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ABSTRACT. Laminated glass combines two remarkable materials: glass and a polymer ply. While
glass is stiff and brittle, the polymer ply is a rate-dependent compliant material. Together, they
form a material which keeps the aesthetic value of glass, and due to the polymer, no fragile collapse
appears. The polymer ply exhibits time- and temperature-dependency, whereas glass suffers from brittle
fracture, which makes the analysis difficult. In this article, a 2D sectional plane-stress model for the
viscoelastic analysis of laminated glass is presented. This study presents one step in the development of
a phase-field-based damage solver for laminated glass to select the optimal time-integration scheme for
a quasistatic-analysis and later also for dynamics. The validation against experimental data is provided,

and the model reduction is also discussed.
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1. INTRODUCTION

Nowadays laminated glass is a popular composite
multi-layer material which consists of several glass
plates and polymer interlayers. The laminated pro-
cess improves post-breakable behaviour compared to
conventional glass but retains its aesthetic value [I].
This makes laminated glass a suitable material for
transparent structures in architecture and other fields.
Unfortunately, despite its advantages, laminated glass
is still a very brittle material which makes the sim-
ulations of the initiation and propagation of cracks
difficult.

This paper partially follows the project objectives
specified in our research project focused on the design
and advanced modelling of forced-entry and bullet
resistant glass structures. One of the goals of the
project is to simulate crack development in laminated
glass using phase-field fracture method [2] to better
understand and explain the pre- and post-fracture
behaviour of laminated glass under impact loading.
Several dynamic and quasi-static experiments were
performed, and the next step is the validation of the
collected experimental data against numerical models
for laminated glass.

At this moment, the numerical solver is imple-
mented for laminated beams and plates made of sev-
eral elastic layers under quasi-static loading. This
study presents another step in the development of
the phase-field-based damage solver with the focus
on the time- and temperature-dependent behaviour
of the polymer interlayer. At this stage, the analysis
deals with a quasi-static regime only. In particular,
two questions concerning interlayer modelling are dis-
cussed:
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e What is the optimal time-integration scheme with
respect to the computational time and implementa-
tion demands?

e How is the global response of the model influenced
by involving only certain cells of the generalised
Maxwell chain into the numerical analysis?

Moreover, this study provides also validation of mate-
rial parameters of two interlayer foils obtained in the
previous step of the project [3].

The paper is organised as follows: Section 2 in-
troduces the 2D plane-stress model and presents the
constitutive relationships. Next, in Section 3, two
time-integrators are recalled, and finally, Section 4
provides numerical simulations, validation, and para-
metric study, concluded with the discussion of results
in Section 5.

2. LAMINATED GLASS MODEL

In this section, the mechanical model for the numerical
analysis is presented. The constitutive assumptions
for glass and interlayer are as follows:

e Glass has an almost purely elastic response. There-
fore, it is modelled as an elastic isotropic material
described by two constant: Young’s modulus £ and
Poisson’s ratio v.

e The interlayer polymer is strongly time- and
temperature-dependent material effectively mod-
elled by the generalised Maxwell model [4, Ap-
pendix A], see Figure [I| where the material con-
stants are the stiffnesses of springs G, and the
viscosities 7, and the long-term shear modulus G
corresponding to the single stiffness. The constitu-
tive relationship is expressed in the shear variables


https://doi.org/10.14311/APP.2020.26.0086
https://ojs.cvut.cz/ojs/index.php/app

VOL. 26/2020

Viscoelastic analysis of laminated glass

instead of in the normal components as the inter-
layer material is almost incompressible, and shear
in the interlayer is dominant in bending regime.
Then, 7 and ~ represent shear stress and strain
respectively.
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FIGURE 1. Generalised Maxwell constitutive model.
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A practical choice for the mechanical model of lami-
nated glass is a layer-wise model consisting of several
independent beams or plates connected together at
the interfaces. Despite its advantages, we validate
experiments against the plane-stress 2D model, where
the longitudinal cross-section is discretizted. One of
the reasons for this approach is to check if the through-
the-thickness compression of the interlayer is really
negligible and can be neglected.

3. TIME INTEGRATORS

The brief overview of the exponential and backward-
Euler integrators is presented in this section.

3.1. GOVERNING EQUATIONS

The following model assumptions are considered:

e A special two-dimensional state of stress called
plane stress is assumed to reduce the originally
three-dimensional task and subsequently the com-
putational cost.

e Because all of the laminated glass samples were
simply-supported, the analysis assumes only small
deformations and deflections. The comparison with
experiments shows that this assumption is sufficient
as no stabilisation due to membrane forces occurred.

e We assume that the Poisson ratio of the polymer
interlayer is constant. For further comparison with
a constant bulk modulus assumption see also [5].

