
doi:10.14311/APP.2015.1.0051
Acta Polytechnica CTU Proceedings 2:51–56, 2015 © Czech Technical University in Prague, 2015

available online at http://ojs.cvut.cz/ojs/index.php/app

A CASE FOR DOMAIN-INDEPENDENT DETERMINISTIC
MULTIAGENT PLANNING

Michal Štolba

Department of Computer Science, Faculty of Electrical Engineering, Czech Technical University in Prague,
Karlovo nám. 13, 121 35 Praha 2, Czech Republic
correspondence: stolba@agents.fel.cvut.cz

Abstract. The notion of planning using multiple agents has been around since the very beginning of
planning itself. It has been approached from various viewpoints especially in the multiagent systems
community. Recently, domain-independent multiagent planning has gained more attention also in the
automated planning community. In this paper, we shortly present the current state of the art, question
some aspects of the research field and discuss the rising challenges.

Keywords: planning, multi-agent planning.

1. Introduction
We could trace the first mention of multiagent plan-
ning back nearly as far as STRIPS itself – in 1980
Nillson published together with Konolige a paper ti-
tled “Multiple-Agent Planning Systems” [1], in which
they presented a high-level extension of STRIPS [2]
towards multiple agents. Since then, the topic has
been active mainly in the multiagent systems com-
munity. One of the most cited works on distributed
and multiagent planning is [3], which describes basics
of possible coordination schemes for planning agents.
There was also a large amount of work dealing with
another facets of the coordination area, but usually
without deeper study of the plan synthesis part (e.g.,
GPGP [4]) or requiring additional domain-specific
knowledge (e.g., TALPlanner [5]). Multiagent plan-
ning also often relates to planning models described by
Decentralized POMDPs (Dec-POMDPs) [6], similarly
as POMDPs are used in single agent planning under
uncertainty. The point of view on multiagent plan-
ning from the multiagent community is extensively
summarized in [7, 8].

In the planning community, extensions of the PDDL
language intended to support multiagent planning
were introduced as Multiagent Planning Language
(MAPL) in [9] and as Multiagent PDDL (MA-PDDL)
in [10], but none of the extensions gained wide popu-
larity, probably because of their complexity. In 2008,
a well accepted paper on multiagent planning was
published by Brafman and Domshlak at the ICAPS
conference [11], which finally ignited more interest in
the topic. The paper formally introduced a minimalis-
tic extension of STRIPS (thus forming MA-STRIPS)
and have shown that the complexity of multiagent
planning is not directly exponentially dependent on
the number of agents, but rather on the tree-width
of their interaction graph and a minimal number of
interactions needed to solve the problem. Such results
suggested that at least for loosely coupled problems
(where the tree-width is low), the approach may be

beneficial. In the following years, several multiagent
planners were proposed [12–19], either using directly
the MA-STRIPS formalism, or some ad-hoc, but very
similar one. Rather different approach was taken by
Crosby et al. in [20, 21], where the agent decomposi-
tion was based not on actions, but on a variables in
Finite Domain Representation, and was used in a cen-
tralized planner, significantly improving performance
over (single agent) SOTA mainly in well decompos-
able domains. A dedicated workshop Distributed and
Multiagent Planning (DMAP) also took place at the
ICAPS’13 and ICAPS’14 conferences.

2. MA-STRIPS
MA-STRIPS is the most commonly used formalism for
domain-independent deterministic cooperative mul-
tiagent planning. The domain independence means
that the input of the planner consists of description of
available operators, predicates, functions etc. describ-
ing the general mechanics of the world as well as the
particular instance of the world represented by ground
initial state and the particular problem represented
by the ground goal facts that need to be achieved.
Most commonly the input is described using PDDL
language, where the general part is termed “domain”
and is described in a domain file and the particular
initial and goal configurations are termed “problem”
and are described in a problem file. In the multiagent
setting, additional information is typically needed to
determine what are agents and which actions belong
to which agent (this is not part of the MA-STRIPS
formalism).
Deterministic in this case relates to the action

model, where each action has deterministic effects,
although the multiagent planning algorithm itself may
be non-deterministic in the sense that for the same
input it gives different output and runs for different
time - this is caused by the inherent nondeterminism
of communication and distributed computation.

