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Abstract. Gas turbine disks carry significant load under high temperatures and may be subject to
fatigue failure. Disks contain several notches in the form of the fir tree blade attachments. Low cycle
fatigue tests were performed on blunt notch compact tension specimens made from alloy 718. The
results indicated that notch support needed to be incorporated not to cause an overly conservative life
prediction. The notch support diminished as the plastic strain range decreased, indicating that notch
support is only present in the low cycle fatigue regime. A critical distance approach was applied to
account for the notch support. An equation relating the critical distance to the notch root stress was
derived. The chosen life model was formulated in terms of a variation on the Smith–Watson–Topper
(SWT) parameter. The modified SWT parameter taken at the critical distance was used in a life model
calibrated for smooth specimens to successfully predict the fatigue life of notched specimens.
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1. Introduction
Gas turbine disks, in the turbine section, carry signif-
icant load under intermediate to high temperatures
[1]. One, of many, critical aspects from a design point
of view, is to ensure the disc does not fail through
fatigue. In particular, the fir tree like blade attach-
ments account for stress concentrations which may
initiate cracks in the disk.
Although notches may promote crack initiation,

there is also a tendency for conventional lifing methods
to underestimate the fatigue life of the component if
the lifing method is applied using the notch root stress.
The phenomenon is sometimes referred to as notch
support [2, 3] and arises from the fact that (typically)
a very small material volume is exposed to the high
notch root stress; ahead of the notch, stresses typically
drop significantly.

The current desire to reduce conservatism in design
against fatigue (especially in the energy sector) [3] calls
for notch support to be investigated and incorporated
in lifing methods in an industrially applicable manner.
In the current work, a method for incorporating

notch support is applied to notched specimens made
from the Ni base alloy 718 subjected to low cycle
fatigue (LCF). The theory of critical distances is taken
as basis for the suggested lifing method.

1.1. Theory of critical distances
The theory of critical distances [4] accounts for the
steep stress gradient at notches by suggesting that the
failure of a notched specimen or component is more
accurately based on the stress some distance from
the notch root. That is, failure is assumed to occur
when the stress, σ(r), a distance r from the notch root

reaches a critical value, σ0, such that

σ(r) = σ0 at failure (1)

where r is the critical distance.
For monotonic failure, the critical distance takes

the form [4]

r = 1
2π

(
Kc

σ0

)2
(2)

withKc being the fracture toughness and σ0 a strength
parameter somewhat similar to the ultimate tensile
strength.
The theory of critical distances has also been ex-

tended to account for fatigue failure. For high cycle
fatigue (HCF), with respect to the fatigue limit, the
critical distance becomes [4]

r = 1
2π

(
Kth

σ0

)2
(3)

with Kth being the threshold stress intensity factor for
crack growth and σ0 a strength parameter somewhat
similar to the endurance limit.
For finite fatigue lives, it has been suggested that

the critical distance should take the form [4]

Nf = C1r
c1 (4)

where Nf is the number of cycles to failure and C1
and c1 are fitting parameters. Equation 4 has also
been applied to low cycle fatigue of notched specimens
made from a Ni-based single-crystal alloy at 500 °C
[5].
Although Eqn. 4 has been demonstrated to work

for LCF, it is inconvenient to use for life predictions
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as Nf is not known a priori, requiring an iterative
process for the fatigue life to be calculated.
Eriksson et al. [6] demonstrated that the critical

distance could also be based on the notch root plastic
strain range, ∆εrootp , via a simple power law

r = p
(
∆εrootp

)q (5)

where p and q are fitting parameters. The rationale
being that the notch root strain range correlates to
the strain range further into the material.

In the current work, the method suggested by Eriks-
son et al. [6] will be further explored and a rationale
for why the critical distance should correlate with
notch root conditions will be provided. It will be
shown that the critical distance can also be correlated
to the notch root stress taken from a linear elastic
finite element analysis (FEA).