As mentioned before, the polymer material point
is described by the generalised Maxwell chain which
consists of one single linear spring with stiffness G
and several Maxwell cells. Each cell is characterised
by a spring with stiffness G, and a damper with
viscosity 71,. The cells are indexed by p € P, where
P = (0, P) C N. The time integrators are used only
for the viscoelastic interlayer and glass is considered
as rate-independent.

Under these assumptions, the behaviour of the in-
terlayer can be described by a weak form of the equi-

librium equation

/ de: | GoDyie+ Y oy | dQ—6Fe =0, (1)
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complemented by ordinary differential equations
(ODE)
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In the former equations 0 Fey: stands for the virtual
work done by the external loads on the virtual displace-
ment du, and the small strain tensor € is obtained as
the symmetric displacement gradient € = Vg u. The
dimensionless tensor D, corresponds to the stiffness
tensor of an isotropic material expressed by a unit
shear modulus and the Poisson ratio of v. The stress
carried by p-th cell is denoted by op,.

On the other hand, the governing equation for the
deformation of glass does not contain viscous stress
tensors o, and the corresponding weak form becomes

/ 0€ : GglassDy 1 € A — § Fexy = 0. (3)

Qglass

The implementation for laminated glass, which com-
bines the elastic glass domain and the viscoelastic
interlayer, is described in Section 4. Equations 7
contain both space and time gradients. The space
discretization is captured by using conventional finite
element methods (FEM), whereas the type of the time
discretization is a part of this analysis. Two discretiza-
tion options are recalled in the following subsection.

3.2. NUMERICAL INTEGRATORS

The common feature for all presented time integra-
tors is the discretization into a set of time instants
T ={0,...,tmax}, where ty.x is the largest time of
interest.

Backward Euler method For the backward Euler
method, we approximate the time gradient by the first-
order backward finite difference

o(tip) ~ %{1'(“) (4)

To shorten the notation, the time increment At; is
defined as t;11 — t;, and the explicit time dependency
is omitted and replaced by a lower index, therefore
o(t;) = o;. If we use the above-mentioned gradient
approximation of the ODE evaluated in time instant
liy1, we get

Opit1 = Opi 1 1
1= Dy (eip1—e). (5
GpAti + My Opit+1 At; (€l+1 61) ( )

Then, we can express explicitly o,y as

1

- €i)Gp+0pi),  (6)
D,i

opit1 = (Dy: (€41 —
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where (,;, = 1+ At;/7, is an auxiliary dimensionless
parameter. The stress tensor can be directly substi-
tuted into the equilibrium equation to get the weak
form for €;41 and the resulting equation

/ de :
Qfoil

G
P Dl, €41 dQ
Cp,i

GOO+Z

pEP

—/ 5E:ZGpr:sidQ (7)
Qfoit

peEP Py
+/ 5€2Z@d9_5]:ext:0
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governs the FE analysis for ;41 determination. Then,
the stress tensors are updated using @ This proce-
dure is repeated for all time instants.

Exponential algorithm The main difference for
the exponential algorithm compared with the Euler
method is the discretization of the stress tensor. As we
suppose that the strain is distributed linearly within
the time interval (¢;,¢;4+1), the viscous stress tensor
is solved exactly using the corresponding ODE. The
linearly distributed strain induces a constant strain
rate, and the governing equation for the Maxwell unit
becomes

Gyltits) opltits)_ 1
Gp + " —AtiDu-(siJrl 51)7 (8)

where s; is an auxiliary time variable starting from
t; and going forward in time. The relation between
the original time ¢ and the variable s; is s; =t — ¢;.
Considering the boundary condition o,(s; = 0) =
Op,i, the stress evaluated in t = ¢, reads as

_At
Opitl = Ops€ 7

+ (T Dy (e — ). (9)
At;

i

The backward substitution into the equilibrium con-
dition in t;41 gives

/ o€ :
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At
where another auxiliary variable §,; =1—e ™ is

introduced.

88

4. NUMERICAL RESULTS

4.1. EXAMPLE

All calculations were performed on a longitudinal cross-
section of a laminated glass beam assuming a plane-
stress state, see Figure[2l The dimensions of the beam
are: the thicknesses h; = hg = 10 mm, hy = 0.76 mm,
the overhanging edges [y = I3 = 30.0mm and their
span Iy = 1040.0 mm.

ha

ha

hs

L Iy I

FIGURE 2. Scheme of laminated glass sample.

