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Abstract. The aim of this paper is to provide a brief overview of vector map techniques used in mobile
robotics and to present current state of the research in this field at the Brno University of Technology.
Vector maps are described as a part of the simultaneous localization and mapping (SLAM) problem
in the environment without artificial landmarks or global navigation system. The paper describes
algorithms from data acquisition to map building but particular emphasis is put on segmentation, line
extraction and scan matching algorithms. All significant algorithms are illustrated with experimental
results.
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1. Introduction
Mapping in robotics is a subject of research for a num-
ber of years and large progress was already achieved.
Paper [1] describes theoretical way, how to build and
update a consistent map, which converges to a precise
image of the real environment (at certain level of de-
tail). Through the years, more improvements and new
algorithms were invented for this task, good tutorial
papers are for example [2] [3], or the book [4]. For-
mulation and mathematical description of the SLAM
problem is unified and generally accepted today, but
a complete solution for 3D dynamic environment is
still not known and SLAM as a whole is still under
active research.

The most of today’s work in the field is concentrated
on two main bottlenecks of known algorithms:

(1.) Computational optimization. Every map contains
some data describing the real environment. Com-
putational efficiency is usually evaluated in big O
notation with respect to n, reflecting the number
of cells in an evidence-grid map, the number of
landmarks in a geometric map, etc. Non-optimized
solutions have O(n2) or even exponential complex-
ity, but several algorithms are more efficient, for
example FastSLAM [5] with O(m log(n)) complex-
ity (where n is the number of landmarks and m
the number of particles in the Rao-Blackwellized fil-
ter). This algorithm can handle orders of magnitude
more landmarks than O(n2) solutions. Computa-
tional efficiency is a key to large maps with a lot of
details.

(2.) Feature recognition and matching. Robust and
reliable feature (landmark) extracting and match-
ing is crucial for most of SLAM algorithms. New
data has to be associated with older measurements
precisely, or at least with negligible number of mis-
matches. Feature extraction is needed when camera
or laser scanner is used to provide information about
the robot surroundings. For example corners and

T-junctions are usually searched in input data and
then the whole pattern is correlated with an al-
ready known map. Several complications may arise,
because the same feature may look different from
different points of view and data registration in
its straightforward implementation is exponentially
complex task.

Data structure of a map is closely related to both
of these problems. Operations executed on the map
have to be as fast as possible - especially updates with
the new information and feature search/comparison
are crucial. Representation of obstacles, free space
and unexplored areas effects feature recognition ro-
bustness. Another attribute of a map is its ability
to approximate the real environment. Importance of
this attribute depends on further usage of the map.
If the robot is meant to explore unknown area and
provide information about it, requirements will be
probably higher than in case of a robot, which just
needs to avoid obstacles and memorize a short history
of its path.

There are more possible ways to represent a robotic
map. One of the most common is robot evidence grid,
which parcels continuous world into a set of squares
(cubes in 3D). Size of a square is optional and may
be even adaptive to better fit the reality, but this
style of approximation of smooth world is still rather
crude, because straight edges which are not co-linear
with grid lines are jagged regardless of grid resolution.
Evidence grids are widely used and well established in
many applications, where this downside is negligible.
Visually better results are achieved with vector maps,
where edges are represented with line segments. Good
example of classical vector based mapping system is
VecSLAM described in [6]. The aim of authors work is
to create a system for high quality mapping, therefore
vector maps were chosen as a good approximation of
the real world.
Map representation is only one part of the prob-

lem. Robot exploring unknown environment needs
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to update its map with new information. Data are
usually obtained from rangefinder sensors such as laser
scanners and sonars in the form of a point cloud and
need to be incorporated in the current map. Probably
the most used technique for point cloud registration is
Iterative Closest Point (ICP). Good description and
historical survey of this method is available in [7].
Efficient variants of this method were published in
[8]. Furthermore, it is possible to use ICP for regis-
tration of more complex formations, such as surfaces
of scanned objects. This approach is described in [9]
and [10].
There are several alternatives to ICP, which are

trying to generalize the notion of “closeness” or “simi-
larity” from points to lines, triangles etc. Similarity of
points is usually measured as their Euclidean distance.
An edge is often described as a segment of a line.
Having two such segments, we can define an area
they demarcate and use it as a measure of similar-
ity. This definition is not unified and it is possible to
find several different approaches, for example sum of
squared distances from point in a scan to the near-
est edge in the map [11], penalizing function of “non
collinearity” and spatial distance [12], or a criterion
based on newly introduced matrix scalar product [13].
Another interesting approach is critical ray method
proposed in [14], which does not use line similarity at
all. Diversity of these approaches is high and none of
them is considered to be remarkably better than the
others, therefore the author have decided to develop
his own method and test new ideas, because this field
of research is definitely not fully explored.
Reducing point cloud to a set of line segments (in

