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Abstract. The paper deals with the prediction of the response of a real underground structure
subjected to earthquake. A fully dynamic analysis is carried out in the GEO5 FEM program using
the Finite Element Method. Limiting our attention to a two-dimensional analysis we focus on the
implementation of special boundary conditions along the vertical edges of the computational model. A
simple study is carried out first to show that incorrectly applied boundary conditions may significantly
influence the actual design of underground structures loaded by vertically propagating shear waves. This
study promotes the combination of so called free-field and static boundary conditions as demonstrated
on a simple example.
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1. Introduction
Crowded cities, pushing the need for fast and safe
transportation, are the main cause of ever faster grow-
ing number of underground structures. Such struc-
tures, built in densely populated areas, often experi-
ence a high degree of complexity. To maintain reliable
performance of tunnels during their life time calls
for reliable designs. These are typically based on
detailed finite element simulations. In this regard,
the preliminary design typically adopts a certain sim-
plification such as a dimensional reduction from 3D
(three-dimensional) to 2D (two-dimensional). While
simplified 2D formulations attempting to account for
out-of-plane deformations do exit [1–3], the majority of
practical engineers rely on a fully 2D plane-strain anal-
ysis employing the convergence confinement method
(2DCC) either in deterministic [4] or stochastic [5]
environment. Owing to its popularity and availability
in various geotechnical softwares, e.g. GEO5 Tun-
nel [6], the 2DCC analysis is often the choice even if
addressing the TBM (tunnel boring machine) based
excavation strategies.
While in most applications the static loading con-

ditions play the principal role in the design of tunnel
lining or in assessing a potential failure during tunnel
construction and when in service, the dynamic analy-
sis in regions prone to the occurrence of earthquake
may prove important. For a general and clear intro-
duction to this subject the reader is referred to an
excellent monograph by I. Towhata [7]. When limit-
ing our attention to the determination of lining forces
caused by earthquake it is often sufficient to carried
out a simplified pseudo-static analysis with the help of

either analytical [8, 9] or FEM based methods [10–12].
The principal concern in connection to a fully dy-

namic analysis, regardless whether 2D or 3D, is the
representation of infinite boundary in the horizon-
tal direction. Assuring that horizontally propagating
waves are not reflected back to the domain requires
implementation of appropriate boundary conditions
along vertical boundaries. These are typically in the
form of viscous dampers relating the boundary trac-
tions to velocities of the propagating waves. Clearly,
absorbing these waves at the boundary has the same
effect as if transmitting them with no restrictions.
The most widely used absorbing/transmitting

boundary conditions are those introduced by Lysmer
and Kuhlemeyer [13]. If represented by these bound-
ary conditions the boundary absorbs the entire wave
propagating across this boundary. When modeling
the response of structure to earthquake it appears
more appropriate to absorb only the portion of en-
ergy associated with the perturbation from so called
free field conditions, the state preceding any construc-
tion. Such perturbation can be attributed to, e.g. the
built above-ground or underground structure such as
embankment or tunnel. Such boundary conditions,
termed henceforth the free-field boundary conditions,
were put forward by Zinkiewicz, et al. [14]. To acquire
the necessary free field response they build upon the
solution of one-dimensional (1D) free field column
problem [10, 12, 14]. Point out that free-field bound-
ary conditions should become active only if there are
other than vertically propagating waves. Thus to
properly represent the results of 1D free field column
analysis within a 2D environment calls for other types
of boundary conditions that assure, in case of verti-
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cally propagating shear weaves, the stress state the
same along every vertical section in the 2D model as
derived from 1D analysis.
Starting with a brief introduction to a theoretical

background in Section 2 we continue in Section 3 with
a simple parametric study on the effect of various
types of potential boundary conditions applied along
the lateral boundaries of the analyzed domain. The
most appropriate boundary conditions are then tested
on an illustrative example of ground excavation in Sec-
tion 4. The essential findings are finally summarized
in Section 5.