2. Material behaviour
2.1. Material model
A simple material description, which sufficiently well
captures strain ranges and mean stresses, was adopted.
A two-step procedure was used to calculate needed
load parameters: 1) a set of equations are used to
determine the maximum stress and 2) another set
of equations are used to determine the strain range.
Previously published data for alloy 718 were used to
describe the studied alloy, see Moverare et al. [7]. The
data in Moverare et al. [7] were established in LCF
tests performed in strain control with Rε = 0.
Firstly, the maximum stress is determined. For

450 °C, the maximum stress, σmax, is determined from

σmax =
{
Eεmax for εmax < σ′yl/E

σ′yl for εmax ≥ σ′yl/E
(6)

i.e., by assuming ideal plasticity; E is the Young’s
modulus, σ′yl is the cyclic yield limit and εmax is
the maximum total strain. As seen in Fig. 1 a), the
maximum stress is accurately described as ideal plastic
at 450 °C. The parameters E and σyl are given in
Tab. 1.

For 550 °C, on the other hand, the maximum stress
is better described by a Ramberg–Osgood type equa-
tion

εmax = σmax
E

+
(
σmax
K ′max

)1/n′max

(7)

with the material parameters E,K ′max and n′max given
in Tab. 1; Eqn. 7 is plotted in Fig. 1 a). From Fig. 1 a)
it is evident that the material behaviour (with re-
gard to maximum stress) changes between 450 °C and
550 °C; low strains at 450 °C will produce a significant
mean stress (due to high maximum stress) whereas,
at 550 °C, the mean stress is quite small at all strains.
Some microstructural change may be the cause for this
shift in behaviour; however, it is out of the scope of the
current work to study this phenomenon. Here, it will
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Figure 1. Material behaviour at 450 °C and 550 °C
based on data from Ref. [7]. a) Maximum stress versus
maximum strain. b) Stress amplitude versus strain
amplitude.

simply be accepted that a shift in material behaviour
exists between 450 °C and 550 °C and that an accurate
maximum stress can be predicted by assuming ideal
plasticity at 450 °C but by using a Ramberg–Osgood
type equation at 550 °C.
Secondly, the stress range, ∆σ is determined by

assuming that the studied alloy follows Masing be-
haviour described by a Ramberg–Osgood type equa-
tion

∆ε = ∆σ
E

+ 2
(

∆σ
2K ′

)1/n′

(8)

where ∆ε is the total strain range and the material
parameters E, K ′ and n′ are given in Tab. 1. Figure
1 b) shows Eqn. 8 fitted at both 450 °C and 550 °C
(the figure is plotted in terms of amplitudes, i.e., ∆σ/2
and ∆ε/2). The plastic strain range, ∆εp, can then
be determined as

∆εp = ∆ε− ∆σ
E

(9)

Figure 2 shows that the outlined method accurately
predicts maximum and minimum stresses (and, con-
sequently, the mean stress) for smooth specimens.
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T , °C E, GPa ν σ′yl, MPa K ′max, MPa n′max K ′, MPa n′

450 178.97 0.32 1018.83 — — 1328.84 0.0560
550 172.25 0.33 — 3660.76 0.321 2406.08 0.184

Table 1. Material parameters fitted to data from Ref. [7–9].
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Figure 2. Comparison between experimentally determined stresses and calculated from Eqn. 6, 7 and 8; for two
different strain ranges at 450 °C, a) and b), and at two different strain ranges at 550 °C, c) and d).

2.2. Fatigue life model for smooth
specimens

Since mean stresses may not entirely relax (especially
at 450 °C for low load levels), the Smith-Watson-
Topper (SWT) parameter [10], σmax∆ε/2, is taken
as the basis for the fatigue life model. The SWT pa-
rameter can be used for handling mean stress effects
[10].
Here, since the majority of the studied specimens

plasticise significantly, the variant of the SWT param-
eter suggested by Lorenzo and Laird [11] will be used.
The assumption involved is that the fatigue life under
mean stress can be correlated to the fully alternating
case such that the parameter σmax∆εp/2, for fatigue
under mean stress, equals the parameter σa∆εp/2,
for the fully alternating load, where σa is the stress

amplitude. That is,

σmax
∆εp

2 = σa
∆εp

2 (10)

which, with the Basquin equation,

σa = σ′f (2Nf )b (11)

and the Manson–Coffin equation,
∆εp

2 = ε′f (2Nf )c (12)

yields
σmax

∆εp
2 = σ′fε

′
f (2Nf )b+c (13)

where σ′f , ε′f , b and c are fitting parameters which
after merging yields

σmax
∆εp

2 = ANa
f (14)
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Figure 3. Fatigue life model calibration for smooth
specimens at 450 °C and 550 °C. Fatigue life is de-
scribed in terms of the modified SWT parameter,
σmax∆εp/2.

