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Abstract.
Axial tension force exerted as a result of a temperature change or shrinkage can cause the collapse

of RC structural members. Design code provisions and analytical models such as Modified Compres-
sion Field Theory (MCFT) yield reasonable estimates of shear strength of RC beams subjected to axial
tension. Nevertheless, their semi-empirical nature is not necessarily appropriate for shear assessment
of existing RC structural members. The extra conservativeness and empirically determined parameters
might require unnecessary maintenance work. A generalised model with rigorous formulation must be
developed. This paper presents a purely theoretical model to predict the shear strength of RC beams
under axial tension based on limit analysis. Without regressive functions and empirical functions,
lower bound analysis enables shear strength derivation when the force equilibrium and strain compat-
ibility are satisfied. Accuracy of the analysis was verified by comparison of its predictions with three
experimental shear strengths of full-scale RC girders. An equal level of accuracy was observed between
the analytical solutions and MCFT-based predictions.
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1. Introduction
The sustainability of RC structures is an important
issue worldwide because of their exposure to a vari-
ety of loading with environmental and mechanical ac-
tions. The partial collapse of the Wilkins Air Force
Depot in 1955 [1] spurred the refinement of design
practices for shear under axial tension caused by a
temperature change or shrinkage. The brittle col-
lapse was reproduced in laboratory investigation [1].
Results demonstrated that tensile stress of approxi-
mately 1.4 N/mm2 can reduce shear strength by 50%
[2]. Design code provisions have difficulty in predict-
ing such detrimental effects of axial tension because
of empirically determined parameters with safety fac-
tors. In this respect, several well-established theories
for shear [3–5] are based not only on the force equi-
librium, but on the failure kinematics. The former
and latter respectively correspond to lower and up-
per bound solutions. The lower bound analysis is
the basis of the shear design expression in most in-
ternational codes. This lower bound is the reason
underlying their inherent conservativeness, which is
appropriate for designing new structures. For struc-
tural assessment of existing RC members, however,
such conservativeness is of less importance than de-
termining the actual bearing capacity [6].

Among the currently available theories, the Modi-
fied Compression Field Theory (MCFT) has provided
a consistent framework to consider the influence of
axial force and to facilitate its incorporation into var-
ious international codes and specifications. Never-
theless, the MCFT predictions might elicit some dis-
crepancy with several test results of RC beams under

axial tension [2]. Current understanding should be
supplemented theoretically for rational shear assess-
ment because the limitations of existing test results
include laboratory-scale specimens without web rein-
forcement [7], despite recent progress [8, 9].

This paper presents a rational analysis based on
the lower bound theorem. The analytical structure is
based on the combined upper and lower bound anal-
ysis [10], which predicted the shear strengths of RC
beams accurately with no axial force and no web re-
inforcement. The present work extends their origi-
nal theory to consider the effectiveness of web rein-
forcement and the negative effects of axial tension.
Rigorous formulation for shear failure is presented,
including shear resisting mechanisms such as aggre-
gate interlock and dowel action of longitudinal re-
inforcement under both force equilibrium and strain
compatibility. The developed analysis is validated by
comparison of its solutions with MCFT-based pre-
dictions and test results of three full-scale RC girders
subjected to axial tension [7]. The notation used for
this study is summarised in the Appendix.

2. Model Formulation
2.1. Analytical framework
In the theoretical framework of limit analysis [11], the
exact solution lies between lower and upper bound
solutions, for which the former and latter respec-
tively satisfy force equilibrium and compatible pat-
terns of failure, in addition to yield criteria. One
therefore finds the exact solution by maximising the
lower bound solutions. To derive shear strength with
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Figure 1. Constitutive law of concrete.

Figure 2. Constitutive law of steel reinforcement.

reasonable simplification, the following assumptions
are introduced.

• Concrete and steel reinforcement are in a plane
stress state.

• Perfect bonding exists between steel reinforcement
and concrete.