2D) or triangles (in 3D) has very useful properties.
At first, information from hundreds or thousands of
points is expressed with (at most) tens of objects.
Data reduced in count are processed faster and there-
fore more complex algorithms may be used. On the
other hand, mathematics becomes more complicated,
because lines and faces have more degrees of freedom
and constraints than points and as written above,
similarity is not as easy to enumerate.

The process of line extraction has generalizing abil-
ity. After interpolation by line segments (or trian-
gles), corners become sharper and noise is suppressed,
which results in better looking (more corresponding to
the real world) map. In addition (depending on line
extraction algorithm) edges might be estimated with
higher accuracy than single point due to averaging
effect.

There is no restriction on using N − 1 dimensional
objects in N dimensional space. A generalization of
ICP for lines in 3D space is described in [15]. Paper
[16] describes whole set of algorithms for matching
sets of lines in 3D and many others are possible to
find.
For even better approximation of the real world,

curves and curved planes could be used. These are
more complicated for computation and not too much

papers are related to this topic. An example of such
approach is a method [17] based on graph theory.

2. Point Cloud Processing System
The overall diagram of the measurement and map-
ping process is depicted in Fig. 1. Every time
a measurement is acquired, the whole process is
run through. Each rectangular box in the diagram
means one algorithm performing operation on its input
data. The whole process leads to update of the map
the robot creates and the pose of the robot itself.
SLAM itself is implemented in a very elementary way
and no attempts to build converging map were made
yet. The main objective in current state of develop-
ment is to test data processing, edge extraction and
scan registration algorithms.

Laser scanner used to obtain all data in this chapter
is Velodyne 32 HDL, which provides approximately
two thousand points (per turn) in polar coordinates
for each of its thirty two lasers. Only horizontal set
of measurements was taken into account for 2D map.

At the beginning, all data from sensors need to be
converted into the data format useful for following
algorithms. This step also ensures usability of the sys-
tem for any instrumentation with suitable properties.
A disadvantage of this process is a certain enlargement
of data size, because laser scanners and other sensors
usually use some sort of data compression to minimize
data flow. In case of Velodyne 32 HDL this means
conversion from 16-bit integer to 32-bit floating point
number.
To speed up corresponding edge selection, crude

pose estimation is useful. It enables to specify part
of the map, where the robot most probably is, and
therefore, the search space of correspondences is re-
duced a lot. As is well known in robotics community,
techniques such as inertial sensors or odometry cause
integration of error of pose estimation. This makes
them useless after a certain amount of time. In the pre-
sented algorithm, these are only used for measurement
of relative pose change between two following scans.
This ensures that the estimated pose error is always
in a known limit. To get an absolute pose, this estima-
tion is added to the last known pose, determined in
the previous iteration of the data processing (dashed
arrow leading to “Pose estimation” block in Fig. 1).

2.1. Filtering and Clustering
Treatment of raw point cloud is a more complex task.
At first it is necessary to filter out noise and outliers
and to find dense clusters of points defining edges of
solid objects in the environment. Raw data from one
set of measurements are shown in Fig. 2a. It is clear
that scans are full of irrelevant points and odometry
was not very accurate.

Some noise is always present. Laser scanner mea-
sures distance with certain precision, which is stated
in the datasheet. The other sake of noise is too dis-
sected environment, where individual faces of objects
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Figure 1. Overall scheme of point cloud processing system from data acquisition to map and pose update.

are so small that rangefinder cannot scan them prop-
erly. A good examples are treetops and bushes. Noisy
parts of point cloud are best to treat as a solid body
with defined borders and density. Other possibility is
to filter them out, which causes loss of information,
but on the other hand, with a careful filtering, it is
possible to “see” through low density objects (e.g., see
wall behind a bush).

