
DOI:10.14311/APP.2021.30.0126
Acta Polytechnica CTU Proceedings 30:126–130, 2021 © Czech Technical University in Prague, 2021

available online at http://ojs.cvut.cz/ojs/index.php/app

AUTOMATED BIM ENTITY RECONSTRUCTION FROM
UNSTRUCTURED 3D POINTCLOUDS

Jan Voříšek∗, Bořek Patzák, Edita Dvořáková, Daniel Rypl

Czech Technical University in Prague, Faculty of Civil Engineering, Department of Mechanics, Thákurova 7,
166 29 Prague 6, Czech Republic

∗ corresponding author: jan.vorisek@fsv.cvut.cz

Abstract. Laser scanning is used widely in architecture and construction to document existing
buildings by providing accurate data for creating a 3D model. The output is a set of data points in
space, so-called point cloud. While point clouds can be directly rendered and inspected, they do not
hold any semantics. Typically, engineers manually obtain floor plans, structural models, or the whole
BIM model, which is a very time-consuming task for large building projects.

In this contribution, we present the design and concept of a PointCloud2BIM library [1]. It
provides a set of algorithms for automated or user assisted detection of fundamental entities from
scanned point cloud data sets, such as floors, rooms, walls, and openings, and identification of the
mutual relationships between them. The entity detection is based on a reasonable degree of human
interaction (i.e., expected wall thickness). The results reside in a platform-agnostic JSON database
allowing future integration into any existing BIM software.

Keywords: 3d model, BIM, laser scanning, point cloud.

1. Introduction
The Building Information Modelling (BIM) brings
excellent opportunities for the efficient and more au-
tomated design process of building structures and
maintenance and reconstruction planning of existing
structures. Obtaining a digital BIM representation of
the latter is often a challenging task, namely when no
up-to-date (or none at all) floor plans are available.

Laser scanning is a convenient and accessible tech-
nology to document the existing infrastructure. The
output is a dense set of data points in space, so-
called point cloud. See Figure 1 for an example of
a laser-scanned building. Each point carries its spa-
tial coordinates, and some scanners also capture the
RGB color value and intensity of the scanned point.
While point clouds can be directly rendered and in-
spected, they carry no additional information about
the scanned objects. There are no available tools to
convert the raw point data into a BIM representation
with a reasonable degree of automation, although re-
search in this field is highly emerging [2, 3].

Currently, the civil engineers have to manually
identify the BIM entities from graphical visualization
of point cloud and create their digital representation
in BIM model. The long-term goal of the project is
to develop an efficient and user friendly tool for semi-
automated conversion of point clouds to BIM entities
while maintaining user interaction. The idea is based
on automated identification of entities, where each
entity is labeled with estimated degree of identifica-
tion reliability. The individual identified entities are
presented to the user who can accept all suggested en-
tities recognized with reliability higher than defined
threshold and manually accepting/modifying remain-

Figure 1. Laser scan of an unfurnished office build-
ing, consisting of 85M points, top view.

ing suggestions. The presented paper describes the
concept of PointCloud2BIM library [1] for point cloud
manipulation and BIM entity identification.

2. Pre-processing of the point
clouds

Laser scanners produce very dense point clouds con-
taining tens or hundreds of millions of points. The
distance between the scanned points often ranges in
millimeters. Therefore the point cloud data process-
ing must be handled carefully in order to achieve com-
petitive computation times and memory efficiency.

126

http://dx.doi.org/10.14311/APP.2021.30.0126
http://ojs.cvut.cz/ojs/index.php/app

vol. 30/2021 Automated BIM entity reconstruction

Figure 2. Wide figure.

2.1. Storage
Point information such as the XYZ coordinates, RGB
color, or intensity value is stored in an uncompressed
binary file. The main advantage is that binary data
can be directly read into C++ structures instead of
the costly parsing of text files line-by-line.

All the other project data reside in the project’s
JSON file, which serves as a database of point cloud
metadata and other entities. The JSON format is
widely supported across platforms and programming
languages and was selected to allow smooth integra-
tion into existing software. An empty project file is
created automatically before the first point cloud im-
port.

