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Abstract. Terrestrial laser scanning and drone-based scanning are often combined to gain a complete
picture of the external envelopes of buildings. While the resulting data sets are easy to understand for
humans, extracting any semantical information from the data is a challenging task. Creating a BIM
model for large cities is desirable, especially for planning and inventory purposes. Nowadays, engineers
manually separate buildings and draw corresponding floor plans or any other required entities, making
creating such a model nearly impossible for the whole city.

In this contribution, we present the design and concept of a C++ library that provides fundamental
algorithmic tools for automated detection of the ground points, separation of buildings into individual
point clouds, and segmentation of walls and roofs. The buildings’ 3D model (both volumetric and
surface mesh) can be constructed using the data. Furthermore, the building area and volume calculation
can be performed on such a model, which can then be compared with the existing city plan.
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1. Introduction
Building Information Modelling (BIM) brings excel-
lent opportunities for the efficient and more automated
design process of building structures and maintenance
and reconstruction planning of existing city structures.
However, obtaining a digital BIM representation of
the latter is often challenging when no up-to-date city
ground plans are available in digital form. The plans
are usually just a set of polylines with no relation to
individual buildings or other entities.
Laser scanning is a convenient and accessible tech-

nology to document the existing infrastructure. For
cities, the combination of the terrestrial laser scanner
and drone-based scanning is often used to capture
the external envelope of the buildings. The output
is a dense set of data points in space, the so-called
point cloud. See Figure 1 for an example of a laser-
scanned part of Dublin. The dataset was obtained
from [1]. While point clouds can be directly rendered
and inspected, they carry no additional information
about the scanned objects. Therefore, it is desirable
to convert the raw point data into a BIM representa-
tion. Civil engineers and architects must identify and
separate buildings manually, draw the corresponding
floor plans, and measure any desired quantity (i.e.,
building area and volume).

Our goal is to provide automated extraction of the
individual buildings from the city point cloud and
construction of the corresponding building meshes.
The idea is based on the segmentation of the ground-
level points. Then, those points are used as a filter to
obtain all the points above a certain height. Segmen-
tation of the individual buildings is then performed
on the filtered point cloud. Furthermore, the outer

Figure 1. Laser scan of Dublin consisting of 226
million points before downsampling. The buildings
and streets are clearly visible because the points were
obtained from an airplane, so the point density is much
higher than on the walls. Unfortunately, no RGB color
information is available. Source: [1]

surface planes are found, and a voxel-based 3D model
is built for each building. The calculation of the build-
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ing volume is straightforward. By extraction of the
surface of the voxel mesh, the building area can be
approximated. Such a surface model may be suitable
for texture mapping and city visualization in planning
and architectural applications.
We have used a 2×2 km area of Dublin for the

implementation and verification of our implemented
algorithms. The raw dataset is described in [1].

2. Pre-processing
Laser scanners produce very dense point clouds con-
taining hundreds of millions of points. The distance
between the scanned points often ranges in millime-
ters. Therefore the point cloud data processing must
be handled carefully in order to achieve competitive
computation times and memory efficiency.

2.1. Downsampling
While storing the points as binary data offers high
reading speeds, with hundreds of millions of points,
reading all the values into memory might still not be
possible on a standard computer with limited memory.
For example, storing 100 million XYZ coordinates
(3x64 bit float) occupies 2.4 GB of memory, more
than half of a commonly available 4 GB.
Reducing the number of points to work with is

inevitable. In our case, the points were downsampled
in a 3D voxel grid using the efficient implementation
of a C++ hash map [2]. Reasonable selection of a
grid step of say 1 × 1 × 1 cm reduces all the points
within the 1 cm3 cube to a single point with weighted
coordinates.

As we have discussed in [3], one can see that just by
downsampling to a 1 cm3 grid, the size of points goes
down to at least 30%. In the case of city scanning, the
grid step length may be much longer. For example,
we have used a downsampling step of 5 cm for the
Dublin point cloud, and even a larger step of 10 cm
still produced satisfying results.