T , °C A, Pa a

450 81.94× 106 -0.504
550 34.98× 106 -0.436

Table 2. Fitted parameters in the fatigue life model
for smooth specimens, see Eqn. 14.

where A and a are fitting parameters. The parameter
σmax∆εp/2 will here be referred to as the modified
SWT parameter.

The fatigue life model given by Eqn. 14 is calibrated
with data from Moverare et al. [7] for smooth spec-
imens. The modified SWT parameter is calculated
from σmax and ∆εp/2 determined as described above
in the section Material model.
Figure 3 shows the fatigue life curves for smooth

specimens at 450 °C and 550 °C and the fitted param-
eters are given in Tab. 2.

3. Experimental work
A test programme has been carried out involving
LCF tests on blunt notched compact tension (CT)
specimens made from the Ni base alloy 718. The
specimen geometry is shown in Fig. 4 and has outer
dimensions of 32.4 mm × 31.2 mm × 12 mm, where
the latter is the thickness (i.e. it is the size of a half-
inch CT specimen). Compared to a conventional CT
specimen, the current specimen geometry differs in
that it has a blunt notch (2 mm radius) to somewhat
resemble a disk fir tree blade attachment.

The specimens were subjected to LCF load at 450 °C
and 550 °C for various load levels in the 4–10 kN
interval. The LCF tests were performed in load control
with a load ratio of R = 0.05. The tests were run
until final rupture of the specimens.

Figure 4. The blunt notch CT specimen used in the
current study; image from Ref. [6].

4. Results and discussion
4.1. Stress and strain ranges for

notched specimens
The stress ahead of the notch is obtained from a linear
elastic finite element analysis of the blunt notch CT
specimen loaded with 1 N load. Stresses at all other
load levels can be achieved by scaling the results from
1 N load. The stress’ y-component is extracted as
function of distance, x, from the notch as shown in
Fig. 5. The y-component dominates the stress at
the notch which enables the load to be treated as
approximately uniaxial. Quantities obtained from the
linear elastic finite element analysis will be denoted
by an asterisk superscript; the stress ahead of the
notch as function of x is hence denoted as σ∗(x), the
stress range as ∆σ∗(x) and the notch root stress as
σ∗root = σ∗(x = 0). Figure 6 a) shows an example of
the ∆σ∗(x) profile for 9.9 kN applied load at 450 °C.
A Glinka shakedown is performed on the σ∗(x)

profile to get σmax and ∆εp/2. A Glinka shakedown
has previously been shown to give accurate results
for this material and specimen geometry, see Ref. [6].
To get the maximum stress, the following equation
systems are solved. For 450 °C, σmax is the outcome
of solving 

∫ εmax

0 σdε = K2
f (σ∗)2

2E

σ =
{
Eε for ε < σyl/E

σyl for ε ≥ σyl/E
(15)

for σ and for 550 °C, σmax is the outcome of solving
∫ εmax

0 σdε = K2
f (σ∗)2

2E

ε = σ
E +

(
σ

K′max

)1/n′max
(16)

for σ. The stress range and the total strain range are
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Path

Figure 5. Path at which the y-component stress
profile is extracted from a linear elastic finite element
analysis; image from Ref. [6].

obtained by solving{∫∆ε
0 σdε = K2

f (∆σ∗)2

2E

∆ε = ∆σ
E + 2

( ∆σ
2K′
)1/n′ (17)

which enables the plastic strain range to be calculated
from Eqn. 9. Since σ∗(x) is the local stress, the fatigue
notch factor, Kf , is set to Kf = 1 in Eqn. 15, 16 and
17. Figure 6 shows an example of the thus achieved
stress and strain ranges.

4.2. Comparison of the fatigue life of
smooth and notched specimens

Figure 7 shows the modified SWT parameter plotted
versus the fatigue life for both smooth and blunt
notch CT specimens; for the latter, the modified SWT
parameter has been calculated at the notch root. It is
evident that, at both 450 °C and 550 °C, the predicted
life of the notched specimens would be too conservative
if based on fatigue life curves for smooth specimens
and the notch root modified SWT parameter. That
is, notch support needs to be included.

As seen in Fig. 7, the notch support diminishes for
low values of the modified SWT parameter (roughly at
104 cycles to rupture). The low values of the modified
SWT parameter are caused by the plastic strain range
approaching zero for low loads. The diminishing of
the notch support could therefore be said to occur
roughly at the transition into the high cycle fatigue
region.

