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Abstract. Extracting material parameters from test specimens is very intensive in terms of cost and
time, especially for viscoelastic material models, where the parameters are dependent of time (frequency),
temperature and environmental conditions. Therefore, three different methods for extracting these
parameters were tested. Firstly, digital image correlation combined with virtual fields method, secondly,
a parallel network material model and thirdly, finite element updating. These three methods are shown
and the results are compared in terms of accuracy and experimental effort.
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1. Introduction
Elastomers are often used as damping elements and
undergo, depending on their constraints, uni- and mul-
tiaxial loadings in tension, compression and shearing
[1–4]. The nonlinear inherent viscoelastic material
behaviour of the EPDM Shore A 50 with a maxi-
mum elongation of several hundred percent makes it
further complicated to extract material parameters
for the whole range of time (frequency), temperature
and environmental conditions relevant for the appli-
cation [5, 6]. Therefore a large number of tests at
different temperatures and loading velocities have to
be performed (75 tests [7] for the standard method
(STD)). To circumvent these difficulties and to extract
the material parameters sufficiently, three different
and well-known methods were used here for compar-
ison purposes. The motivation is the biaxial char-
acterization of elastomers for different applications
(sealing, damping, etc.). Firstly, a combined method-
ology based on digital image correlation (DIC) [8] and
virtual fields method (VFM) [9]. In this method, a
heterogeneous strain field is introduced in order to
acquire more than one parameter in a single test. This
leads to drastically reduced time and costs. Secondly,
a parallel network material model (PNMM) with the
procedure of Bergström [10] (MCalibration and PolyU-
Mod), where a test procedure including hysteretical
and relaxation behaviour at certain temperatures, ve-
locities, as well as test conditions leading to the mod-
eling of the viscoelastic behaviour. Thirdly, a finite
element updating (FEU) procedure using the Abaqus-
solver [11] is utilized. Measured force-displacement
signals are compared to the simulated ones and the
material parameters are updated until these two sig-
nals fit sufficiently within a defined tolerance. Finally,
these three methods are compared in terms of accuracy
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Figure 1. Biaxial test specimen with dimensions in
mm and displacement-time diagram for 0.1 mm s−1,
1 mm s−1, 10 mm s−1 and with the procedure including
hystereses and relaxation for the experiments.

and experimental effort and the advantages as well as
disadvantages are summarized for each method.

2. Description of the methods
The biaxial test specimens (Figure 1A) were tested
with a biaxial test frame [2] at 20 °C in a temperature
chamber (CTS GmbH, Jennersdorf, AUT), loaded by
an 1.5 kN actuator and measured with a 4.5 kN load
cell (Bose ElectroForce Systems Group, MN, USA).
The optical strain measurement was performed with
a DIC-camera system (Aramis, GOM mbH, Braun-
schweig, D) and a cold light source (dedocool, Dedotec
USA inc., MA, USA) and a speckle pattern was manu-
ally applied to the biaxial test specimen. The further
workflow for each of the three methods, DIC combined
with VFM (Figure 4), PNMM with the procedure of
Bergström (MCalibration and PolyUMod) (Figure 7)
and FEU (Figure 10), is explained in detail in the
subsections 2.1- 2.3.
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Figure 2. Digital image correlation results at max strains in εxx (A), εyy (B) and εxy (C) and calculated results for
εMajor (D), εMinor (E) and εMinor/εMajor (F).
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Figure 3. Stress-strain diagram for 0.1 mm s−1,
1 mm s−1 and 10 mm s−1.

2.1. Digital image correlation (DIC)
and virtual fields method (VFM)

The workflow for the VFM is shown in Figure 4. Dis-
placement controlled tests at velocities of 0.1 mm s−1,
1 mm s−1 and 10 mm s−1 (Figure 1B) were per-
formed with optical strain measurement and the load-
displacement data for each of the three velocities, as
well as the optical images were recorded. These image
series are evaluated via DIC (ncorr, Georgia Institute
of Technology, GA, USA) to generate the strain fields
εxx, εyy and the shear field εxy (Figure 2A-C). Af-
terwards εMajor (Figure 2D) and εMinor (Figure 2E)
were calculated according to Equation 1.

εMajor/Minor = εxx + εyy

2

±

√(
εxx + εyy

2

)2
−
(
εxx · εyy − ε2

xy

)
(1)

The equibiaxial area is the region, where εMajor and
εMinor are “equal”, therefore, εRes = εMajor/εMinor

(Figure 2F) was calculated and the equibiaxial area
was extracted in the range of εRes ≥ 0.5. That area
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Figure 4. Workflow for the virtual fields method
(VFM).

was afterwards converted to an equibiaxial diameter
and the biaxiality ratio Φ, the biaxial stress σ was
calculated by dividing the measured force with the
equibiaxial diameter and the thickness and the strain
ε was calculated for each image series (Figure 3).
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Figure 5. Stress-strain diagram for load with hys-
tereses and relaxation with marked relaxation areas.