2.2. Downsampling
While storing the points as binary data offers high
reading speeds, with hundreds of millions of points,
reading all the values into memory might not be pos-
sible on a standard computer with limited memory.
For example, storing 100 million XYZ coordinates
(3x64 bit float) occupies 2,4 GB of memory, which
is more than half of a commonly available 4GB.

Reducing the number of points to work with is in-
evitable. In our case, the points were downsampled
in a 3D voxel grid using the efficient implementation
of a C++ hash map [4]. Reasonable selection of a
grid step of say 1 × 1 × 1 cm reduces all the points
within the 1 cm3 cube to a single point with weighted
coordinates.

Result of downsampling to a 1 × 1 × 1 grid is sum-
marized in the Table 1.

Before After
1 85 316 410 12 358 178
2 62 947 576 20 213 992
3 108 200 686 34 672 667

Table 1. The effect of downsampling on three typical
point clouds — the number of original points and the
number of points after downsampling.

One can see that just by downsampling to a 1 cm3

grid, the size of points goes down to at least 30%.

2.3. The normal vector of downsampled
points

Further processing can take advantage of determining
the normal vector at each downsampled point (voxel).
This is done in the three following steps.

A single point represents each voxel by averaging
the coordinates of the inner points. There are up to
26 (3 × 3 × 3 − 1) voxels surrounding each voxel if
all the neighbors are activated. Therefore, the total
number of points n for the normal evaluation is at
most 27.

The centroid of the n points is calculated as a
weighted average of the XYZ coordinates.

µx =
!n

i=1 xi

n
, µy =

!n
i=1 yi

n
, µz =

!n
i=1 zi

n
, (1)

The 3 × 3 covariance matrix of the point XYZ co-
ordinates relative to the centroid is calculated using
the formula for the covariance of A and B below.

cov(A, B) =
!n

i=1(ai − µa)(bi − µb)
n − 1 (2)

The smallest Eigenvector of the covariance matrix
is the plane normal [5]. The direct solver of eigenval-
ues was implemented for the 3 × 3 matrix using the
arccos function, as described in [6].

3. BIM entity extraction
The overall strategy of point cloud transformation
into the digital BIM representation of the building
is based on a gradual segmentation of floors, rooms,
walls, and openings. The overview of this complex
process is demonstrated in Figure 2.

3.1. Floor segmentation
The floor segmentation is based on the histogram of
vertical coordinates. From the histogram, the ceil-
ing and floor levels are extracted, corresponding to
locations with significant location frequency. More
accurate results can be obtained by only considering
points with vertical normal in the calculation. The
ceiling level can also be input manually by inspect-
ing the point cloud in a suitable tool like Autodesk
ReCap.

127

J. Vorisek, B. Patzák, E. Dvořáková, D. Rypl Acta Polytechnica CTU Proceedings

Figure 3. Results of the room segmentation of the
point cloud shown in Figure 1.

3.2. Room segmentation
The ceiling level of the floor is known either from the
histogram calculation or from user input. All the ceil-
ing plane points and points within 30 cm below (as
suggested in [3]) are projected onto a 2D grid (floor
plan) resulting in a pixel-like image. The step of the
grid should be at least twice the step used for the
initial downsampling, or the grid will contain miss-
ing points as some points may not be appropriately
captured.

Region growing [7] is applied to join adjacent pixels
into separate regions. Backfilling of each of the found
regions is performed to include columns and skylights
within the room. Knowing the pixel count and pixel
area (step x step), area of the subject rooms or whole
floor can be estimated.

Finally, the original point cloud is iterated, and
points inside of the found regions (in terms of X,
Y coordinates) and floor (given Z coordinate range)
are selected. Separate point clouds of each room are
stored in the project file. An example of room seg-
mentation results can be seen in Figure 3.

3.3. Vertical plane segmentation
The wall planes are identified in each room using the
modified Random sample consensus (RANSAC) [8].
Only points with horizontal normal are considered for
plane finding, a slight deviation of 5 degrees is allowed
to account for deviations in construction.

Each wall finding starts with hypothesis genera-
tion. Three non-collinear points A, B, C are ran-
domly selected from the point cloud for which the
four plane coefficients a, b, c, and d are calculated us-
ing the two vectors !AB and !AC

!AB = (Bx − Ax, By − Ay, Bz − Az) (3)
!AC = (Cx − Ax, Cy − Ay, Cz − Az) (4)

Figure 4. Vertical plane segmentation (top view).
Door planes are segmented as they cover sufficient
area, also notice the noise around outer windows and
in the center room.