To accurately account for notches in life prediction
in the low cycle regime, the theory of critical distances
will be applied. In the following sections, the distance
from the notch at which the modified SWT parameter
coincides with that of a smooth specimen of the same
fatigue life will be identified and used to calibrate an
equation for establishing the critical distance.
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Figure 6. Stress and strain ranges from a linear-
elastic finite element analysis (FEA) at 450 °C and
9.9 kN load subjected to a Glinka shakedown. a)
Stress range as function of the distance from the notch.
b) Total and plastic strain ranges as function of the
distance from the notch. Figure from Ref. [6].

4.3. A pragmatic equation for the
critical distance

Since Eqn. 4 has gained some use for the critical
distance approach in fatigue (see the Introduction sec-
tion), it will be taken as basis also in the current work.
Although useful, Eqn. 4 is somewhat inconvenient as
it requires an iterative process to solve (since Nf may
not be known a priori). Therefore, Eqn. 4 will be
adopted on a form which enables the critical distance
to be calculated directly from notch root variables
(from an elastic FEA). A rationale for this is provided
here.
Firstly, Nf can be eliminated in Eqn. 4 by using

Eqn. 14, giving

σmax(r)∆εp(r)
2 = A(C1r

c1)a = C2r
c2 (18)

In order to relate plastic strain with stress from an
elastic finite element analysis, Glinka’s rule is used∫ ∆εp(r)/2

0
σ(r)dε =

K2
f (σ∗(r))2

2E (19)
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Figure 7. Comparison between the fatigue lives of
smooth and notched specimens (data for smooth spec-
imens are given as a fitted curve and data for notched
specimens are experimental data). The fatigue life is
described in terms of the modified SWT parameter,
σmax∆εp/2, which, for the notched specimens, has
been calculated at the notch root: a) 450 °C and b)
550 °C.

where σ∗(r) is the stress taken from an elastic finite
element analysis the distance r from the notch root.
Since σ∗ represent the local stress, the fatigue notch
factor is set to Kf = 1.

For simplicity, rigid–ideal plastic material behaviour
is assumed (i.e. σ = σyl and ε = εp) which in Eqn. 19
gives

σyl
∆εp(r)

2 = (σ∗(r))2

2E (20)

and, in Eqn. 18,

σyl
∆εp(r)

2 = C2r
c2 (21)

Equating Eqn. 20 and 21 yields

C2r
c2 = (σ∗(r))2

2E ⇒ r =
[√

1
2EC2

σ∗(r)
]2/c2

(22)

or, after merging constant parameters,

r = C3 (σ∗(r))c3 (23)

Assuming that the maximum stress occurs at the
notch root and the critical distance of interest is close
enough to the notch root (which it typically is), a

sufficient approximation of the stress at the distance
r ahead of the notch would be

σ∗(r) = σ∗root(1 + χr) (24)

which is a linear approximation of the stress in terms
of the relative stress gradient, χ, taken as

χ = 1
σ∗root

∂σ∗

∂x

∣∣∣∣
x=0

(25)

i.e. the stress gradient evaluated at the notch root
normalised with the notch root stress. The approxima-
tion of the stress ahead of the notch can be improved
by averaging χ over a distance roughly equal to the ex-
pected critical distance. Therefore, χ will be replaced
by an average relative stress gradient, χ̄, according to

χ̄ = 1
σ∗root

∆σ∗
∆x

∣∣∣∣
x=0

(26)

where ∆x is taken as roughly the same as the expected
critical distance. Based on previous experiences [6],
the critical distance should be in the order of a few
tenths of a millimetre and is here (arbitrarily) set to
∆x ≈ 0.4 mm.

Inserting Eqn. 24 in Eqn. 23 (with χ̄ substituted
for χ) gives

r = C3 (σ∗root(1 + χ̄r))c3 (27)

or, alternatively,

σ∗root = Drd

1 + χ̄r
(28)

with D = (1/C3)1/c3 and d = 1/c3.
Equation 28 is used in the current work to correlate

the critical distance with the notch root stress from a
linear elastic FEA. Although several simplifications
and approximations were introduced in the deriva-
tion of Eqn. 28, it is believed to be, at least, a good
starting point for finding such a relation. Equation
28 is sigmoid shaped and have some characteristics
which seem intuitively reasonable: 1) For small val-
ues of σ∗root, r is approximately zero (in agreement
with the notch support diminishing for long lives, see
Fig. 7). 2) The critical distance, r, asymptotically
approaches 1/(−χ̄) for large values of σ∗root; it does
seem reasonable that an upper limit in r should exist
and be determined by the notch stress gradient.