51

http://dx.doi.org/10.14311/APP.2015.1.0051
http://ojs.cvut.cz/ojs/index.php/app

Michal Štolba Acta Polytechnica CTU Proceedings

By cooperative multiagent planning we understand
a setting where a group of agents is attempting to find
a joint plan, where each agent uses its own actions in
order to reach some joint (and possibly some private)
goals. The agents typically need to coordinate their
actions and to cooperate in order to do so, although
each agent is planning for itself and the agents may
have some private knowledge which they do not want
to reveal to other agents.

The MA-STRIPS formalism is very much the same
as the original STRIPS, except that the actions are
disjunctively split (or factored) among the agents,
resulting in the following definition of the multiagent
planning problem:

Definition 1. Multiagent planning problem is
a quadruple Π = 〈L,A, s0, Sg〉, where L is a set of
propositions, A is a set of agents α1, . . . , α|A|, s0 is an
initial state and Sg is a set of goal states. An agent α =
{a1, . . . , an} is represented by a set of actions it can
perform. A state s ⊆ L is a set of atoms from a finite
set of propositions L = {p1, . . . , pm} which hold in s.
An action is a tuple a = 〈pre(a), add(a), del(a)〉, where
a is a unique action label and pre(a), add(a), del(a) re-
spectively denote the sets of preconditions, add effects
and delete effects of a from L.

In the set of propositions L can further be identified
subsets of public propositions known to all agents
and α-internal (a.k.a. α-private) propositions known
only to a specific agent α. Such separation of the
propositions can be derived from the problem itself
(as proposed in [11]) , where a proposition is public
iff it is used by any two actions of different agents
and it is internal to the agent α (α-internal) iff it is
used only in actions of agent α. Alternatively, what
propositions are public or private can be a part of
the problem definition (used in [16, 17]). How the
actions are partitioned among agents is not a part
of the MA-STRIPS definition and is implementation
dependent, in most planners, the agents are defined as
objects in PDDL and an action is assigned to an agent
if the agent object is part of the grounded parameters
of the action.

Similarly to the separation of the propositions, the
actions of a single agent can be seen as either public
or internal. An action a ∈ α is internal iff it uses only
α-internal propositions in its preconditions and effects.
Otherwise, the action is public, which in fact means,
that the action interacts with some other agent, or
agents.

Following the STRIPS formalism, a solution for the
multiagent planning problem is a set of sequential
plans (sequence of actions, one plan for each agent),
where some of the actions of different agents may be
performed in parallel, although in most implementa-
tions the resulting plan is sequential (i.e. there are no
parallel actions). Formally, the solution is defined as
follows:

Definition 2. A solution to Multiagent plan-
ning problem

∏
is a multiagent plan P =〈

Pα1 , ..., Pα|A|

〉
, where each Pαi is a plan of agent αi,

i.e. consisting of a sequence of actions in αi ∪ {noop}.
A multiagent plan P is valid, iff

(1.) For each α, β ∈ A, |Pα| = |Pβ |. The noop actions
mean that the agent is idle in the respective time-
step.

(a) For each time-step tk where k ∈ 〈1, ..., |Pα|〉,
actions ai = Pαi [tk] for all i ∈ 〈1, ..., |A|〉are not
mutually exclusive.

(b) All actions in time-step t1 are applicable in
the initial state, for all time-steps tk where k ∈
〈2, ..., |Pα|〉, actions in tk are applicable in the
state resulting from time-step tk−1 and the state
resulting from time-step t|Pα| is in the set of goal
states Sg.

Since all the plans are required to have the same
length, the MA plan can be represented by a matrix,
where each row consists of a plan for single agent
and each column contains all actions in the respective
time-step.
It is clear that the MA-STRIPS formalism is very

simplistic and minimalistic extension and can be de-
veloped further to accommodate various aspects of
the multiagent systems (i.e., finer separation of public
and internal actions, as discussed for example in [22]).
The philosophy of the formalism is to provide the
smallest possible common ground and to enable the
easiest possible migration of the planning algorithm
to the multiagent setting.
Unlike in many multiagent systems, the MA-

STRIPS formalism assumes the agents to be fully
cooperative. From the multiagent perspective, this
may seem as an oversimplification, but similarly to
the simplicity of the MA-STRIPS, we argue to first
tackle the problems of the simplest possible multiagent
extension – cooperative agents – and then gradually
add complexities of the multiagent nature, such as
selfish agents, negotiation and such. Some attempts
have already been taken, for example in [23, 24].