Parameter Value Parameter Value

Bulk modulus 106.59 Lock Stretch 4.0841

Pressure depen-
dence of flow −0.129 Temp. exp.

flow resistance 0

Temp. factor
for stiffness 0 Therm. expan-

sion coefficient 0

Thermal expan-
sion ref. temp. 293 Flow resistance

A 0.1743

Shear modulus
A 7.9898 Stress exponen-

tial A 11.499

Final shear
modulus B 0.9803 Flow resistance

B 1.4018

Initial shear
modulus B 2.0318 Norm. evolu-

tion rate of µB
10.212

Stress exponen-
tial B 10.156 Relative contri-

bution of I2 C 9.3e-05

Shear modulus
C 1.3068

Table 1. Parameter table for three network material
model.

2.2. Parallel network material model
(PNMM)

The workflow for the PNMM is shown in Figure 7. For
the procedure of Bergström (MCalibration and PolyU-
Mod), tests which include hysteresis and relaxation
domains (Figure 1B) was performed. The hysteresis
and relaxation domains are necessary to model the
viscoelastic behaviour with one material test at a cer-
tain temperature and velocity. As a material model,
the three parallel network model [12] was chosen. It
consists of:

1st Network: Temperature-dependent 8-chain model
[13, 14], power-law flow rate, hydrostatic pressure
dependence, power-law temperature dependence
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Figure 6. Experimental and predicted stress-strain
diagram.
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Figure 7. Workflow for the parallel network material
model (PNMM).

2nd Network: Temperature-dependent 8-chain
model, shear modulus evolution with plastic
strain, power-law flow rate, hydrostatic pressure
dependence, power-law temperature dependence

3rd Network: 8-chain model with first order I2 (sec-
ond invariant of deformation tensor) dependence.

With a simulation, the stress-strain data (Figure 5)
was calculated, which is imported and processed in
MCalibration. The material parameters are calculated
analytically by comparing the predicted results to the
experimental ones and updating these parameters un-
til the results fit. In that way, the material parameters
are generated (Table 1) and the experimental as well
as predicted strain-stress curves are shown in Figure 6.
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Figure 8. Experimental and predicted force-
displacement diagram with the Mooney-Rivlin
model.

Velocity C10 C01 D[
mm s−1] [MPa] [MPa]

0.1 0.5849 0.0856 0

1 0.5924 0.1016 0

10 0.5979 0.1506 0

Table 2. Parameter table of the received Mooney-
Rivlin model-parameters.

2.3. Finite element updating (FEU)
The workflow for the FEU is shown in Figure 10. Tests
with velocities of 0.1 mm s−1, 1 mm s−1 and 10 mm s−1

(Figure 1B) were performed and the load-displacement
data were recorded (Figure 8, solid lines). These
data were imported separately to MATLAB [15] and
a custom-made FEU-script is executed. This pre-
pares the input file for Abaqus automatically, exe-
cutes the solver, performs a numerical simulation and
extracts the simulated results. It compares the sim-
ulated (predicted) results to the experimental ones,
updates the material parameters in the input file and
repeats that procedure until the load-displacement
curve fit within a defined tolerance. The gained mate-
rial parameters are liste in Table 2 and the compared
load-displacement data are shown in Figure 8. Fur-
thermore, the evolution of the parameters C10 and
C01 are visualized in Figure 9.

3. Results and Discussion
In order to analyze the difference of the three terms of
accuracy and experimental effort, the advantages as
well as the disadvantages are summarized individually.
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Figure 9. Evolution of C10 and C01 over the velocity.
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Figure 10. Workflow for the finite element updating
(FEU).

• Virtual fields method (VFM)
The stress-strain data were calculated by VFM,
in which the actual full-field strain data is consid-
ered. This full-field data includes some information
about the sliding of the clamping system, elastic
extension of the machine due to the force and some
other small effects, which cause deviation between
the measured and applied length. Therefore, these
effects can be taken into account and excluded. Fur-
thermore, more than one material parameter can be
analyzed by generating inhomogeneous strain fields
(different loading states) in one test and specimen.
However, there are difficulties in finding the right
equations for the virtual strain field of each loading
condition and its specific (geometric) constraints
to receive the right parameters and DIC data is
needed, which cause higher effort for acquisition
and a huge amount of computational power.

• Parallel network material model (PNMM)
The result of PNMM are the nonlinear material
model parameter which include here (but is not lim-
ited to) viscoelastic, relaxation and cyclic behaviour,
which gives the whole range of velocity dependence
at a certain temperature and loading configuration
with one test. Stress-strain data must be evaluated
by a simulation and the analytical calculation of
the material model parameters is time consuming.
Furthermore, different parameter combinations of
the same material model and the same test data can
be received by choosing different initial parameters.
Therefore, the results have to be examined carefully.
The selection of the material model is important
for the characteristics and the accuracy.
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Figure 11. Manual experimental and computational effort of virtual fields method (VMF), parallel network material
model (PNMM) and finite element updating (FEU) normalized to the standard method (STD).