To satisfy the plane equation ax + by + cz + d = 0,
plane coefficients are calculated as follows

a = (By − Ay)(Cz − Az) − (Cy − Ay)(Bz − Az) (5)
b = (Bz − Az)(Cx − Ax) − (Cz − Az)(Bx − Ax) (6)
c = (Bx − Ax)(Cy − Ay) − (Cx − Ax)(By − Ay) (7)
d = −(aAx + bAy + cAz) (8)

After establishing the hypothesis, more points are
selected randomly, and the distance from an arbitrary
point to the plane is calculated. Points within suffi-
cient distance are considered in the support set. For
the first 100 accepted points, the plane coefficients
are refined using the algorithm described in Section
2.3.

3.4. Wall segmentation
Wall segmentation is performed on each of the ver-
tical planes found in the previous step. Only walls
of constant thickness are supported. Therefore, com-
paring the angle between every two planes and the
distance between the two subject planes is sufficient
to mark wall segment candidates.

For each wall candidate, its points are projected
to a single 2D plane. Such a transformation can be
done simply without the transformation matrix. The
normal vector is taken from plane segmentation by
calculating the average value of all wall planes. Local
X-axis is selected by picking two plane points A, B,
and clipping their vector ’s Z coordinate. By knowing
the local X-axis and the normal vector, the Y-axis
vector can be calculated using the cross product. This
is sumarized below.

Xloc = (Bx − Ax, By − Ay, 0) (9)
Yloc = n × Xloc (10)

128

vol. 30/2021 Automated BIM entity reconstruction

Figure 5. Wall segmentation (top view).

The wall local axes Xloc and Yloc are then normal-
ized, and for each wall point P, the local coordinates
are calculated using the dot product.

Px,loc = (P − A) · Xloc (11)
Py,loc = (P − A) · Yloc (12)

Plane points lie in two intervals [a, b] and [c, d] in
the local X-axis direction. The distance o in the wall
direction in which the planes are overlapping is cal-
culated

o = [max(a, c), min(b, d)]

Wall candidates are filtered based on the user’s
overlap requirements, as partially overlapping planes
are likely to belong to a common wall.

3.5. Opening segmentation
A naive way of finding openings in walls (on two par-
allel planes) is to find overlap of missing points on
both planes. However, such treatment produces a lot
of false results. For example, two cabinets on each
side of the wall in the same place do not form an
opening.

Points present between the walls can be taken into
consideration to improve the accuracy of opening de-
tection. By a combination of inverse region growing
and boundary detection, openings with a sufficient
density of intermediate points can be identified.

By calculating the bounding box of an opening in
the local plane coordinates, dimensions can be calcu-
lated for rectangular openings (i.e., doors and some
windows). Doors are recognized by comparing their
bottom coordinates to the corresponding floor level.
Opening visualized by their bounding box can be ob-
served in Figure 6.

Figure 6. Opening detection — doors (red), win-
dows (blue).

4. Demonstration on a sample
point cloud

The example of a simple office building with just a
single floor with eight rooms is selected to demon-
strate the capabilities of the presented approach. As
the whole floor was unfurnished, the overall floor en-
velope has little to none missing points except for the
areas behind doors and heating elements. The origi-
nal data set consists of 85 316 410 points is shown in
Fig. 1.

At first, the original point cloud was downsampled
into 12 358 178 using a 1×1×1 cm grid. By inspect-
ing the point cloud, we identify the floor and ceiling
levels, and we use all the points in between ceiling
level and 30 cm below for room finding. The room
finding performed on a 2D floor plan grid with a 2×2
cm step yields all the eight identified rooms, visual-
ized in Figure 3. In the same step, we also identify
all the 93 vertical planes, as can be seen in Fig. 4.
The planes assigned to their source rooms are then
passed to the next step for wall matching even if some
of the identified planes might be out of our interest
(i.e., doors or noise).

In Figure 5, we can observe all the matched walls on
the subject floor. While all the inner walls were iden-
tified, the exterior walls are missing as the exterior
scan of the office building was not available. How-
ever, some of the external walls are obtained thanks
to the scan capturing the window frames’ internal and
external planes. These reveal the estimated window
positions as well as exterior wall location, excluding
its wall thickness.