• Concrete strength equal to over a compression
zone; concrete behaves as a rigid - perfectly plastic
material, as presented in Figure 2.

• Steel reinforcement behave as an elastic - perfectly
plastic material, as shown in Figure 2.

It is noteworthy that the physical quantities such
as forces, stresses and strains in compression are neg-
ative. Those denoted with a prime have positive com-
pression.

2.2. Force equilibrium
Figure 3 shows the free-body diagram with the shear
resisting components against the external shear and
axial tension force, respectively denoted as V and N.
This equilibrium condition yields the following ex-
pressions, respectively, for vertical force, horizontal
force, and moment.

V − Vc − Fd − Fw − b

!

t

f sin θ dt = 0 (1)

Figure 3. Free-body diagram.

Figure 4. Critical crack shape.
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(3)

Therein,
$

t
dt denotes the path integral from point

A to B in Figure 3. One can replace these integrations
with the following integrations with respect to x and
y.

!

t

cos θ dt =
! a

γa

dx,

!

t

sin θ dt =
! αh

0
dy (4)

Mathematical treatment of the path integral re-
quires an expression for the critical crack shape shown
in figure 4 on the x − y coordinates.

y2 = α2h2 (x − aγ)
a (1 − γ) (5)

Dividing equations 1, 2 and 3 respectively by bd1f ′
c

and abd1f ′
c, one obtains non-dimensionalised expres-

sions as presented below.
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Figure 5. Strain compatibility.

v = (1 − α) τc + φs1τs + ωφswσw + α

µ
f (6)

1 − α

µ
− φs1σs1 + φs2σs2 + n + λ (1 − γ) f = 0 (7)
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#
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2 ωφwσw + (1 − α) τc −

ζ

2n − ζ

2µ

'
1 − α2(

− α

3µ
(1 − 4γ) f = 0

(8)

In those equations, the non-dimensional static vari-
ables are defined as shown below.

)
**********+

**********,

v = V

bd1f ′
c

, σs1 = Fs1
As1fs1

, σs2 = F ′
s2

As2fs2
,

σw = Fw

Aswfsw
, τc = Vc

bd1f ′
c (1 − α) ,

τs = Fd

As1fs1
, n = N

bd1f ′
c

, f = f

f ′
c

.

(9)

Equation 6 is the objective function in this study.
The non-dimensional shear strength of v is maximised
with respect to the static variables.

2.3. Compatibility conditions
Though lower bound solutions do not require compat-
ibility conditions, an inequality constraint for aggre-
gate interlock

'
f

(
can be derived from strain com-

patibility. Figure 5 presents the strain compatibility
on the cracked section. The assumption of Bernoulli-
Euler beam (plane sections remain planar) yields the
linear distribution of longitudinal strain. Those of
bottom and top reinforcement are obtained respec-
tively as shown below.

εs1 =
d1 − (1 − α) h

(1 − α) h
ε′

cu = 0.0035
-

µ

1 − α
− 1

.
(10)

εs2 =
(1 − α) h − d2

(1 − α) h
ε′

cu = 0.0035
-

δµ

1 − α
− 1

.
(11)

The neutral axis depth under the effect of axial
tension is calculable by arranging Equation 6 with re-
spect to k = (1−α)h/d1 as presented in the equation
below.

k =ε′
cuEs

f ′
c

/
(ρs1 + δρs2) µ

1 − α
− (ρs1 + ρs2)

0
−

f λ (1 − γ) − n

(12)

Equation 12 gives an upper limit of the aggregate
interlock in maximisation because k must be positive
according to its definition.

2.4. Yield criterion and solution
technique

The following von Mises yield criterion is introduced
between τs and σs1.

3τ2
s + σ2

s1 = 1 (13)

Although Hweé et al. [10] used another yield
criterion for concrete, it need not be addressed in
this study because the rigid - perfectly plastic be-
haviour is assumed. The complete set of equations
enables the maximisation of the objective function
of Equation 6 with respect to the six static vari-
ables

'
σs1, σs2, σw, τc, τs, and f

(
. The possible

ranges of those variables are presented as the follow-
ing.