• Finite element updating (FEU)
The result of FEU are the nonlinear material model
parameters. Therefore, results from specimen, as
well as component tests can be taken to create a
simulation. To receive the appropriate results, it
is necessary to create a detailed simulation with
the proper boundary conditions. Furthermore, the
selection of the material model is essential for the
results. However, there are different parameter
combinations for the same material model and sim-
ulation just by choosing different initial parameters.
Careful analyses of the results at various loading
rates are required.

The comparison of the manual and computational ex-
perimental effort of the three methods VFM, PNMM
and FEU, normalized to the standard method (STD)
(cf. section 1) is shown in Figure 11. The manual ex-
perimental effort for the standard test consists of three
test procedures (uniaxial, pure shear, equibiaxial), five
temperatures and five test velocities, which leads to 75
tests (section 1). Through the inhomogeneous strain-
field of the VFM, the three test procedures can be
minimized to one, which gives 25 tests, however, be-
cause of DIC, the computational effort is more than
doubled compared to STD. For the PNMM, the whole
range of velocity data for a certain temperature is in-
cluded in one test, this cause 15 tests altogether, but
the computational effort is by 50% greater than STD.
This is caused by the desired stress-strain data and
the analytical calculations. The FEU has no benefit
on the reduction of the number of tests, nevertheless,
the computational effort for small FEM-simulations
can be minimized, as the force-displacement data is
selected directly.

Acknowledgements
The research for this paper was performed within the
framework of FFG 7th call of “Produktion der Zukunft”
(Project Number: 848620).

References
[1] L. Treloar. The elasticity and related properties of
rubbers. Reports on progress in physics 36(7):755, 1973.

[2] U. D. Çakmak, Z. Major. Experimental
Thermomechanical Analysis of Elastomers Under Uni-

and Biaxial Tensile Stress State. Experimental
Mechanics 54(4):653–663, 2014.

[3] U. D. Çakmak, I. Kallaí, Z. Major. Temperature
dependent bulge test for elastomers. Mechanics
Research Communications 60:27–32, 2014.

[4] E. Leiss-Holzinger, U. D. Çakmak, B. Heise, et al.
Evaluation of structural change and local strain
distribution in polymers comparatively imaged by
FFSA and OCT techniques. Express Polym Lett
6:249–256, 2012.

[5] N. W. Tschoegl, W. G. Knauss, I. Emri. The Effect of
Temperature and Pressure on the Mechanical Properties
of Thermo- and/or Piezorheologically Simple Polymeric
Materials in Thermodynamic Equilibrium–A Critical
Review. Mechanics of Time-Dependent Materials
6(1):53–99, 2002.

[6] U. D. Çakmak. Experimental Studies on
Time-Temperature-Dependent Bulk and Surface
Behavior of Soft Composite Materials. Ph.D. thesis,
Johannes Kepler University, 2014.

[7] A. Grambow. Bestimmung der Materialparameter
gefüllter Elastomere in Abhängigkeit von Zeit,
Temperatur und Beanspruchungszustand. Ph.D. thesis,
Bibliothek der RWTH Aachen, 2002.

[8] Ncorr. Ncorr. http://www.ncorr.com, 2016.
[9] F. Pierron, M. Grédiac. The Virtual Fields Method:
Extracting Constitutive Mechanical Parameters from
Full-field Deformation Measurements. Springer Science
& Business Media, 2012.

[10] J. Bergström. PolyUMod User’s Manual. Veryst
Engineering, LLC, Needham, MA 2009.

[11] Hibbett, Karlsson, Sorensen. ABAQUS/standard:
User’s Manual, vol. 1. Hibbitt, Karlsson & Sorensen,
1998.

[12] J. Bergström, J. Bischoff. An Advanced
Thermomechanical Constitutive Model for UHMWPE.
The International Journal of Structural Changes in
Solids 2(1):31–39, 2010.

[13] E. M. Arruda, M. C. Boyce. A Three-Dimensional
Constitutive Model for the Large Stretch Behavior of
Rubber Elastic Materials. Journal of the Mechanics and
Physics of Solids 41(2):389–412, 1993.

[14] J. Bergström, M. Boyce. Large Strain
Time-Dependent Behavior of Filled Elastomers.
Mechanics of materials 32(11):627–644, 2000.

[15] C. Moler, et al. MATLAB User’s Guide. University
of New Mexico, 1982.

11

http://www.ncorr.com

	Acta Polytechnica CTU Proceedings 7:7–11, 2017
	1 Introduction
	2 Description of the methods
	2.1 Digital image correlation (DIC) and virtual fields method (VFM)
	2.2 Parallel network material model (PNMM)
	2.3 Finite element updating (FEU)

	3 Results and Discussion
	Acknowledgements
	References