It should be noted that, due to the involved assump-
tions of material behaviour, the parameters D and d
are material and temperature dependent.

4.4. Calibration of the critical distance
A few data points from 450 °C and 550 °C were used
for calibrating the critical distance equation (Eqn. 28).
By examining Eqn. 28, one realises that the upper
limit of the critical distance is determined by the factor
1/(1 + χ̄r) which causes r to asymptotically approach
r = 1/(−χ̄) for large σ∗root. Therefore, the calibration
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T , °C D, Pa/md d

450 3.3045× 109 0.0493
550 4.9181× 109 0.1396

Table 3. Fitted parameters for Eqn. 28. The fitting
was done with σ∗root in Pa and r in m.

should be possible with just a few data points taken at
low values of σ∗root (since the remaining r–σ∗root curve
will be dominated by the 1/(1 + χ̄r) factor).

The calibration is done as follows:
(1.) For each calibration point, the experimentally ob-
served fatigue life of the notched specimen, Nnotch

f ,
is given.

(2.) A target modified SWT parameter, σ̂max∆ε̂p/2,
is determined from the σmax∆εp/2–Nf curve for
smooth specimens (i.e. from Eqn. 14) as

σ̂max∆ε̂p/2 = A
(
Nnotch
f

)a (29)

(3.) The critical distance, r, is determined so that

σmax(x = r)∆εp(x = r)/2 = σ̂max∆ε̂p/2 (30)

which gives r; σmax(x) and ∆εp(x) profiles are ob-
tained by Glinka shakedown as shown in Fig. 6.

(4.) The hence found r values are plotted versus the
corresponding σ∗root value and the parameters D
and d in Eqn. 28 are fitted.

Figure 8 shows the critical distance (obtained as
described above) versus the notch root stress, σ∗root.
At both 450 °C and b) 550 °C, the three points with
lowest σ∗root were used to fit Eqn. 28. As seen, Eqn. 28
(when extrapolated) describes the critical distances
for the remaining data points with reasonable accu-
racy. At 550 °C, there is a slight discrepancy between
Eqn. 28 and experimental data for high σ∗root values;
most likely due to the critical distance exceeding the
distance over which χ̄ was average, causing the ap-
proximation of the stress ahead of the notch to break
down. However, the discrepancy is relatively minor.

Overall, Eqn. 28 captures the critical distance with
reasonable accuracy and will be used for predicting
the fatigue life of notched specimens. The fitting
parameters in Eqn. 28 are given in Tab. 3.

4.5. Prediction of the fatigue life of
notched specimens

The calibrated equation for the critical distance
(Eqn. 28) can now be used together with the fatigue
life model for smooth specimens (Eqn. 14) to make a
prediction of the fatigue life of notched specimens. It
should be noted, though, that the notch support only
is present in the LCF regime.
The prediction is done as outlined below:
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Figure 8. The critical distance, r, as function of
the notch root stress from an elastic finite element
analysis, σ∗root, for: a) 450 °C and b) 550 °C. The fit
was done using Eqn. 28; a few points taken at low
σ∗root were used for calibration.

(1.) For each notched specimen, the σ∗(x) profile is
determined from a linear elastic finite element anal-
ysis. The parameters σ∗root and χ̄ are established
from the σ∗(x) profile.

(2.) The critical distance, r, is determined from
Eqn. 28 with values from Tab. 3.

(3.) The stress σ∗(r) is retrieved from the σ∗(x) profile
and a Glinka shakedown is performed (see Eqn. 15,
16 and 17), giving σmax and ∆εp. This allows
the modified SWT parameter, σmax∆εp/2, to be
calculated at r.