σs1, σs2, σw ∈ 〈0, 1〉
τc, τs, f ∈ 〈0, ∞〉

(14)

All of those expressions must be positive. The up-
per limits of σs1, σs2, and σw and correspond with
yielding of reinforcement. Although no upper limit
is imposed on the others, Equation 7, 8, 12, and 13
render them physically admissible values.

Maximisation is performed using the optimisation
algorithm of MATLAB [12], under the equality and
inequality constraints listed in Table 1. All possible
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Objective function Equation 6
Equality constraints (force equilibrium) Equation 7 and 8
Equality constraints (yield criterion) Equation 13
Inequality constraints (neutral axis depth) Equation 12 ≥ 0
Inequality constraints (yield criterion) 3τ2

s + σ2
s1 ≤ 1

Table 1. List of constraints for optimisation.

Figure 6. Cross-sectional details of inverted-T
beams (unit: mm).

Figure 7. Shear strength dependence on applied ax-
ial force.

values of v are calculated within the following ranges
of kinematic variables.

1 − µ ≤ α ≤ 1
αh

a (1 − γ) ≤ β ≤ ∞

0 ≤ γ ≤ 1

(15)

The lower limits of and stem respectively from the
assumption that the longitudinal strain of bottom re-
inforcement in Equation 10 must be positive, and that
the critical crack is directed upwards at y = 0 (Fig-
ure 3).

To obtain more optimal solution, the maximised so-
lutions are then minimised with kinematic variables.
The partial derivative of equation (6) with respect to

determines whether the objective function is mono-
tonically decreasing or increasing. The minimised
shear strengths are calculable as presented below.

∂v

∂α
= − τc + f

µ
(16)

)
*******************+

*******************,

vana = φs1τs + ωφswσw + f

µ

"
if ∂v

∂α
< 0, αmax = 1 gives vana

#

vana = µτc + φs1τs + ωφswσw + 1 − µ

µ
f

"
if ∂v

∂α
> 0, αmax = 1 − µ gives vana

#

(17)

3. Results and Discussion
3.1. Experiment results
The analytical solutions have been compared with
test results obtained for full-scale RC girders [7]. The
studied girders had the inverted-T configuration (Fig-
ure 6) to support the deck in flexural tension. Fig-
ure 7 presents the detrimental effect of axial tension
on shear strength. The axial force of 900 kN decreases
the shear strength by 14%. The axial force magni-
tudes of 3-200-P and 4-300-P were found respectively
to represent shrinkage-induced stress only, and both
the shrinkage and temperature-induced stress. It is
noteworthy that Smith et al. [7] tested seven speci-
mens in all. The three specimens shown in figure 7
were extracted for model validation because the oth-
ers included the use of cut-off bars and epoxy injected
specimen, of which the contributions were not formu-
lated.

3.2. Model validation
To calculate the shear strength by the developed anal-
ysis, static and kinematic constants were determined
as listed respectively in Tables 2 and 3. These val-
ues were calculable using information referred from
reports of the related literature [7]. The rectangular
area of bd1 in Figure 6 was used for calculation be-
cause the contributions of the flanges under flexural
tension are negligible. In addition, the values of ε′

cu
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n = N

bd1f ′
c

φs1 = ρs1fs1
f ′

c

φs2 = ρs2fs2
f ′

c

φw = ρswfsw

f ′
c

1-0-P − 0.221 0.110 0.064
3-200-P 0.083 0.269 0.135 0.079
4-300-P 0.128 0.267 0.133 0.081

Table 2. Non-dimensional static constants.

λ = a

d1
ζ = h

a
µ = d1

h
σ = d1

d2
ω = s

d1

1-0-P
3-200-P 2.60 0.407 0.943 0.066 0.265
4-300-P

Table 3. Non-dimensional kinematic constants.