3. Is It Any Good?
The first question that is asked after introduction of
some new or nonstandard paradigm is – what is it
good for? How does it help us? In this paper, we
would like to ask such questions and try to come up
with some answers. From the multiagent point of view,
we can see significant benefits of introducing domain-
independent planning into multiagent systems, namely
reuse of the wide spectrum of planning systems and
techniques from the area of classical planning. On
the other hand, the drawback of MA-STRIPS for
the multiagent setting is that it requires cooperation
among the agents. This can be mitigated in future by
means such as mechanism design, as shown in [24].

52

vol. 2/2015 A Case For Domain-Independent Deterministic Multiagent Planning

In the following section, we will present some of
the benefits we suggest that multiagent planning may
bring to the area of planning in general.

3.1. Improve Scalability by
Decomposition

Although being largely improved in recent years, scala-
bility is still an issue for domain-independent planning.
Multiagent planning can be seen as a method of fac-
torization of the planning problems, which has been
studied in works such as [25, 26]. It has been shown
that factorization of the planning problem can be ben-
eficial, especially in the problems, where it is possible
to find large independent parts – loosely coupled prob-
lems. Take for example the rovers domain with several
rovers. The problem may be factored in such a way
that the rovers do not need to coordinate, except for
the last bit, where they use shared communication
channel to communicate the result. In such a case,
most of the planning can be done independently (even
on different machines), however some coordination
is needed here (it is not possible to simply run sev-
eral classical planners in parallel). This is a case for
multiagent planning.
Given a single agent problem (e.g. from the IPC

benchmark set), it is not obvious what entities should
be considered as agents and how the factorization
should be done. In MA-STRIPS, the first question is
not answered, but the second one has some theoretical
background. Once the actions are assigned to agents,
the factorization is based on the interactions among
the agents’ actions, effectively meaning that it is based
on the causal graphs of the problem (as in [11]), the
factoring is one of the best known to date, as shown
in [25]. Still, how to best assign actions to agents is
an open question.

In the FMAP planner [17, 27] formalism, the actions
are assigned to agents by the domain designer, as is the
separation of private and shared information. This
gives the domain designer more freedom, but also
more responsibility in that making more information
public may increase the problem complexity (as the
tree width of interaction graph rises) and making less
information public may render the problem unsolvable
(i.e. global solution may not exist).

Completely different approach to factorization was
taken by Crosby in [20, 21], where the factorization is
automatic and based on the variables of a Finite Do-
main Representation (FDR) of the planning problem.
The method is, again, based on Causal Graph struc-
tures and tries to identify agents as sets of variables
which are somehow self-contained and represent the
agent’s internal state. Variables which do not form
an internal state of any agent are understood as envi-
ronment and thus public variables. Classification of
actions is rather more complex than in MA-STRIPS,
but can be summarized as follows. Actions, which
interact only with the agent variables are assigned to
the particular agent, other actions are left as public,

which means that they can be used by any agent. This
approach was not shown to increase scalability, but
was shown to increase solution efficiency, especially
in some domains. Note, that Crosby’s approach was
implemented as a centralized, single-thread planner.
Various kinds of factoring, and understanding

gained from the research of it, may be also used for
other aspects of classical planning, such as search state
pruning [28].

3.2. Multi-Core / Cluster Computing
Planning on multi-core machines gained wide popu-
larity and had a separate track at the IPC2011 com-
petition. It is definitely beneficial to be able to scale
the computation using multiple cores. But, if we want
to scale the computation even further and use mul-
tiple machines, we are no longer able to use shared
memory (as in parallel computation). In such case,
approaches of distributed computing utilizing message
passing need to take place, and multiagent planning
aspires to be one of them (although obviously not the
only one). In this scenario, multiagent planning rep-
resented by MA-STRIPS can be seen as an equivalent
for distributed planning with factorization fixed by
the partitioning of actions to particular agents. Such
approach has been successfully tested against SOTA
in multi-core planning in [14] as a parallel version
of MAD-A*, called MAP-A*. Again, the question
of best factorization arises here, with the Crosby’s
variable based factorization being another candidate,
however never tested in a distributed system.