2. Theoretical background
Suppose that a simple homogeneous rectangular do-
main is loaded at its boundary by a vertically propa-
gating shear weave as schematically shown in Fig. 1(a).
The terms uu, ud stand for the upward and downward
traveling waves, respectively. We further assume an
infinitely stiff base rock so the total motion in the
form of outcrop motion can be applied at the bottom
boundary.

(a)

(b)

Figure 1. (a) Schematic representation of loading
through outcrop motion, (b) Loading and boundary
conditions applied to 1D and 2D domains.

The displacement field in space and time can then
be decomposed as

u(x, t) = u0(t) + uR(x, t), (1)

where at the bottom boundary it holds

u(x, t)|y=0 = u0(t), uR(x, t)|y=0 = 0. (2)

The discretized form of the equation of motion then
reads

MüR(t) + Cu̇R(t) + KuR(t) = −Mü0(t), (3)

where M,C,K are the mass, damping and stiffness
matrices, respectively. Note that no material damping
is assumed so that the damping matrix C collects
only the viscous dampers applied along the domain
lateral boundaries as shown in Fig. 1(b). Therein, the
viscosity cp =

√
Eoed/ρ corresponds to the pressure

wave velocity whereas cs =
√
G/ρ is associated with

the shear wave velocity; ρ,Eoed, G stand for the soil
density and oedometric and shear moduli, respectively.
Further details can be found in [13–15]. The time
integration of Eq. (3) is typically performed with the
help of Newmark integration scheme.

As already mentioned in the introductory part the
analysis of 1D free field column problem seen in
Fig. 1(b) is needed to provide free-field velocities u̇F F

R

and shear tractions py = τxy. In the present study,
a simple impulse plotted in Fig. 2 was considered in
both 1D and 2D analyses.

(a)

(b)

Figure 2. Prescribed impulse: (a) acceleration,
(b) displacement.

To eliminate any potential errors caused by finite
element discretization we assumed an optimal ele-
ment size defined such that for the selected time
step of 0.01s the shear wave passes through only
just one element, i.e. lelem = cs∆t =

√
G/ρ∆t =√

28.6× 106/1960 · 0.01 = 1.2 m. The potential er-
ror arising from discretization if deviating from an
optimal element length is clearly visible in Fig. 3.

Thus only the optimal element length was adopted
when performing all relevant calculations. One such
analysis considers a 1D free-field column to provide
results to be reproduced by a 2D analysis discussed
in the next section. Example of time variation of
horizontal displacements of two selected points (on
surface and at the center of the domain) is plotted in
Fig. 4 for illustration.
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(a)

(b)

Figure 3. Influence of finite element discretization.
Distribution of horizontal displacement u along verti-
cal direction at time: (a) t = 0.4 s, (b) t = 4.0 s.

(a)

(b)

Figure 4. Time variation of horizontal and vertical
displacements u, v: (a) on surface, (b) at the center of
the domain.

As seen, the vertical displacements are clearly zero
as only the horizontal displacements in terms of ac-
celeration ü0(t) are prescribed to the entire domain.
Owing to the fixed boundary uR(0, t) = 0 and no

material damping, the wave is free to bounce back to
the domain when arriving at the bottom boundary.
Also note that the top boundary, free of shear stress,
amplifies the propagating shear wave at the bound-
ary two times in comparison to the wave within the
domain, see e.g. [7].

3. Parametric study on the
influence of lateral boundary
conditions

To see how well may various boundary conditions rep-
resent the free-field response we perform a simple para-
metric study. To that end, a rectangular homogeneous
domain with the shear modulus G = 28.6 MPa, the
Poisson ratio ν = 0.4 and the density ρ = 1960 kg/m3

is considered. As in the previous section we reserve
ourselves to fixed boundary at the bottom and loading
conditions specified in Fig. 2. In particular, four types
of boundary conditions plotted in Fig. 5 are examined
in a sequel.

(a) (b)

(c) (d)

Figure 5. Selected boundary conditions along lat-
eral edges: (a) fixed vertical displacement v(t) = 0
(BC1), (b) free boundary-no restrictions (BC2), c) free-
field boundary conditions (BC3), d) static boundary
conditions - py(t) prescribed (BC4).