2.2. The normal vector of downsampled
points

Further processing can take advantage of determining
the normal vector at each downsampled point. This
is done in the following steps.

For each point, its ten closest points are found. This
is done by implementing and using a K-d tree data
structure. The total number of points n for the normal
evaluation is at most n = 10.
The 3 × 3 covariance matrix of the point X, Y, Z

coordinates relative to the point is calculated using
the formula for the covariance of A and B below.

cov(A,B) =
∑n

i=1(ai − µa)(bi − µb)
n− 1 , (1)

where µx, µy and µz are the coordinates of the subject
point.

The smallest Eigenvector of the covariance matrix is
the plane normal [4]. The direct solver of eigenvalues

Figure 2. The results of a ground segmenta-
tion: The streets are dominating the picture. It can
be seen that most of the inner areas of the building
were captured as well. The large flat park area in the
top right is also notable.

was implemented for the 3×3 matrix using the arccos
function, as described in [5].

3. Ground-level segmentation
There are numerous algorithms for ground segmen-
tation. For example, in [6], they use a ground plane
fitting algorithm that is suitable for small areas of
the point cloud. As we have wanted to obtain ground
points for the whole dataset (2 km2 Dublin area), we
propose a different approach suitable for cities with
mostly vertical building walls. We claim that this is
a reasonable approach for most cities. However, the
algorithm may not perform well for areas where no
vertical building walls are present.

The first step is to activate a two-dimensional grid in
the horizontal plane. Grid coordinates are calculated
for each point, and the point is added to a list at a
corresponding grid index.

In the next step, we iterate over all the active grid
cells. Cells without a sufficient vertical coordinate
difference ∆z will be removed from the grid. The
minimum vertical coordinate difference equals the
minimum expected building height. We have chosen
∆z = 3 m because we do not expect any building to
be smaller than such a height.

Most of such selected grid cells will contain building
wall points. However, lamps, some higher trees, or
noise will be captured as well. A minimum number
of points nmin in the cell is introduced to limit the
number of false positives. The average point density ρ
is calculated for the point cloud. For the Dublin data
set, the value is around 1 point per 3 cm3. The average
point density ρcell is calculated for the grid cell and
compared to the ρ. Only cells with ρcell / ρ > 0.25 are
accepted to accommodate walls with large openings
(i.e., windows, balconies).

Finally, any high walls present on the buildings
and not reaching the ground need to be removed.
Another horizontal grid with a much higher step length
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Figure 3. The results of building segmentation:
Each of the buildings are marked in a single color. It
can be seen that noise is present in the results as small
entities (primarily trees). Multiple buildings may be
identified as one when some joining element is present
(i.e., bridge or a tree in between).

is introduced (25 m in our case). Points from the
previous grid (z-coordinate is equal to the minimum
vertical coordinate in the cell) are activated within
the larger grid. We can then calculate the median of
the z-coordinate per the larger grid’s steps and filter
out the smaller grid by not taking into account the
points above the median.

Finally, we can calculate the middle point (in terms
of X, Y coordinates) for each active cell, and the
point’s Z coordinate is considered the minimal Z co-
ordinate within the cell. Those calculated points are
considered to be the ground-level approximation.

In order to separate the road surface and sidewalks,
the Z coordinate of the ground points should be in-
creased by some small tolerance. We have used values
around 0.5 m. It is then possible to iterate over all
of the initial points and find its closest ground level
point. If the point lies below the ground points, then
it can be considered as a surface point.
The results of a ground segmentation can be seen

in Figure 2.

4. Building segmentation
The ground level was estimated to perform building
segmentation similarly as we have performed rooms
segmentation in our previous work [3].
The closest ground point is found for each point.

Each point that is at least 3 meters higher than the
ground point is projected onto a 2D grid resulting in
a pixel-like image. The step of the grid should be at
least twice the step used for the initial downsampling,
or the grid will contain missing points as some points
may not be appropriately captured.