3.3. Privacy
In multiagent systems, privacy of the data is often one
of the main concerns. In MA-STRIPS-based multia-
gent planning, this requirement is not one of the top
priorities – the privacy (or internality) of the propo-
sitions and actions is understood rather as a way of
improving effectiveness of the computation by reduc-
ing the complexity – but nonetheless if required by the
application, some degree of privacy of the data can be
achieved. In practice, it may be somewhat harder not
to reveal the structure of the private information and
it may also reduce usability of some techniques, such
as distributed heuristics, but it seems to be possible.
One such approach was described in [22], but without
implementation or experimental evaluation.

3.4. Asynchronous Computation
Distributed computation (and multiagent as well) is
inherently asynchronous and non-deterministic. This
brings several challenges and complexities that need
to be tackled, but once solved, some of the insights
may be beneficial to classical planning as well. As a
representative example, we can take the computation
of a global heuristic.

A heuristic in multiagent planning can be computed
locally, using only a projection of the planning problem
to the propositions of the respective agent. A public

53

Michal Štolba Acta Polytechnica CTU Proceedings

action a ∈ α can be projected to agent β by removing
all α-internal propositions from pre(a), add(a) and
del(a), thus retaining only public propositions (and
technically also β-internal propositions, but actions of
agent α contain none). Such heuristics were used for
example in [14]. A different approach is to attempt to
compute a global heuristic estimate without exposing
the internal information to other agents. This can be
achieved for example by requesting other agents for
their estimates of the current state and the goal, or
some sub-goals, as in [29, 30].

Such global heuristic computation may involve non-
trivial communication, resulting in an asynchronous
computation of the heuristic estimate. To our knowl-
edge, such a phenomenon has not been studied yet.
It seems to be interesting also from the point of view
of classical planning, because if successfully utilized,
asynchronous computation of heuristics may be used
to evaluate computationally intensive heuristics, to
use external solvers for heuristic estimation, sensory
input (in robotics), etc. Also it is interesting to ob-
serve that the global heuristic is always equally or
more informative than the projected heuristic, thus
we have two heuristics, the first one is less informa-
tive, gives lower estimates, but is faster, the second
one is more informative, gives higher estimates, but
takes significantly longer to compute. If generalized, a
sequence of gradually more precise, but costlier heuris-
tics could be used to guide search (including blind
search as the fastest one), which is an interesting re-
search topic. Also, as the costly distributed heuristic
is computed partly by other agents, the time while
waiting for the results may be used to do some more
computation such as exploration using only the local
heuristic.

3.5. Applications
MA-STRIPS planning may bring domain indepen-
dent planning to some (more or less) new application
domains. As such we see the following:
• Multi-robotics: Slowly but steadily, domain-
independent planning is penetrating the robotic
research, providing the robots with high-level rea-
soning. On the other hand, robotic research is being
extended towards multi-robotic teams. Multiagent
planning seems to bridge those two advancements
and in the future may enable multi-robotic teams
to be controlled by a high-level distributed planning
system. In such scenarios, each robot would have
its own planning representation of the world, thus
reducing the domain and problem size and keeping
the local information (i.e., sensory data) local. Com-
munication will clearly be an issue, which may en-
courage research of multiagent planning techniques
aiming not primarily on planning speed, but on the
communication requirements (this may for example
discourage the use of global heuristic estimates).

• Orchestration of Internet services: Since In-
ternet services are computer programs already de-

scribed in (formal) programming languages their co-
ordination and orchestration can straightforwardly
profit from multiagent planning techniques. More-
over services are usually described by interfaces
resembling planning actions with preconditions on
the input data and effect on the data. Therefore
if such actions have to be ordered in a suitable
fashion, beginning with initial constraints on the
data and with a goal form of the data, planning is
an appropriate fit. Additionally, the services can
be distributed over the Internet and the data pro-
cessing tasks can vary in the sense of particular
areas of focus (e.g., financial processing, logistics
services, etc.). Both of these challenges are covered
by the domain-independent multiagent planning. A
single agent planning applications of this kind were
already covered for example in [31].

• Coalition planning: In recent years, many mil-
itary operations involve coalitions. Coalition op-
erations are in nature cooperative, but some in-
formation cannot be disclosed among the coalition
partners. This can be generally modeled by mul-
tiagent systems and in particular by multiagent
planning. Such a scenario is not applicable only in
military, but may find uses also in business cooper-
ation and other areas, although some more detailed
privaci concerns may be necessary as illustrated in
[22].