5. Conclusions
The library was implemented in C++ based on the
previously formulated methodology. It can be inte-

129

J. Vorisek, B. Patzák, E. Dvořáková, D. Rypl Acta Polytechnica CTU Proceedings

grated into any BIM software to assist the conver-
sion of point clouds into digital BIM representation.
The library API is documented in the Reference Man-
ual [9]. The library also works as a standalone toolkit
without any dependency on BIM software. A set
of command-line executables is available to perform
the individual steps introduced above. Each of the
tools operates on top of a common database-like file
(JSON) with point data stored separately in binary
files.

A single floor of an unfurnished office building was
successfully segmented into separate rooms (compare
Figures 1 and 3). Plane matching results can be seen
in Figure 4 with the 25 distinct wall segments consid-
ering the exterior windows as walls. The success of
opening detection can be examined in Figure 6 where
six doors were identified and eight exterior windows
(two of which are found twice).

6. Future work
Our main goal is to create a robust and easy-to-
integrate solution of converting the raw point cloud
files into the corresponding BIM entities. While our
library provides enough functionality to process, an-
alyze, and visualize the point clouds and calculated
results, more research is desired, especially in the area
of opening detection and overall confidence rate eval-
uation of the reconstructed BIM entities.

Further research is needed to integrate the library
into some of the industry-leading BIM applications
(i.e. Autodesk Revit). Such integration is required to
validate and refine our methodology using a variety
of point clouds from different environments.

Acknowledgements
The development of this software was supported by the
Technology Agency of the Czech Republic under the pro-
gram of the National Competence Center 1 as a project
“Center for Advanced Materials and Efficient Buildings”
(CAMEB) - project registration No. TN01000056 and
by the Grant Agency of the Czech Technical University

in Prague (SGS project No. SGS20/038/OHK1/1T/11),
both gratefully acknowledged.

References
[1] PointCloud2BIM library for automated identification

of bim entities from point clouds.
http://mech2018.fsv.cvut.cz/pc2bim. Accessed:
2020-08-06.

[2] C. Wang, Y. Cho, C. Kim. Automatic bim component
extraction from point clouds of existing buildings for
sustainability applications. Automation in Construction
56, 2015. doi:10.1016/j.autcon.2015.04.001.

[3] H. Macher, T. Landes, P. Grussenmeyer. From point
clouds to building information models: 3d
semi-automatic reconstruction of indoors of existing
buildings. Applied Sciences 7:1030, 2017.
doi:10.3390/app7101030.

[4] G. Popovitch. The parallel hashmap or abseiling
from the shoulders of giants.
https://greg7mdp.github.io/parallel-hashmap/.
Accessed: 2020-04-14.

[5] E. Ernerfeldt. Fitting a plane to noisy points in 3d.
https://www.ilikebigbits.com/2017_09_25_plane_
from_points_2.html, 2017. Accessed: 2020-04-14.

[6] S. Hartmann. Computational aspects of the
symmetric eigenvalue problem of second order tensors.
Technische Mechanik 23:283–294, 2003.

[7] M. Montoya, C. Gil, I. García Fernandez.
Implementation of a region growing algorithm on
multicomputers: Analysis of the work load balance.,
2000.

[8] M. A. Fischler, R. C. Bolles. Random sample
consensus: a paradigm for model fitting with
applications to image analysis and automated
cartography. Communications of the ACM
24(6):381–395, 1981. doi:10.1145/358669.358692.

[9] J. Voříšek, D. Rypl, B. Patzák, E. Dvořáková.
Pointcloud2bim library: Pointcloud2bim library
reference manual. http://mech2018.fsv.cvut.cz/
pc2bim/www/refman/html/index.html.

130

http://mech2018.fsv.cvut.cz/pc2bim
https://doi.org/10.1016/j.autcon.2015.04.001
https://doi.org/10.3390/app7101030
https://greg7mdp.github.io/parallel-hashmap/
https://www.ilikebigbits.com/2017_09_25_plane_from_points_2.html
https://doi.org/10.1145/358669.358692
http://mech2018.fsv.cvut.cz/pc2bim/www/refman/html/index.html

