decrease.

3.2. Sobol Indices
One of the most important tasks in uncertainty quan-
tification is the analysis of variance "the analysis of
the influence of input variables on the variance of
a mathematical model. Such information may be
utilized to practically reduce the uncertainty of im-
portant input variables (material characteristics) used
in mathematical model by experiments and measure-
ments, which leads to a significant reduction in the
uncertainty of the quantity of interest. Herein, the
well-known ANOVA method represented by Sobol
indices is employed. The Sobol indices method is
widely used and well developed method for sensitivity
analysis. However, it is still highly computationally
demanding to evaluate Sobol indices via the classical
double loop Monte Carlo method. Fortunately, there
is a connection between PCE and the Hoeffding-Sobol
decomposition [9] allowing for analytical derivation of
Sobol indices.

PCE can be rewritten in the form of the Hoeffding-
Sobol decomposition by a simple reordering of the
terms:

gP CE (x) = β0 +
∑

α∈Au

βαΨα (ξ) , (11)

where the set of basis multivariate polynomials depen-
dent on selected input random variables Xu is

Au =
{
α ∈ AM,p : αk ̸= 0 ↔ k ∈ u

}
. (12)

Therefore, the first order Sobol indices can be analyt-
ically obtained directly from PCE as follows [9]:

Si =

∑
α∈Ai

β2
α

σ2
Y

, (13)

where basis functions are selected as:

Ai =
{
α ∈ AM,p : αi > 0, αj ̸=i = 0

}
. (14)

Important information about the influence of input
variables and all interactions can by expressed by total
Sobol indices representing the first order influence and
influence of all interactions, which can be obtained as

ST
i =

∑
α∈AT

i

β2
α

σ2
Y

, (15)

where basis functions are selected as:

AT
i =

{
α ∈ AM,p : αi > 0

}
. (16)

Note that, the above expressions represent just a
selection of the specific PCE coefficients associated to
selected input random variable.
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4. Post-tensioned Concrete
Bridge

The PCE is employed for probabilistic assessment
of an existing concrete bridge. The PCE is uti-
lized as an alternative to semi-probabilistic assess-
ment partly addressed in the simplified case-study of
the selected bridge during the European Project IN-
TERREG AUSTRIA-CZECH REPUBLIC "ATCZ190
SAFEBRIDGE". [20]. The bridge consists of three
spans constructed from 16 bridge girders KA-61 in
transverse direction. The crucial part of the bridge
for assessment is the mid-span: 19.98 m long with
total width 16.60 m. The geometry of a typical bridge
girder KA-61 is created according to an original docu-
mentation describing also positions of reinforcement
and tendons. The drawing together with the simplified
cross-section is depicted in Fig. 1.

Figure 1. Cross-section of a singe bridge girder KA-61.

From structural point of view, it was necessary to
create numerical model of the whole bridge span. The
reason is that although the structure is symmetric,
the individual bridge girders are not transversely pre-
stressed, which leads to the different deflection of each
girder in dependence on their distance to the loading
position. In order to create numerical model reflect-
ing their real connection conditions, the girders are
connected by reinforcement according to original doc-
umentation together with a concrete mixture between
single girders.

4.1. Finite Element Model
The cross-sections of girders KA-61 were simplified
to regular shapes in order to reduce number of fi-

nite elements and to obtain regular mesh, see Fig. 1.
Boundary conditions are assumed to be as a simply
supported beam with elastic blocks. The geometry
of elastic blocks and positions of loading plates are
modeled according to bridge documentation and a na-
tional annex of Eurocode for load-bearing capacity of
road bridges by exclusive loading (by six-axial truck).

The NLFEM is created in software ATENA Science
including theory of non-linear fracture mechanics [10].
In order to reflect complex behavior of the bridge, the
numerical model contains three construction phases
as illustrated in Fig. 2:

(1.) prestressing of bridge girders and simultaneous
application of the self-weight;

(2.) activating of the pavement and concrete among
girders connecting bridge girders;

(3.) application of a load by a six-axial truck.

The major part of NLFEM is represented by 13,000
elements of hexahedra type and triangular ‘PRISM’
elements in the blue-colored parts of the cross-section
(see Fig. 1). Hexahedra elements lead to better nu-
merical stability of simulation and leads to easier con-
struction of mesh compatible between two volumes
connected by fixed contact, i.e. nodes of elements in
both connected sub-volumes have same coordinates.
The advantage of brick elements is that the structured
mesh constructed from brick elements leads to a signif-
icantly lower number of finite elements in comparison
to tetrahedra elements. Fracture-mechanical behavior
of concrete is described by a non-linear mathematical
model [10]. Reinforcement together with tendons are
modeled as discrete 1D elements with positions and
shape according to the original documentation.

The numerical model is analysed in order to inves-
tigate the following three limit states of the bridge:
(1.) the ultimate limit state (ULS) (peak of a load-

deflection diagram);
(2.) the first occurrence of cracks in bridge girders

(cracking);
(3.) the serviceability limit state of decompression

defined according to Eurocode (SLS).
Note that obtained results are further reduced by
dynamic amplification factor δ = 1.4 in order to reflect
that results are from static analysis.