4. Challenges
In the following, we will present some of the out-
standing challenges of domain-independent multiagent
planning we are aware of.

4.1. Comparison of Planners
Up to the present day, we know of about a half dozen
domain-independent multiagent planners [12–17] and
more are in the development. The biggest issue in
order to compare them is that although the underlying
formalisms are mostly similar, the actual language
used as input differs (it is PDDL with some ad-hoc
definition of agents and/or public propositions). Some
consensus on this matter needs to be settled.
Similarly to the common definition language, a

widely accepted set of benchmarks is needed. In the re-
cent works, the benchmarks were typically created by
ad-hoc converting some suitable IPC domains, where
the agent decomposition is natural, such as logistics or
rovers. Only few new – multiagent specific – domains
were introduced, i.e., cooperative pathfinding. In the
future, it would be interesting to come up with more
such domains, drawing from real world and multiagent
systems applications and also designed to test some
specific properties and pitfalls of multiagent planning.
Naturally, the best venue for such efforts would be a
dedicated IPC track.
The metrics used for planner comparison are also

challenging. All metrics used to compare classical

54

vol. 2/2015 A Case For Domain-Independent Deterministic Multiagent Planning

planners still apply, but there are some additional
ones, such as number of exchanged messages or the
amount of communicated data. Further metrics can
be adopted from the research of other multiagent
algorithms.
Moreover, the comparison of multiagent planners

gains a new complexity in that a single problem can
be partitioned in multiple ways, and each partitioning
may be beneficial for different planners. Similarly, the
amount of agent interaction significantly influences
performance of the planners - some algorithms may
be better suited for loosely coupled problems while
other for tightly coupled problems. This should be
also reflected in the potential analysis.

4.2. Which Planning Paradigm Is the
Best?

In classical sequential domain-independent planning,
the dominating planning paradigm seems to be heuris-
tic forward-chaining search typically utilizing one or
more highly informative heuristic estimators (used by
planners as FastForward, FastDownward, LAMA and
many more), although some other approaches (such
as bidirectional search) has performed well in the last
IPC competition. It is not clear, whether the same
holds for multiagent planning (and for all metrics).
Again, the only way to reliably answer this question
is to perform a rigorous comparison of the planners,
such as in the IPC competition.
Currently the most frequent approaches to mul-

tiagent planning are distributed heuristic search
[14, 29, 30], partial order planning [16, 17], and vari-
ous other, such as plan reuse [12] or generate-and-test
[18, 19].

4.3. Heuristics
One interesting area of research are the heuristic esti-
mator for multiagent planning. As mentioned in the
section about asynchronous computation, the base-
line solution for heuristic computation is to use a
projection of the problem to the particular agent’s
propositions. This approach was used in [13, 14]. An-
other approach is to attempt to compute (or at least
approximate) the global value as if the problem was
not partitioned in order to obtain better heuristic guid-
ance. To our knowledge, the only heuristics treated
this way so far were the FF heuristic in [29] and [30]
and a Domain Transition Graph based heuristic in [17].
Of course, in some cases, the communication needed
to compute a global heuristic may be prohibitive, in
such a situation, the local heuristic would have to
suffice, or a clever combination of both would need to
be devised.
Different challenge is to come up with a heuristic

specific to the multiagent planning. Such heuristic
may not only lead the search towards the goal, but
may also lead the search in a way minimizing some
multiagent metric, such as the communication load.

4.4. Privacy
Multiagent planning can be seen also from the per-
spective of privacy-preserving distributed computing,
although it is not the main concern of most of the
MA-STRIPS based planners. This perspective raises
many questions, some of them were already addressed
in [22, 32], but a comprehensive analysis of possible
privacy violations in MA-STRIPS and MA-STRIPS
based planning algorithms has not been yet presented.
Even the question if a MA-STRIPS based multia-
gent planner can be privacy preserving (and if so how
strongly) is yet to be answered.

4.5. Extending Complexity Analysis
From the theoretical perspective, the original [11]’s
complexity results can give a solid groundwork for
future and more detailed studies of complexity of mul-
tiagent planning. We envision two main directions:
(i) problem-specific and (ii) finer complexity classes.
The problem-specific study could be inspired by works
as [33], where particular planning domains are ana-
lyzed from perspective of computational complexity
showing which problems are easy, even if planning in
general is known to be computationally hard. The
idea of study of finer complexity classes, is for example
parametrized analysis of classical planning by [34]. Ad-
ditionally, these studies can be extended by communi-
cation complexity showing how much communication
would be required to solve the problems.