The laminated glass samples were simply-supported
and loaded by prescribed uniformed pressure in a
vacuum chamber. The time evolution of pressure was
almost the same for the two tested samples with EVA
and PVB interlayer, see Figure 3] At the beginning
of loading, the pressure increase is almost quadratic,
whereas later the slope becomes linear.

40

— Pressure load
35}

Pressure load [kPa]

L

0 5 10 15 20 25 30 35 40
Time [s]

FI1GURE 3. Time evolution of pressure recorded during
the experimental testing.

4.2. MATERIAL PARAMETERS

Glass is treated as a perfectly elastic material de-
scribed by the Young modulus Egl.ss = 76.6 GPa
obtained from indentation tests and by the Poisson
ratio Vglass = 0.22. Whereas the interlayer polymer is
effectively described by the generalised Maxwell model
to capture its viscoelastic time/temperature depen-
dent nature. In the tested samples, an ethylene-vinyl
acetate (EVA) and a polyvinyl butyral (PVB) foils
were used as the interlayer material, with the material
constants taken from [3] and given in Table (I} The
Poisson ratio was assumed to be constant, vg,; = 0.49.
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EVA PVB
Tp 8] G, [kPal G)p [kPa]
107° 6933.9 -
10~8 3898.6 -
1077 2289.2 -
1076 1672.7 —~
107° 761.6 1,782,124.2
1074 2401.0  519,208.7
1073 65.2  546,176.8
102 248.0 216,893.2
1071 575.6 13,618.3
10° 56.3 4988.3
101 188.6 1663.8
102 445.1 587.2
103 300.1 258.0
10* 401.6 63.8
10° 348.1 168.4
106 111.6 -
107 127.2 -
108 137.8 —
10° 50.5 -
100 322.9 —~
10t 100.0 —~
102 199.9 -

TABLE 1. Prony series for generalised Maxwell model
complemented with the long-term moduli G =
682.18 kPa for EVALAM 80-120 (EVA-based foil) and
Goo = 232.26 kPa for TROSIFOL BG R20 (PVB-
based foil) for Ty = 20 °C from [3].

The room temperature during the experimental test-
ing was 24 °C. For the polymer ply, the temperature
dependency is incorporated into the material model
using the time-temperature superposition principle [0
Chapter 11]. Time and temperature are tied together
via a multiplicative parameter at as

(I) = ar(T) - (11)
P
The parameter at can be evaluated through the
William—Landel-Ferry equation (WLF), [7],

Ci (T —Tp)

— 12
Co+T—-Ty’ ( )

log,gar =
where the constants C; and Cy are additional material
parameters, and Tj is a reference temperature. For
the reference temperature Ty = 20 °C, the calibration
process described in [3] provides the following values:
Cy = 339.1 and Cy = 1185.8°C, or C'; = 8.635 and
Cs = 339.102, for EVA or PVB foil respectively.

4.3. SOLVER

For a given time instant ¢; 1, the unknown displace-
ment field u(¢;41) is calculated numerically by the
conventional finite element method. The part of the
discretized domain is illustrated in Figure[d where the
red colour represents glass layers and the blue colour

the interlayer. Due to the disproportionality between
the glass and interlayer thicknesses, the mesh is re-
fined near the centerline with at least two elements
through the ply thickness. Moreover, the quadratic
basis functions were employed. The computational
FEM library FEniCS was used to quickly implement
the presented models for all numerical experiments.
This solver with a high-level Python interface pro-
vides an efficient tool for solving partial differential
equations [§].
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FIGURE 4. Finite element mesh: glass domain in red
and the interlayer in blue.

For modelling of the glass/polymer coupling, an
indicator function Z(x) was introduced as follows

I(x) =

{07 ifx e leass; (13)

1, if x € Q1.

All viscous members of the governing equations, Sec-
tion 3.1} are multiplied by this function. Therefore,
the rate-dependent expressions appear only in the
interlayer domain Qo).

Let us highlight that no delamination, glass fracture,
or damage of polymer is considered in this study.

4.4. VALIDATION AND COMPARISON

The main advantage of the exponential algorithm is
that the time interval can be covered by a series of
logarithmically increasing steps without significant
loss of accuracy. Therefore, the computational cost
and the number of time increments can be significantly
reduced, for example for long-term stress relaxation
or creep quasi-static tests.

The results for 20 logarithmically or uniformly dis-
tributed time steps are presented in Figure 5] The
reference solution correspondes to the backward Euler
method with the time step At = 0.05 s. The detailed
comparison of responses on the right side shows the
advantage of the exponential algorithm for logarith-
mically increasing time steps, as was supposed. On
the other hand, the performance of both methods is
the same for uniformly distributed time steps.