4.2. Stochastic Model
The stochastic model contains 4 random material
parameters of a concrete C50/60: Young’s modulus E
; compressive strength of concrete fc; tensile strength
of concrete fct and fracture energy Gf . Characteristic
values of E, fct, Gf were determined from fc according
to formulas implemented in the fib Model Code 2010
[11] (Gf , E) and prEN 1992-1-1: 2021 (fct). The
last random variable P represents prestressing losses
with CoV according to JCSS: Probabilistic Model
Code [12]. The stochastic model is summarized in
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Figure 2. Three construction phases of the bridge represented by NLFEM.

Tab. 1. Mean values and coefficients of variation were
obtained according to prEN 1992-1-1: 2021 (Annex
A) for adjustment of partial factors for materials.

Var. Mean CoV [%] Distrib. Units
fc 56 16 Lognormal [MPa]
fct 3.64 22 Lognormal [MPa]
E 36 16 Lognormal [GPa]
Gf 195 22 Lognormal [Jm2]
P 20 30 Normal [%]

Table 1. Stochastic model of the numerical example.

In this first numerical study, there is an assump-
tion of uncorrelated random variables.Though the
correlation might play crucial role in case of concrete
structures.

4.3. Numerical Results
The ED contains 30 numerical simulations generated
by Latin Hypercube Sampling (LHS) [13] together
with corresponding results of NLFEA. Note that each
simulation takes approximately 24 hours. The PCE
is created with maximal polynomial order p = 5 with
the LAR algorithm for a selection of the best set
of basis functions. The whole algorithm of adaptive
construction of PCE connects state of art techniques
into stand-alone software tool [14]. Obtained mean,
CoV and design values together with PCE accuracy
measured by Q2 are summarized for all limit states
in Tab 2. The design values of resistance Rd for
each limit state in tons are determined as a quantile
of Lognormal distribution with identified statistical
moments and target reliability indices βULS = 3.8,
βcrack = 3.8 and βSLS = 1.5 according to EN 1990
[15]. Additionally, design values are reduced by global
safety factor reflecting model uncertainties γRd

= 1.06
introduced originally in fib Model Code 2010 [11].

Once the PCE is created, it is also possible to
easily obtain sensitivity indices as described in Section

Mean CoV [%] Q2 Rd

ULS 480 7.2 0.91 365
Cracking 400 8.4 0.96 290

SLS 150 14.1 0.98 120

Table 2. Obtained statistical moments and PCE
accuracy for each limit state.

3.2. Obtained sensitivity measures are summarized in
Tab. 3.

5. Discussion and Further
Research

As can be seen from obtained accuracy, all three limit
states are well approximated by PCE and thus one
could use obtained statistical moments for derivation
of design values of resistance. It can be seen, that
a critical limit state (the lowest Rd) is represented
by limit state of decompression, which is typical for
prestressed structures. It is interesting that SLS has
the highest CoV, though it is almost linear limit state.
This could be explained by results of sensitivity anal-
ysis revealing that P (which has a high CoV) has
absolutely dominant influence. The ULS and cracking
limit state have lower CoV since there is also a signfi-
cant influence of concrete material characteristics and
their interactions.

It is clear that sensitivity analysis plays important
role in the probabilistic analysis of structures, how-
ever, it is important to understand obtained infor-
mation from different types of sensitivity analysis [7].
Moreover, correlation among material characteristics
may have a significant influence on obtained results
[16] and thus further work will be focused on analy-
sis assuming realistic correlation matrix of concrete
material parameters similarly as in previous work of
authors of this paper [17, 18]. Although Q2 > 0.9 for
all limit states, it should be improved in further work
in order to obtain more reliable results, especially for
sensitivity analysis. The recently proposed adaptive
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ULS Cracking SLS
Si ST,i ρ Si ST,i ρ Si ST,i ρ

fct 0.00 0.01 0.23 0.00 0.15 0.31 0.00 0.05 0.23
fc 0.00 0.10 0.15 0.00 0.01 0.05 0.00 0.01 0.10
Gf 0.00 0.10 0.16 0.00 0.01 0.06 0.00 0.01 0.05
E 0.00 0.01 0.07 0.06 0.07 0.45 0.00 0.05 0.27
P 0.90 0.95 -0.90 0.77 0.90 -0.85 0.95 0.95 -0.95

Table 3. Results of sensitivity analysis via PCE. ρ represents non-parametric rank order correlation by Spearman
coefficients, Si first-order Sobol indices and ST,i total-order Sobol indices.

sequential sampling will be employed [19] for efficient
extension of existing ED.

6. Conclusions
The paper presents practical application of PCE for
probabilistic assessment of an existing prestressed
concrete bridge. The bridge is represented by highly
computationally demanding NLFEM reflecting the-
ory of non-linear fracture mechanics of concrete. The
stochastic model contains 5 random variables repre-
senting concrete characteristics and prestressing losses.
The PCE is created by adaptive best model selection
algorithm LAR (non-intrusive approach) with ED con-
taining 30 samples generated by LHS. PCE was cre-
ated for three limit states, which were further analysed
in order to obtain statistical moments and sensitivity
indices. The obtained statistical moments are used
for the estimation of design values of resistance.
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