3.1. Fixed boundary conditions (BC1)
With reference to the results provided by free field
column analysis we begin by prescribing a kinematic
constrain in the vertical direction, Fig. 5(a). Such
boundary conditions assure zero vertical displacement
along lateral edges while generating, through the reac-
tion forces, the expected non-zero shear stress τxy. As
evident from Fig. 6, these are the correct boundary
conditions producing the same response as the 1D
free field column analysis. This is supported by the
distribution of the shear stress found at the end of
analysis in Fig. 10(a).
Unfortunately, such boundary conditions are gen-

erally not acceptable as they do not allow for trans-
mitting the horizontally propagating wave caused, e.g.
by some structural perturbation. Thus application
of such boundary conditions could only be justify in
cases when the lateral boundaries are sufficiently far
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from the point of interest, e.g. tunnel, and the re-
flected horizontal wave would not interfere with the
incoming wave. However, such a requirement may
lead to computationally demanding geometrical mod-
els. Creating unstructured meshes with coarsening in
the vicinity of lateral boundaries as typical of static
analysis may not be the solution bearing in mind the
mutual connection between the integration time step
and the element size. Such a boundary condition is,
therefore, generally not recommended.

(a)

(b)

Figure 6. Time variation of horizontal and vertical
displacements u, v: (a) on surface, (b) at the center of
the domain.

3.2. Free boundary (BC2)
Just for illustration we consider next a free boundary
with no restrictions. Similar to terrain surface, such
a boundary requires the shear stresses along lateral
edges be zero. This in turn generates unacceptable
vertical displacements within the whole domain and
yield a nonuniform distribution of the shear stress
as evident in Fig. 10(b). The evolution of ineligible
vertical displacements is further seen in Fig. 7(b),
which generates a strong deviation of the horizontal
displacement in every section of the 2D domain when
compared to the 1D free field column analysis. For the
sake of clarity, the influence of free boundary on the
results pertinent to surface point on the left lateral
edge are reported in Fig. 7(a). The free boundary is
therefore a totally incorrect boundary condition, even
if the lateral boundaries are sufficiently far.

(a)

(b)

Figure 7. Time variation of surface displacements:
(a) horizontal displacement u, (b) vertical displacement
v at the edge.

3.3. Free-field boundary conditions
(BC3)

Recall that free-field boundary conditions in Fig. 5(c)
should allow for transmitting the structural or ma-
terial perturbation only causing, as will be seen in
Section 4, e.g. a horizontally propagating shear
weave. However, no such perturbation is present in
the present example. So both viscous dampers (the
horizontal one transmitting the horizontally propagat-
ing pressure wave, the vertical one transmitting the
horizontally propagating shear wave) should remain
inactive during the analysis.
However, the formulation of damper does not dis-

tinguish between the type and direction of the propa-
gating wave. With reference to the previous section it
is therefore expected the vertical damper to become
active as attempting to damp the difference between
the 1D (v = 0) and 2D (v 6= 0) analyses. This is evi-
dent from Fig. 8(b) showing the variation of surface
vertical displacement being 10 times smaller than in
case of free boundary examined in Section 3.2. The
results, fully compatible with the 1D free field column
analysis, could thus be achieved by setting the shear
viscosity cs to infinity, see [15]. Clearly, the infinite
viscosity acts in this case as a penalty forcing the
velocity of vertical displacement to zero thus in turn
generating, similar to Section 3.1, the nonzero shear
stresses.
Nevertheless, even with damper of finite viscosity

the horizontal displacements in Fig 8(a) are repre-
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sented fairly well. Similarly, the distribution of shear
stresses displayed in Fig. 10(c) is considerably im-
proved. But keep in mind that the action of vertical
damper is in this case purely artificial, as it is activated
for purpose, for which it is not actually designed.

(a)

(b)

Figure 8. Time variation of surface displacements:
(a) horizontal displacement u, (b) vertical displacement
v at the edge.