Vexp vexp vana VAASHT O
vana

vexp

VAASHT O

Vexp + Vdl

(kN) (−) (−) (kN) (−) (−)
1-0-P 902 0.0773 0.0809 810 1.05 0.88
3-200-P 780 0.0814 0.0879 743 1.08 0.93
4-300-P 783 0.0835 0.0847 712 1.01 0.89

Table 4. Accuracy of the developed analysis.

and Es in equation (12) are assumed respectively as
0.0035 and 200 kN/mm2 because the original data
were not found in the literature [7].

Table 4 presents comparisons among test results
(Vexp), present analysis (vana), and MCFT-based pre-
diction by AASHTO LRFD bridge design specifica-
tion [13]. The analytical solutions show adequate ac-
curacy (vana/vexp) with specimens under axial ten-
sion (3-200-P and 4-300-P) and without axial tension
(1-0-P). In all cases, the static variable of σw was
equal to one when the optimisation terminated.

This value represents the yielding of web reinforce-
ment, which was observed in the experiments as well.
Furthermore, results demonstrate better agreement
than the MCFT-based predictions, except for those
for specimen 3-200-P. Although the analytical pre-
dictions of 3-200-P and 3-400-P show a consistent
decrease of shear strength with the increase of ap-
plied axial force, no such tendency was observed in
the experiment as presented in Figure 7. Further in-
vestigation about this discrepancy will be reported
in another paper with a broad range of experimental
data.

4. Conclusions
Shear strengths under the effect of axial tension load-
ing were derived analytically based on the lower
bound theorem. The theoretical basis treated the
shear strength derivation as an optimisation prob-
lem under equality and inequality constraints ob-
tained from force equilibrium, strain compatibility

and yield criteria. Model validation showed good
correspondence between experimental and analytical
shear strengths without any regression functions and
empirically determined parameters. The accuracy
was an equal level with MCFT-based predictions.
The generality of this formulation enables the consis-
tent treatment of axial compression, and gives quan-
titative results of each shear component such as ag-
gregate interlock of cracked concrete and dowel action
of longitudinal reinforcement. Although further veri-
fication by comparison with a number of test results
is necessary, the developed analysis might contribute
to the provision of comprehensive understanding of
shear behaviour under axial force, together with the
MCFT [2] and other well-established theories [3–5].
Research is currently underway to extend this theory
to axially compressed and tensioned beams without
web reinforcement.

List of symbols
f ′

c Concrete compressive strength
V External shear force
N External force of axial tension
Vc Shear component of uncracked concrete
Fw Shear component of web reinforcement
f Aggregate interlocking force per unit area
θ Inclination angle of critical crack to x-axis
Fd Dowel force of bottom reinforcement
Fs1, Fs2 Longitudinal forces of bottom and top rein-

forcement, respectively
α Critical crack height divided by total depth
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β Slope of critical crack at point B
γ Longitudinal distance between support and point B

divided by shear span
a Shear span
b Web width
d1 Effective depth
h Total depth
d2 Distance between top reinforcement and upper

perimeter of beams
s Spacing between adjacent web reinforcement
t Coordinate axis along critical crack
ω Spacing between adjacent web reinforcement divided

by effective depth
µ Effective depth divided by total depth
λ Slenderness (shear span-to-depth) ratio
ζ Total depth divided by shear span
δ d1 divided by d2
k Neutral axis depth divided by effective depth
ε′

cu Ultimate compressive strain of concrete (0.0035)
Es Modulus of elasticity of longitudinal reinforcement

(200 GPa)
ρs1, ρs2, ρsw Reinforcement ratios of bottom, top and

web reinforcement, respectively
As1, As2, Asw Areas of bottom, top and web reinforce-

ment, respectively
fs1, fs2, fsw Yield strengths of bottom, top and web

reinforcement, respectively
εs1, εs2, εsw Longitudinal strains of bottom and top re-

inforcement, respectively
φs1, φs2, φsw Reinforcement degrees of bottom, top and

web reinforcement, respectively
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