(4.) The hence obtained modified SWT parameter
is used in conjunction with fatigue life data for
smooth specimens (see Eqn. 14) to predict the life
of notched specimens.
Figure 9 shows the results of the fatigue life pre-

diction of notched specimens as outlines above. As
in Fig. 7, data from the notched specimens has been
plotted in terms of the notch root modified SWT pa-
rameter, but the prediction has been made based on
σmax(x = r)∆εp(x = r)/2.
The fatigue life prediction based on the critical
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Figure 9. The modified SWT parameter, σmax∆εp/2,
versus cycles to failure for smooth and notched spec-
imens at: a) 450 °C and b) 550 °C. For the notched
specimens, the data is plotted versus the notch root
modified SWT parameter, σmax(x = 0)∆εp(x = 0)/2,
but the prediction has been made based on the mod-
ified SWT parameter at the critical distance, r, i.e.,
σmax(x = r)∆εp(x = r)/2.

distance obtained from Eqn. 28 agrees well with ex-
perimental results (see Fig. 9) thus indicating that the
suggested equation for the critical distance (Eqn. 28)
certainly is usable. In addition, it should be noted that
only a limited number of data points were needed to
calibrate Eqn. 28, making it a fairly efficient approach
to account for notch support.

It should be noted, however, that the applicability
of the life model is limited to loads which gives, at least
some, plastic strain. The specimen with the longest
life in Fig. 9 agrees less well with the prediction due to
the modified SWT parameter being essentially zero.

5. Conclusions
Low cycle fatigue tests were performed on blunt notch
compact tension specimens made from alloy 718. The
results indicated that notch support needed to be in-
corporated in the lifing method not to cause an overly
conservative life prediction. The notch support, how-
ever, diminished as the plastic strain range decreased,
indicating that notch support is only present in the
low cycle fatigue regime for this alloy.

To account for the notch support, a critical distance
approach was attempted. An equation, relating the
critical distance to the notch root stress from a lin-

ear elastic finite element analysis, was derived. The
chosen life model was formulated in terms of a vari-
ation on the Smith–Watson–Topper parameter, the
modified SWT parameter (based on the plastic strain
range). The modified SWT parameter taken at the
critical distance was used in a life model calibrated
for smooth specimens to predict the fatigue life of
notched specimens. The fatigue life prediction for
notched specimens agreed well with available experi-
mental data.
In summary, the current work has shown that:

(1.) A critical distance approach can be applied to
account for notch support in alloy 718.

(2.) The critical distance can be correlated to the
notch root stress from a linear elastic finite element
analysis, considerably simplifying its use.

(3.) The suggested equation for the critical distance
requires relatively few data points for calibration.

List of symbols
A Fatigue life model coefficient [Pa]
D Coefficient in equation for the critical distance

[Pa/md]
E Young’s modulus [Pa]
K′ Cyclic Ramberg–Osgood coefficient [Pa]
K′max Cyclic Ramberg–Osgood coefficient for determin-

ing max stress/strain [Pa]
Kc Fracture toughness

[
Pa

√
m
]

Kth Threshold stress intensity factor for crack growth[
Pa

√
m
]

Kf Fatigue notch factor
Nf Cycles to failure
Nnotch

f Experimentally observed cycles to failure for
notched specimens

R Load ratio, minimum load over maximum load
Rε Strain ratio, minimum strain over maximum strain
T Temperature [°C]

a Fatigue life model exponent
b Fatigue strength exponent
c Fatigue ductility exponent
d Exponent in equation for the critical distance
n′ Cyclic Ramberg–Osgood exponent
n′max Cyclic Ramberg–Osgood exponent for determining

max stress/strain
r Critical distance [m]

∆ε Total strain range
∆εp Plastic strain range
∆εroot

p Notch root plastic strain range
∆σ Stress range [Pa]
∆σ∗ Stress range from a linear elastic analysis [Pa]
εp Plastic strain
εmax Maximum total strain
ν Poisson’s ratio
σ0 Critical value of stress [Pa]
σ∗ Stress from a linear elastic analysis [Pa]
σ∗root Notch root stress from a linear elastic analysis [Pa]

41



R. Eriksson, J. Moverare, Z. Chen, K. Simonsson Acta Polytechnica CTU Proceedings

σyl Yield limit [Pa]
σ′yl Cyclic yield limit [Pa]
σmax Maximum stress [Pa]
σa Stress amplitude [Pa]
σ′f Fatigue strength coefficient [Pa]
σmax∆εp/2 Modified SWT parameter [Pa]
σ̂max∆ε̂p/2 Target modified SWT parameter [Pa]
χ Relative stress gradient [1/m]
χ̄ Averaged relative stress gradient [1/m]

Acknowledgements
This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No. 653941.