Outliers in point cloud are usually caused by scan-
ning too distant or too close objects, which are out of
the range of the particular laser scanner. These are
easy to identify and can be removed without serious
impact on the quality of a scan. More interesting to
deal with are outliers originating from a reflection.
In a common environment, there can always be ob-
jects, which are able to reflect laser beam and corrupt
the measurement. If the reflecting object is small
and curved, few beams, which hit it, are scattered
wide apart and appear as randomly distributed sin-
gle points in a point cloud. These are generally easy
to remove. Another case are large, flat objects such
as mirrors and windows, which uniformly reflect a
large amount of rangefinder beams. This effect causes
phantom objects to appear in the scan and there is
probably no way to detect this without additional
sensors or a set of scans from different positions.

Clustering is used to remove all unnecessary points
from a scan and to determine dense clusters of points,
which could potentially form an edge of a real object.
An algorithm used to get result depicted in Fig. 2b is

as follows: From the laser scanner we get data sorted
by an angle. Algorithm proceeds from one point to
another and checks if k previous points are closer or
farther, than a certain distance. Three alternatives
may occur. A point might be too far away from all
of the previous ones. This leads to establishment of
a new cluster. If the working point is close enough
to some previous points and all these points belong
to the same cluster, the working point is added to
it. Third case arises, when the working point can
belong to more than one cluster. In such a situation,
all those clusters and the working point are joined
together. In the end, clusters with the size under a cer-
tain threshold are called outliers and are removed from
the scan. From a practical point of view, it is wise to
make the distance comparison threshold adaptive, be-
cause the farther the detected obstacle is, the sparser
the measured points are. Scaling the threshold lin-
early with the distance between the working point
and the robots position is a good strategy.

The proposed algorithm safely removes noise from
too dissected objects as well as random outliers, be-
cause these create large number of very small clusters
(typically less than ten points), which are removed in
the final stage of the process. Phantom objects are
not recognized. Noise caused by laser scanner itself
removes the following algorithm for line extraction.

This theme is directly related to line simplification
algorithms (because points in a scan are sorted) and
both of these are discussed in a lot of fields of re-
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(a) . Raw data. (b) . Segmentation. (c) . Line extraction. (d) . Complete map.

Figure 2. a) Depiction of all measured point clouds (yellow) with estimated robot path (green). No scan fitting or
other postprocessing is used, image corresponds to raw data from sensors. b) Segmentation of one scan is shown on
this figure. Each color means a cluster, which is believed to be continuous edge in reality and which is separate from
the others. Noise and outliers are filtered out and not displayed. c) Line extraction in segmented point cloud (black).
Each cluster is approximated by a line or a poly-line (red). d) A map composed using the line similarity criterion.
Red edges are long enough to participate in scan fitting process, blue edges are shorter and just add details to the
map. Green trajectory is acquired from odometry and dark blue one is an estimation of true trajectory.

search. In addition to robotics, similar approaches
can be found in cartography, computer vision and
computer graphics. Plenty of algorithms were devel-
oped during last decades, having different properties,
such as speed, memory requirements and quality of
approximation. Good survey comparing line extrac-
tion/simplification algorithms in robotics is [18]. Re-
sults of this paper clearly show that algorithms such
as RANSAC or Hough transform are not fast enough
for online processing of point clouds.
Good performance was observed when using split-

merge, incremental and line regression algorithms.
Split-merge (also known as Douglas-Peucker algorithm
[19]) was the fastest one and belongs to wide family
of O(n) and O(n log(n)) complex algorithms used
in cartography [20]. Main drawback of these algo-
rithms is that they are based on point elimination,
and therefore, a lot of information is discarded.
The edge extraction algorithm from the diagram

in Fig. 1 is based on line regression and works as
follows: It passes through the cluster and computes
the least square approximation and the variance of
selected set of points. If the variance gets over pre-
defined limit, the line is saved, and algorithm pro-
ceeds computing new line. The last line terminates
at the end of the cluster. This approach is advanta-
geous, because all points contributes to the result and
contained information is better utilized. Although
loss of information was overcome by the least squares
approximation, the algorithm is still not optimal in
terms of “best fit poly-line”. All but the last line have
maximal permitted variance, which means, that for
too high threshold lines go over corners and an approx-
imation is worse, than it could be. More technically,

the total sum of squared distances from each point to
its regression line is higher, than is achievable with
given number of lines. Fine tuning of the threshold is
therefore necessary. Complexity of the algorithm is
O(n). Result of line extraction is depicted in Fig. 2c.