For uniformly distributed time steps, three different
time increments were tested, i.e., 0.05 s, 0.5 s and
2.0 s. The numerical responses are presented together
with the experimental data in Figure [6] This vali-
dation shows that even the numerical response with
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(b) uniformly distributed time steps with At = 0.125 s

FIGURE 5. Time evolution of deflection of laminated glass sample under uniformly distributed pressure with
quadratically increasing intensity according Figure [3| obtained by: Reference — Backward Euler method with
At = 0.05 s, Exp — Exponential algorithm, and BE — Backward Euler method.
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FIGURE 6. Validation of numerical responses provided by the Exponential and Backward Euler method against the
experimental measurement for three different time steps: At = 0.05s, At = 0.5s and At = 2.0s.
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FIGURE 7. Numerical response of backward Euler
method for different time steps.

the coarser time steps is in good agreement with the
measured deflections. The dashed line representing
the exponential algorithm almost coincides with the
solid one for the backward Euler method in all cases.

For larger time steps, the differences of numeri-
cal predictions against the measured experimental
response would increase, see Figure[7] On the other
hand, we aim to describe the crack initiation and prop-
agation in glass layers, which requires small time steps.
It results from this comparison that both methods
are able to capture the time/temperature-dependent
response of polymer interlayers well.

Further, the validation against experimental data
proved that the parameters of the generalised Maxwell
model for both foils, obtained from material tests and
summarised in [3], provides very good predictions
for quasi-static behaviour of laminated glass samples
with EVA-based and PVB-based foils of the same type.
The response is just slightly stiffer at the beginning
of loading for the sample with EVA foil and a slightly
softer before the fracture of glass for the sample with
PVB. However, the largest error is under 5%.

4.5. SUFFICIENT NUMBER OF PARAMETERS

The comparison of the viscoelastic response of lami-
nated glass samples with three elastic simulations in
Figure [8| demonstrates the influence of shear coupling
of glass plies due to the interlayer. The behaviour of
the polymer was approximated as an elastic one with
three different values of shear moduli. The response
of the laminated glass sample is often bounded by the
behaviour of a monolithic glass plate with the same
overall thickness and by the response of two indepen-
dent plies representing the two glass plates without
any coupling. We narrowed this range, assuming a
constant long-term or initial shear modulus, G, or
Gy. For the sample with EVA foil, a reasonable ap-
proximation of the viscoelastic response was found
using the shear modulus of the interlayer correspond-
ing to a half of the loading time G(¢/2). For PVB, this
assumption gives still a softer prediction of deflections
compared with the measured data.

In the next stage, we tried to reduce the number
of spring-dashpot cells as each of these Maxwell cells
is represented by a second-order viscous stress tensor.
Therefore, it is desirable to balance the number of cells
and save the computational time. The exponential and
backward Euler methods provided the same response
for the fine time step. Thus, only the backward Euler
method was used for the analysis.

The influence of the individual Maxwell cell can be
assessed using the multiplicator ¢, ;. It can be seen
from equation that the significant viscous stresses
are those where the expression 1/¢, ; is not close to
zero. Recalling the definition of ¢ ;,

1 1 Tp

= = 14
Cp,i 1+% Tp"'Ati, ( )

the whole fraction is close to one if the relaxation
time is much more greater than the given time step
Tp > At;, and the viscous stress is activated. On
the other hand if 7, < At;, the denominator is large
and the whole fraction is close to zero. To verify
this observation we perform two numerical tests. Fig-
ure [0 shows that if we remove the low-relaxation-time
cells, the response is not affected (left), and conversely,
removing of cells with large relaxation time have signif-
icant influence on the response (right). The reference
solution plotted by the red line corresponds to the
original generalised Maxwell model with all cells, Ta-
ble[I] The number of cells was gradually decreased.
Figure [J] (left) illustrates the case, for which the cells
with the smallest relaxation times were neglected. It
can be seen that neglecting even first seven cells for
EVA or three for PVB with the smallest relaxation
times did not affect the solution as the time evolution
of deflection is indistinguishable from the response
of the full generalised Maxwell model. On the other
hand, removing a few Maxwell cells with the largest
relaxation times significantly affected the deflection
of the sample, Figure |§| (right). This is caused by the
fact that we start in the proposed formulation with
the same long-term modulus.