5. Final Remarks
Domain independent planning is a field of research
bridging two distinct topics of multiagent systems and
domain independent planning. We see providing a
common problem definition language and set of bench-
marks in order to be able to determine the state of the
art and compare it with newly emerging techniques as
one of the important steps to advance the field. We
see such a hybrid field to be potentially beneficial to
both research communities.

Acknowledgments
This research was supported by the Czech Science
Foundation (13-22125S).

References
[1] K. Konolige, N. J. Nilsson. Multiple-agent planning
systems. In AAAI, vol. 80, pp. 138–142. 1980.

[2] R. Fikes, N. Nilsson. STRIPS: A new approach to the
application of theorem proving to problem solving. In
Proc. of the 2nd International Joint Conference on
Artificial Intelligence, pp. 608–620. 1971.

[3] E. H. Durfee. Distributed problem solving and planning.
In G. Weiß (ed.), A Modern Approach to Distributed
Artificial Intelligence, chap. 3. The MIT Press, San
Francisco, CA, 1999. doi:10.1007/3-540-47745-4_6.

[4] K. Decker, V. Lesser. Generalizing the partial global
planning algorithm. International Journal on Intelligent
Cooperative Information Systems 1(2):319–346, 1992.
doi:10.1142/S0218215792000222.

55

http://dx.doi.org/10.1007/3-540-47745-4_6
http://dx.doi.org/10.1142/S0218215792000222

Michal Štolba Acta Polytechnica CTU Proceedings

[5] P. Doherty, J. Kvarnström. TALplanner: A temporal
logic-based planner. AI Magazine 22(3):95–102, 2001.
doi:10.1609/aimag.v22i3.1581.

[6] R. Becker, S. Zilberstein, V. Lesser, C. V. Goldman.
Solving transition independent decentralized Markov
decision processes. Journal of Artificial Intelligence
Research 22:423–455, 2004. doi:10.1613/jair.1497.

[7] M. De Weerdt, A. Ter Mors, C. Witteveen. Multi-agent
planning: An introduction to planning and coordination.
In Handouts of the European Agent Summer. 2005.

[8] M. de Weerdt, B. Clement. Introduction to planning
in multiagent systems. Multiagent and Grid Systems
5(4):345–355, 2009. doi:10.3233/MGS-2009-0133.

[9] M. Brenner. A multiagent planning language. Workshop
on PDDL, ICAPS’03, Trento, Italy, 2003 p. 33, 2003.

[10] D. L. Kovacs. A multi-agent extension of PDDL3.1.
In Proc. of the 3rd Workshop on the International
Planning Competition (IPC), pp. 19–27. 2012.

[11] R. I. Brafman, C. Domshlak. From one to many:
Planning for loosely coupled multi-agent systems. In
ICAPS, pp. 28–35. 2008.

[12] D. Borrajo. Plan sharing for multi-agent planning. In
Proc. of DMAP Workshop of ICAPS’13, pp. 57–65. 2013.

[13] R. Nissim, R. I. Brafman, C. Domshlak. A general,
fully distributed multi-agent planning algorithm. In
Proc. of AAMAS’10, pp. 1323–1330. 2010.
doi:10.1145/1838206.1838379.

[14] R. Nissim, R. I. Brafman. Multi-agent A* for parallel
and distributed systems. In Proc. of AAMAS’12,
AAMAS ’12, pp. 1265–1266. Richland, SC, 2012.

[15] D. Pellier. Distributed planning through graph
merging. In ICAART (2), pp. 128–134. 2010.
doi:10.5220/0002702601280134.

[16] A. Torreño, E. Onaindia, O. Sapena. An approach to
multi-agent planning with incomplete information. In
Proc. of ECAI, pp. 762–767. 2012.
doi:10.3233/978-1-61499-098-7-762.

[17] A. Torreño, E. Onaindia, O. Sapena. Fmap: a heuristic
approach to cooperative multi-agent planning. In Proc.
of DMAP Workshop of ICAPS’13, pp. 84–92. 2013.