2.2. Scan Fitting
When updating a map with a new scan, corresponding
edges must be selected at first. It is responsibility of
an operator or a path planing algorithm to obtain new
scans frequently enough to ensure overlap of a new
scan and the map. This means the robot always has
to see part of the already known environment (except
the first scan of course). Acquiring more scans from
one location leads to a more precise map (averaging
effect).
Scan fitting is the point, where crude pose esti-

mation comes in useful, because searching through
the whole map would be very computationally ex-
pensive. Knowing approximate pose and its maximal
error allows us to considerably reduce search space and
keep computational complexity constant, independent
on the size of the whole map (assuming the number
of visible details is comparable across the map). If
the robot is suddenly moved far away from its previ-
ous location, it becomes lost and the algorithm is not
capable of working correctly anymore.
Only long enough edges are used for the process,

because the shorter ones are not determined with
a sufficient precision. The maximal angular error of
the pose estimation is directly used as the maximal
angle between possibly similar edges. If the angle is
inside a tolerance, shortest distances of end points of
first edge to the second edge are computed. If at least
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one is shorter than maximal permitted shift between
two scans, edges are overlapping each other and can
belong to one real edge.
There are three possible situations after this step.

For some edges from the new scan, there is no similar
one in the map. These probably belong to an area
which was not explored yet, or where only short edges
were determined. New edges do not contribute to scan
fitting process. The second group of new edges has one
similar match in the map and these are directly used
for scan matching. In the last group, there are edges
with more than one possible match. At this situation,
it is hard to say, which possible pair is the best one, or
if more edges should be connected together. Current
practice is to remove edges already used in the second
group and from the rest to select the closest one (in
the sense of overlapping). In rare cases, the edges
corresponding in real world are not the closest ones.
This leads to mismatch and can even corrupt the map,
but in most cases, correctly matched edges prevail
and the mismatch is unnoticeable.
At this point, pairs of corresponding edges from

the new scan and the map are known and the actual
fitting may take place. As well as in the previous
step, the line similarity criterion will be used, but now
with slightly different properties. An idea, that lines
are more similar as the angle they form is smaller
is still true, but overlapping criterion used before is
not advantageous. Instead, as already mentioned in
the introduction, an area defined by both edges is
used. The main idea of the criterion is depicted in
Fig. 3.
Let two edges be defined by lines p and q with

the end points AB and CD. At first, an axis of angle
formed by these edges is found. Then, for all end
points, their perpendicular projections (with respect
to the axis o) on an opposite line are found. Two
end points and their projections form a quadrangle
as shown in Fig. 3 for points AB (both cases). There
are six possible quadrangles and the largest one has
to be used for the criterion enumeration. The square
of that area is used as a similarity metric.
The function for the similarity enumeration is not

strictly convex, therefore for one pair of edges, there is
not a single minimum defining one pose in which both
edges are the most similar. Instead, there is an infinite
number of possible poses, in which the criterion is
zero. This property is clear from the geometrical
visualization of collinear edges sliding over each other
and corresponds to the problem of localization in
a long corridor. If a robot “sees” only collinear walls, it
is not able to determine the displacement along an axis
of the corridor - one degree of freedom cannot be
estimated from available data. For an exact solution,
at least two skew pairs of edges must be used.
Fitting itself is an iterative process, because no

closed form solution was found so far. A new scan is
transformed using the standard homogeneous trans-
formation. The goal is to find such translation and

(a) . No intersection.

(b) . With intersection.

Figure 3. Line segments similarity criterion. The
smaller is the gray area, the more similar are both line
segments.

rotation, so that the sum of the squared areas of all
edge pairs is the smallest possible. Nelder-Mead sim-
plex method was used to find the global minimum.
For longer edges, the area they demarcate is large even
if an angle they form is relatively small. This means,
that longer edges have greater impact on scan fitting,
which is correct, because long edges are determined by
more points, and therefore, be more precisely known.