Region growing [7] is applied to join adjacent pixels
into separate regions. Each region corresponds to a
single building. Backfilling of each of the found regions
is performed to include missing areas (i.e., chimneys).

Knowing the pixel count and pixel area (step × step),
the area of the regions can be estimated.
Finally, the original point cloud is iterated, and

points inside of the found regions (in terms of X and
Y coordinates) and above the ground are selected.

5. Plane segmentation
The surface planes are identified for each building
using the modified Random Sample Consensus [8]
with minimum area and continuity control. Three
separate sets of trial points for outer walls, horizontal
roofs, and pitched roofs are constructed. Running
the RANSAC directly on the point cloud has a high
chance of finding a generally oriented plane across
the building. The three separated sets of points are
defined as follows.

Outer walls Only points with horizontal normal
are considered for plane finding, a slight deviation
of 15 degrees is allowed to account for deviations
in construction.

Horizontal roofs Only points with vertical normal
are considered for plane finding, a slight deviation
of 15 degrees is allowed to account for deviations
in construction.

Pitched roofs Only points not contained in the pre-
vious two datasets are considered for plane finding.

The results of a plane segmentation for one of the
building can be seen in Figure 4.

6. Building mesh
Each building point cloud is iterated, and its points are
projected in a horizontal 2D grid. The single region
is then backfilled to avoid losing volume in places
with no points captured (i.e., shadows or reflective
surfaces). Finally, the grid is deactivated at places
where any points exist below the ground level.

The simplest mesh consists of blocks, each defined
by the grid cells (in the XY plane), the ground level,
and the highest point within the cell. Such a model
allows for a simple building volume calculation by
summing up the volumes of the blocks. The area is
the product of the sum of the active cells in the grid
and the grid step squared. Such a mesh can be seen
in Figure 5.

Calculating the building volume, including antennas
or chimneys, may not be desirable. Therefore, the
previously found roof planes can be used to clip the
blocks so that no Z coordinate is above the subject
plane.
Voxel-based mesh does not precisely represent the

building near the surface if the planes are not parallel
to the voxel grid. The previously found planes could
be used to straighten up the voxel model by moving
its vertices onto the planes within a small distance.
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Figure 4. The results planes of plane segmentation for one building: Each of the planes is marked with a
unique color. It can be seen that most of the surface planes were found with some smaller pieces missing.

Figure 5. The resulting voxel model of a single
building.

7. Conclusions
This paper analyzed the methods of segmentation of
the BIM entities from the city point clouds. The pri-
mary motivation was to separate individual building
point clouds from the large city point cloud and obtain
water-tight mesh of such buildings. The meshes are
suitable for approximation of the building volume and
area. The proposed algorithms were tested on a 2015
aerial laser and photogrammetry survey of Dublin
city.
The findings can be summarized as follows.

• Downsampling with a step of 0.05 m dramatically
reduces the number of points to around 20% of the

original dataset. Such precision is still sufficient for
the segmentation of the buildings and their features.

• The ground segmentation procedure works well for
cities with mostly vertical building walls. More
complex buildings can still be identified if there are
enough nearby ground points.

• The building segmentation algorithm works well
for buildings with a sufficiently large area. How-
ever, when using a small minimum area of around
Ab,min < 10 m2, it is not easily possible to distin-
guish between a small building (i.e., a garage) and
a tree. In order to eliminate the trees, buildings
with no found planes can be excluded.

• Modified RANSAC algorithm with minimum area
and continuity checking is used to find the building
surface planes. Pre-filtering of the trial point clouds
is done using the point normal vectors, which dra-
matically increases performance. The results are
promising for vertical (outer walls) and horizontal
(roof) planes. However, some skewed roof planes are
often missing due to noise or additional structures
(i.e., large chimneys).

• 3D voxel mesh can be constructed for each build-
ing. The building area and volume can be easily
estimated from the voxel mesh. The voxel mesh
can be clipped by the found planes, removing small
features (i.e., chimneys and antennas). The voxel
points can also be projected onto the found planes
to straighten out the surface.
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