5. CONCLUSIONS

The numerical analysis of laminated glass samples
under quasi-static loading is presented in this pa-
per and validated against experimental measurements.
The laminated glass plate is discretized as a 2D lon-
gitudinal cross-section with two elastic glass layers
and the viscoelastic interlayer. The polymer ply was
characterised by the generalised Maxwell model with
parameters derived from material tests in [3]. The
conclusions from this study are:

e Both tested methods for time integration, i.e., the
exponential algorithm and the backward Euler
method, can be used for the subsequent finite ele-
ment analysis of glass fracture. The difference in
results is negligible for values of time steps needed
in proposed phase-field formulation.
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FI1GURE 8. Comparison of the viscoelastic response of laminated glass samples obtained by the exponential algorithm
with the elastics ones with three different shear moduli of interlayer assumed.
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e For laminated glass samples with EVA-based or
PVB-based foils, the formerly fitted material pa-
rameters provides reliable numerical predictions of
deflections. The errors in deflections were under

5%.

e The computational cost can be reduced without the
loss of accuracy using a constant shear modulus for
the interlayer G(t/2) for EVA-based samples. For
PVB-based samples, three Maxwell cells with the
smallest relaxation times can be neglected without
an observable change in response of the sample.

Finally, let us conclude that this study was fo-
cused on the comparison of the response of lami-
nated glass before fracture with emphasis on the
time/temperature-dependent behaviour of polymer
interlayers. No phase-field description of glass frac-
ture is presented and discussed in this paper, and also
no damage of polymer foils is assumed. The reason for
this is the fact that based on the phase-field model for-
mulation and setting, the linear elastic phase can also
be affected by the damage evolution if the growth of
damage starts immediately when the strain becomes
nonzero. Then, the model does not reproduce the
linear elastic behaviour of laminated glass in the first
stage, and the stress-strain diagram becomes curved.
Therefore, the phase-field model for brittle fracture of
glass will be discussed separately to avoid the possi-
ble deviation from linearity and misinterpretation of
results.

ACKNOWLEDGEMENTS
This publication was supported by the Czech Science
Foundation, the grant No. 19-15326S and by the Grant

Agency of the Czech Technical University in Prague, grant
No. SGS19/033/OHK1/1T/11.

REFERENCES

[1] M. Haldimann, A. Luible, M. Overend, et al.
Structural Use of Glass. Structural engineering
documents. International Association for Bridge and
Structural Engineering, 2008.

[2] B. Bourdin, G. A. Francfort, J. J. Marigo. The
variational approach to fracture. Journal of elasticity
91:5—-148, 2008. DO1:10.1007/s10659-007-9107-3.

[3] T. Hana, T. Janda, J. Schmidt, et al. Experimental
and Numerical Study of Viscoelastic Properties of
Polymeric Interlayers Used for Laminated Glass :
Determination of Material Parameters. Materials
12(14), 2019. DOI1:10.3390/mal12142241.

[4] Z. P. Bazant, M. Jirdsek. Creep and hygrothermal
effects in concrete structures. Springer, 2018.
DOI:10.1007/978-94-024-1138-6.

[5] A. Zemanov4, J. Zeman, M. Sejnoha. Comparison of
viscoelastic finite element models for laminated glass
beams. International Journal of Mechanical Sciences
131-132:380-395, 2017.
DO1:10.1016/j.ijmecsci.2017.05.035.

[6] J. D. Ferry. Viscoelastic Properties of Polymers. John
Wiley and Sons, 1980. p01:10.1149/1.2428174.

[7] M. L. Williams, R. F. Landel, J. D. Ferry. The
Temperature Dependence of Relaxation Mechanisms in
Amorphous Polymers and Other Glass-forming Liquids.
Journal of the American Chemical society
7'7(14):3701-3707, 1955. DO1:10.1021/j201619a008.

[8] M. S. Alnzes, J. Blechta, J. Hake, et al. The fenics
project version 1.5. Archive of Numerical Software
3(100), 2015. |po1:10.11588 /ans.2015.100.20553.

93


https://doi.org/10.1007/s10659-007-9107-3
https://doi.org/10.3390/ma12142241
https://doi.org/10.1007/978-94-024-1138-6
https://doi.org/10.1016/j.ijmecsci.2017.05.035
https://doi.org/10.1149/1.2428174
https://doi.org/10.1021/ja01619a008
https://doi.org/10.11588/ans.2015.100.20553

	Acta Polytechnica CTU Proceedings 26:86–93, 2020
	1 Introduction
	2 Laminated glass model
	3 Time integrators
	3.1 Governing equations
	3.2 Numerical integrators

	4 Numerical results
	4.1 Example
	4.2 Material parameters
	4.3 Solver
	4.4 Validation and comparison
	4.5 Sufficient number of parameters

	5 Conclusions
	Acknowledgements
	References