3.4. Static boundary conditions (BC4)
Intuitively, and recalling the discussion in Section 3.1,
the most appropriate boundary conditions to repro-
duce the 1D free field column analysis are static bound-
ary conditions represented by the prescribed shear
tractions as shown in Fig. 5(d). It has been demon-
strated in [15] that such a boundary conditions yield
identical displacements and stresses as produced with
the BC1 type of boundary conditions, even if com-
bined with the free-field boundary conditions (BC3),
which in this case remain inactive.

Figure 9. Periodic boundary conditions.

It is interesting to point out that similar results
would be derived with the application of periodic
boundary conditions [14] schematically depicted in

Fig. 9. These boundary conditions, widely used in the
field of homogenization [16], are essentially the tying
constrains which force the homologous displacements
on the opposite sides of the analyzed domain the same.

[kPa]

(a)

[kPa]

(b)

[kPa]

(c)

Figure 10. Distribution of shear stress τxy at the end
of analysis for different lateral boundary conditions:
(a) BC1 and BC4, (b) BC2, (c) BC3.

4. Example to illustrate the
effect of combined free-field
and static boundary conditions

To demonstrate the applicability of the proposed
boundary conditions we consider a geometrical model
plotted in Fig. 11(a) and loaded by the same impulse
as used in the previous section, recall Fig. 2. In par-
ticular, the effect of perturbation caused by the 90◦

wedge will be examined. In this particular example
it is expected that the upward traveling shear wave,
when hitting the wedge boundary, will be reflected in
the 90◦ angle to become a horizontally propagating
shear wave as illustrated in Figs. 11(b,c).

To appreciate the action of free-field boundary con-
ditions we begin with the static boundary conditions
only and follow the time evolution of the vertical
and horizontal components of the displacement vector
linked to one particular point marked in Fig. 11(a)
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(coordinates [40,30]). The results appear in Fig. 12.
It is clear from Fig. 12(b) that in view of the horizon-
tally propagating shear wave the horizontal boundary
behaves as a free boundary and reflects the wave back
into the domain. Because the bottom boundary is
assumed fixed, the wave is trapped in the domain,
and in case of no material damping will continue to
infinitely move between the two boundaries. The fact
that the impulse is applied along the entire bottom
boundary promotes interaction of individual waves
which in turn is manifested by a continuous rise of
the wave amplitude.

(a)

(b)

(c)

Figure 11. Testing boundary conditions: (a) geomet-
rical model, (b) static boundary conditions assumed
only, (c) combination of free-field and static boundary
conditions.

A considerably different response is observed when
properly combining the static boundary condition
with the free-field boundary condition, see the red
curves in Figs. 12. As evident from Fig. 12(b), the
latter boundary condition is able to transmit, damp,
the horizontally propagating incoming wave across
the lateral edges, so it is not reflected back. The
subsequent vibration is again the result of interaction
of the neighboring waves. The continuous vibration
of the tracked point in the horizontal direction, see
Fig. 12(b), is caused by continuously traveling shear
wave in the vertical direction caused again by the
presence of fixed boundary assumed at the bottom of
the model. To bring the results closer to reality one
would have to either introduce the material damping
or the absorbing boundary condition at the bottom
boundary, see e.g. [11, 12, 15].

5. Conclusion
Application of various boundary conditions along ver-
tical edges of a rectangular domain was critically exam-

(a)

(b)

Figure 12. Time variation of the displacement of the
marked point: (a) horizontal displacement u, (b) ver-
tical displacement v.

ined in this paper. It was proved first in Section 3 that
static boundary conditions are the correct boundary
conditions to represent the 1D free field column anal-
ysis in 2D simulations. These boundary conditions
were then combined in Section 4 with the free-field
boundary conditions to allow for properly transmit-
ting the horizontally propagating shear weave across
the lateral boundaries perturbed in this particular
case by an excavated wedge. The ability of free-field
boundary conditions to absorb such waves has been
confirmed. However, the performance of these absorb-
ing conditions in cases of incident angles other than
90◦ is still an open issue and will be examined in our
future studies.