References
[1] R. C. Reed. The Superalloys: Fundamentals and

Applications. Cambridge University Press, 2006.
doi:10.1017/CBO9780511541285.

[2] L. Mäde, H. Gottschalk, S. Schmitz, et al.
Probabilistic LCF Risk Evaluation of a Turbine Vane by
Combined Size Effect and Notch Support Modeling. In
ASME Turbo Expo 2017: Turbomachinery Technical
Conference and Exposition, vol. 7A: Structures and
Dynamics. 2017. doi:10.1115/gt2017-64408.

[3] C. Kontermann, H. Almstedt, A. Scholz, M. Oechsner.
Notch Support for LCF-Loading: A Fracture Mechanics
Approach. Procedia Structural Integrity 2:3125 – 3134,
2016. 21st European Conference on Fracture, ECF21,
20-24 June 2016, Catania, Italy,
doi:10.1016/j.prostr.2016.06.390.

[4] D. Taylor (ed.). The Theory of Critical Distances.
Elsevier Science Ltd, Oxford, 2007.
doi:10.1016/b978-0-08-044478-9.x5000-5.

[5] D. Leidermark, J. Moverare, K. Simonsson,
S. Sjöström. A combined critical plane and critical
distance approach for predicting fatigue crack initiation
in notched single-crystal superalloy components.
International Journal of Fatigue 33(10):1351 – 1359,
2011. doi:10.1016/j.ijfatigue.2011.05.009.

[6] R. Eriksson, K. Simonsson, D. Leidermark, J. Moverare.
Evaluation of notch effects in low cycle fatigue of alloy
718 using critical distances. MATEC Web of Conferences
165:15001, 2018. doi:10.1051/matecconf/201816515001.

[7] J. Moverare, G. Leijon, H. Brodin, F. Palmert. Effect
of SO2 and water vapour on the low-cycle fatigue
properties of nickel-base superalloys at elevated
temperature. Materials Science and Engineering A
564:107–115, 2013. doi:10.1016/j.msea.2012.11.079.

[8] M. Fukuhara, A. Sanpei. Elastic moduli and internal
frictions of Inconel 718 and Ti-6Al-4V as a function of
temperature. Journal of Materials Science Letters
12(14):1122–1124, 1993. doi:10.1007/BF00420541.

[9] H. Ledbetter. Temperature behaviour of Young’s
moduli of forty engineering alloys. Cryogenics 22(12):653
– 656, 1982. doi:10.1016/0011-2275(82)90072-8.

[10] K. Smith, T. Topper, P. Watson. A stress-strain
function for the fatigue of metals (stress-strain function
for metal fatigue including mean stress effect). J
Materials 5:767–778, 1970.

[11] F. Lorenzo, C. Laird. A new approach to predicting
fatigue life behavior under the action of mean stresses.
Materials Science and Engineering 62(2):205 – 210,
1984. doi:10.1016/0025-5416(84)90223-4.

42

http://dx.doi.org/10.1017/CBO9780511541285
http://dx.doi.org/10.1115/gt2017-64408
http://dx.doi.org/10.1016/j.prostr.2016.06.390
http://dx.doi.org/10.1016/b978-0-08-044478-9.x5000-5
http://dx.doi.org/10.1016/j.ijfatigue.2011.05.009
http://dx.doi.org/10.1051/matecconf/201816515001
http://dx.doi.org/10.1016/j.msea.2012.11.079
http://dx.doi.org/10.1007/BF00420541
http://dx.doi.org/10.1016/0011-2275(82)90072-8
http://dx.doi.org/10.1016/0025-5416(84)90223-4

	Acta Polytechnica CTU Proceedings 20:34–42, 2018
	1 Introduction
	1.1 Theory of critical distances

	2 Material behaviour
	2.1 Material model
	2.2 Fatigue life model for smooth specimens

	3 Experimental work
	4 Results and discussion
	4.1 Stress and strain ranges for notched specimens
	4.2 Comparison of the fatigue life of smooth and notched specimens
	4.3 A pragmatic equation for the critical distance
	4.4 Calibration of the critical distance
	4.5 Prediction of the fatigue life of notched specimens

	5 Conclusions
	List of symbols
	Acknowledgements
	References