[18] J. Tožička, J. Jakubuv, K. Durkota, A. Komenda.
Multiagent planning by iterative negotiation over
distributed planning graphs. In Proc. of DMAP
Workshop of ICAPS’14, pp. 7–15. 2014.

[19] J. Tožička, J. Jakubuv, K. Durkota, et al. Multiagent
planning supported by plan diversity metrics and
landmark actions. In Proc. of ICAART’14. 2014.
doi:10.5220/0004918701780189.

[20] M. Crosby, M. Rovatsos, R. Petrick. Automated
agent decomposition for classical planning. In Proc. of
ICAPS’13. 2013.

[21] M. Crosby. Multiagent Classical Planning. Ph.D.
thesis, PhD Thesis, University of Edinburgh, 2014.

[22] A. Bonisoli, A. Gerevini, A. Saetti, I. Serina. A
privacy-preserving model for the multi-agent
propositional planning problem. In Proc. of DMAP
Workshop of ICAPS’14, pp. 25–29. 2014.

[23] M. Crosby, M. Rovatsos. Heuristic multiagent
planning with self-interested agents. In The 10th
International Conference on Autonomous Agents and
Multiagent Systems-Volume 3, pp. 1213–1214.
International Foundation for Autonomous Agents and
Multiagent Systems, 2011.

[24] R. Nissim, R. I. Brafman. Cost-optimal planning by
self-interested agents. In Proc. of DMAP Workshop of
ICAPS’13, pp. 1–7. 2013.

[25] R. I. Brafman. Factored planning: How, when, and
when not. In Proceedings of the 21st National Conference
on Artificial Intelligence (AAAI-2006, pp. 809–814. 2006.

[26] E. Fabre, L. Jezequel, P. Haslum, S. Thiébaux.
Cost-optimal factored planning: Promises and pitfalls.
In ICAPS, pp. 65–72. 2010.

[27] A. Torreno, E. Onaindia, O. Sapena. FMAP:
Distributed cooperative multi-agent planning. Applied
Intelligence 2014. doi:10.1007/s10489-014-0540-2.

[28] R. Nissim, U. Apsel, R. I. Brafman. Tunneling and
decomposition-based state reduction for optimal
planning. In ECAI, pp. 624–629. 2012.
doi:10.3233/978-1-61499-098-7-624.

[29] M. Štolba, A. Komenda. Fast-forward heuristic for
multiagent planning. In Proc. of DMAP Workshop of
ICAPS’13, pp. 75–83. 2013.

[30] M. Stolba, A. Komenda. Relaxation heuristics for
multiagent planning. In Proc. of ICAPS’14, pp. 7–15.
2014.

[31] B. Srivastava, J. Koehler. Web service composition -
current solutions and open problems. In ICAPS 2003
Workshop on Planning for Web Services, pp. 28–35. 2003.

[32] R. Nissim, R. Brafman. Distributed heuristic forward
search for multi-agent systems. CoRR/arXiv 2013.

[33] M. Helmert. New complexity results for classical
planning benchmarks. In ICAPS, pp. 52–62. 2006.

[34] C. Bäckström, Y. Chen, P. Jonsson, et al. The
complexity of planning revisited - a parameterized
analysis. In AAAI. 2012.

56

http://dx.doi.org/10.1609/aimag.v22i3.1581
http://dx.doi.org/10.1613/jair.1497
http://dx.doi.org/10.3233/MGS-2009-0133
http://dx.doi.org/10.1145/1838206.1838379
http://dx.doi.org/10.5220/0002702601280134
http://dx.doi.org/10.3233/978-1-61499-098-7-762
http://dx.doi.org/10.5220/0004918701780189
http://dx.doi.org/10.1007/s10489-014-0540-2
http://dx.doi.org/10.3233/978-1-61499-098-7-624

	Acta Polytechnica CTU Proceedings 2:51–56, 2015
	1 Introduction
	2 MA-STRIPS
	3 Is It Any Good?
	3.1 Improve Scalability by Decomposition
	3.2 Multi-Core / Cluster Computing
	3.3 Privacy
	3.4 Asynchronous Computation
	3.5 Applications

	4 Challenges
	4.1 Comparison of Planners
	4.2 Which Planning Paradigm Is the Best?
	4.3 Heuristics
	4.4 Privacy
	4.5 Extending Complexity Analysis

	5 Final Remarks
	References