2.3. Map Building
After the fitting process is finished, a new scan is
transformed using the found parameters and edge
pairs are joined to form a new set of edges in updated
map. The same transformation, which was used to
update the map, is applied on the path estimate to
correct the odometry error. Assuming static environ-
ment, the information about pose gotten from scan
fitting is absolute, and therefore, an error should not
have integrative characteristics, however, this is ideal
state which requires a precise map corresponding to
the environment.
The main problem of map building process in cur-

rent state of development is that the map does not
converge. Scans are incrementally fitted to the map,
but new measurement influences only the part of
the map, which is currently visible and new infor-
mation is not propagated through the whole map to
assure convergence. In other words, change in length
of one edge should affect all connected edges (includ-
ing those which are not actually seen), but current
implementation is not able to handle this. Integrative
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Figure 4. A larger map composed using the pre-
sented processing system. Edges are colored in the
same way as in Fig. 2d. Gray trajectory is acquired
from odometry and dark blue one is an estimation of
the true trajectory.

characteristics of error of pose and map is therefore
not suppressed. On the other hand, using edges and
line similarity criterion for scan fitting is very accurate
and divergence process is much slower.

Results of this step are maps in Fig. 2d and Fig. 4.
In comparison with a naive scan merging in Fig. 2a,
new maps are much more usable for navigation as well
as environment documentation. Further processing
for even better results can follow at this point, one
example of possible operations is additional merging
of shorter edges (blue edges in Fig. 2d and Fig. 4) to
form a cleaner map.

2.4. Experimental Results
Practical testing was made in office and laboratory
environment. Algorithms based on edge detection
are well suited for such application, because artificial
objects are usually simply shaped with a lot of flat
surfaces. On the contrary, a natural environment is
much more complicated with lot of details and lack of
flat surfaces, therefore effective line extraction would
be very complicated or even impossible.

The robot used for testing was Orpheus X3, which
is four-wheeled vehicle with differential steering. Laser
scanner used was Velodyne 32 HDL. During the ex-
periments, the robot was manually operated and all
measurements were taken, when the robot was not
moving.
The first experiment used for demonstration of

the processing pipeline is depicted in Fig. 2a to Fig. 2d.
Ten measurements 60 centimeters apart were taken.
The odometry error was intentionally increased to
demonstrate correction ability of scan fitting algo-
rithm. Outliers and noise filtration was also proved
to be working, for example small cloud of points on
top of Fig. 2a was correctly removed.

The second experiment was made in a larger scale on
a corridor and resulting map is shown in Fig. 4. Robot
moved from starting position to the end of the corridor
and then returned back. Total length of the traveled
path was 46.710 meters and 33 measurements were
taken along the way. The difference between the real
and the estimated position of the last point of tra-
jectory was only 6 mm, which is even less than the
precision of used laser scanner (20 mm). The exper-
iment was held only once, therefore repeatability is
not yet determined.

Fairly good results are caused by two main factors.
At first, the line extraction algorithm with the least
squares approximation is capable of reducing noise
through averaging and provide more accurate edge po-
sitions than single points in a point cloud. The second
reason is that the robot moves in one room and always
sees edges from the first scan, therefore an error of
map and pose is not integrating. If the robot would
move along a path with a lot of turns and after some
time would not see its starting location, this problem
would start to manifest. However, these experiments
were made to proof the concept of scan fitting via
edge similarity criterion and SLAM itself is not yet at
the center of the research.

3. Conclusion and Future Work
The paper presents the set of algorithms used to pro-
cess data from laser scanner and build a vector based
map. The whole scheme of the process is depicted in
Fig. 1. Most algorithms used are new and still under
testing, but findings stated in literature (e.g., [10],
[12], [16]) were proved to be true, because scan match-
ing based on edge detection yields quality results and
definitely can be used for solving SLAM problem. At
least, considering results in Fig. 2d and Fig. 4, current
state of the research is very promising.

The main task for the nearest future is development
of good representation of the topological-metric map,
to enable a real SLAM to be implemented. Topologi-
cal information is necessary for visible (or just close)
edges finding algorithm and for path planning. Metric
information is crucial for mapping itself, scan match-
ing, and path planning. Term “good representation”
means such data structure, that would be efficient for
search and computing algorithms. Nearest neighbor
of polygon search or finding an edge in area with cer-
tain coordinates are only a few examples of problems
which are necessary to be efficient in a good mapping
algorithm.

The second requirement expected from a good map
is a convergence. As the robot explores surrounding
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environment, the map should adapt to be closer to
reality. This is not achieved now and lot of work is
focused on this task. With an authentic map and well
working fitting algorithm, localization itself should
not be too complicated and a solution for the SLAM
problem using vector maps should be completed (at
least in its main aspects).
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