Acknowledgements
The support provided by the SGS project No.
SGS18/037/OHK1/1T/11 and the TAČR project no.
TE01020168 is gratefully acknowledged.

References
[1] T. Janda, M. Šejnoha, J. Šejnoha. Application of
converegence measurements in 2D analysis of tunnel
excavation in comparison with Convergenece
Confinement Method. Tunel 19(4):52–57, 2010.

[2] T. Janda, M. Šejnoha, J. Šejnoha. Modeling successive
excavation within two dimensional finite element mesh.
Acta Geodynamica et Geomaterialia 8(1):69–78, 2011.

[3] T. Janda, M. Šejnoha, J. Šejnoha. Modeling of soil
structure interaction during tunnel excavation: An
engineering approach. Advances in Engineering

79



V. Pavelcová, T. Poklopová, T. Janda, M. Šejnoha Acta Polytechnica CTU Proceedings

Software 62-63:51–60, 2012. Special Issue dedicated to
Professor Zdeněk Bittnar on the occasion of his
Seventieth Birthday: Part I.

[4] T. Svoboda, D. Mašín. Comparison of displacement
field predicted by 2D and 3D finite element modelling of
shallow NATM tunnels in clays. Geotechnik
34(2):115–126, 2011.

[5] T. Janda, M. Šejnoha, J. Šejnoha. Applying bayesian
approach to predict deformations during tunnel
construction. International Journal for Numerical and
Analytical Methods in Geomechanics 42:1765–1784, 2018.

[6] Fine ltd. Geo 5 - Civil Engineering Sowftware.
[online]: www.fine.cz.

[7] I. Towhata. Geotechnical Earthquake Engineering.
Springer-Verlag Berlin Heidelberg, 2008.

[8] J. Penzien. Seismically induced racking of tunnel
linings. Earthquake engineering and structural dynamics
29:683–691, 2000.

[9] Y. Hashash, J. Hook, B. Schmidt, J. Yao. Seismic
design and analysis of underground structures. Tunneling
and undergrounding Space Technology 16:247–293, 2001.

[10] D. Kučera. Posouzení geotechnické konstrukce na
seismické zatížení metodou konečných prvku. Master’s
thesis, Czech Technical University in Prague, Faculty of
Civil Engineering, 2017.

[11] T. Poklopová. Evaluation of real underground
structure subjected to earthquake - pseudostatic analysis.
Bachalor’s thesis, Czech Technical University in Prague,
Faculty of Civil Engineering, 2018. In Czech.

[12] T. Poklopová, V. Pavelcová, T. Janda, M. Šejnoha.
Evaluation of real underground structure subjected to
earthquake - pseudostatic approach. Acta Polytechnica
2018. Accepted.

[13] J. Lysmer, R. Kuhlemeyer. Finite dynamic model for
infinite media. Journal of the engineering mechanics
division, Proceedings of the American Society of Civil
Engineers 95(EM4):859–877, 1969.

[14] O. Zinkiewicz, N. Bicanic, F. Shen. Generalized
Smith boundary - a transmitting boundary for dynamic
computations, vol. 207. INNME Swansea, 1986.

[15] V. Pavelcová. Evaluation of real underground
structure subjected to earthquake - fully dynamic
analysis. Bachalor’s thesis, Czech Technical University
in Prague, Faculty of Civil Engineering, 2018. In Czech.

[16] M. Šejnoha, J. Zeman. Micromechanics in Practice.
WIT Press, Southampton, Boston, 2013.

80


	Acta Polytechnica CTU Proceedings 15:74–80, 2018
	1 Introduction
	2 Theoretical background
	3 Parametric study on the influence of lateral boundary conditions
	3.1 Fixed boundary conditions (BC1)
	3.2 Free boundary (BC2)
	3.3 Free-field boundary conditions (BC3)
	3.4 Static boundary conditions (BC4)

	4 Example to illustrate the effect of combined free-field and static boundary conditions
	5 Conclusion
	Acknowledgements
	References

