
1 Introduction
Medical imaging is important in today’s clinical environ-

ments. Multiple imaging modalities such as X-ray angio-
graphy or endoscopy gather information on the patient’s
well-being and medical status [1]. Visual information is essen-
tial for the medical practitioner to confirm a diagnosis and to
administer a therapy.

An example is coronary angiography, where the inflow
and outflow of a contrast agent in the coronary arteries pro-
vide decisive information for the planning of interventions
[2]. For example, image processing algorithms can be used
for image enhancement, which can lead to a reduction of the
required x-ray dose for an accurate diagnosis.

Medical image information often has to be acquired from
various imaging modalities, enhanced, analyzed, interpreted,
and displayed for the medical practitioner. Integration of
these steps in a single software framework is a complex
task, but also offers the chance to create a foundation for the
operation and development of medical image processing
algorithms.

The rest of the paper is organized as follows. Chapter two
lists the requirements for a real time software framework for
medical image data processing. Chapter three illustrates the
work flow for our software framework. A more detailed view
on the software design pattern and techniques used in our
software framework is the focus of chapter four. The fifth
chapter concentrates on the hardware and software we used to
implement our project. The results and a report onclinical tri-
als are highlighted in chapter six. Chapter seven sums up the
main points and concludes with final remarks.

2 Requirements
The intention of our project was to design a platform

for complex image and video processing algorithms. Image
frames are acquired from a medical image source, often pro-

cessed with appropriate algorithms and finally displayed for
the medical practitioner. The aim of the development was to
combine these steps in a fast and efficient framework.

A catalogue of criteria to be met by RealTimeFrame was
developed. The requirements can be divided into three cate-
gories: features, performance and expandability, which are
described in the following sections.

2.1 Features
Images have to be acquired from a medical image source

and may be preprocessed for display in real time. During in-
terventions, video data is supplied via the S-video connector
of the endoscopy system’s camera control unit. Thus, frame
grabber functionality is mandatory to digitise the video
stream. For testing and presentation purposes it must be pos-
sible to read video streams from the hard drive to simulate a
real medical image source.

A further requirement is that arbitrary operations can be
performed on the image data. Such operations could en-
hance image quality and significance or store the data as
video or image sequences on the hard drive.

The results must be displayed with minimal time delay for
use during diagnosis or surgery, and a full screen mode is
needed to provide the best possible view for the medical
practitioner.

2.2 Performance
The images processed are 720×576 pixels in size. The

refresh rate required for clinical evaluation is 50 fields per
second. The images are RGB coded, and each of the three
channels is sampled with 8-bit colour depth. Handling such a
stream leads to a total of 31,104,000 bytes (� 29.66 mega-
bytes) of image data per second. The delay between image
acquisition and image display must not exceed 100 ms.
Otherwise, a physician would experience an irritating time
lag during the intervention.

© Czech Technical University Publishing House http://ctn.cvut.cz/ap/ 15

Acta Polytechnica Vol. 48 No. 3/2008

RealTimeFrame – A Real Time
Processing Framework for Medical

Video Sequences
S. Gross, T. Stehle

Imaging technology is highly important in today’s medical environments. It provides information upon which the accuracy of the diagnosis
and consequently the wellbeing of the patient rely. Increasing the quality and significance of medical image data is therefore one the aims of
scientific research and development.
We introduce an integrated hardware and software framework for real time image processing in medical environments, which we call
RealTimeFrame. Our project is designed to offer flexibility, easy expandability and high performance. We use standard personal computer
hardware to run our multithreaded software. A frame grabber card is used to capture video signals from medical imaging systems. A
modular, user-defined process chain performs arbitrary manipulations on the image data. The graphical user interface offers configuration
options and displays the processed image in either window or full screen mode. Image source and processing routines are encapsulated in
dynamic library modules for easy functionality extension without recompilation of the entire software framework. Documented template
modules for sources and processing steps are part of the software’s source code.

Keywords: Medical image processing, software framework, real time image processing, multithreading.

2.3 Expandability
Expandability was mandatory for RealTimeFrame. The

aim was to create a system flexible enough to be constantly
expanded with further image sources and image processing
algorithms, while providing performance for real time appli-
cation in the medical field.

Ideally, additional image sources and processing algo-
rithms can be integrated into the program without recompil-
ing of the whole software framework.

3 Work flow
RealTimeFrame was designed to provide a flexible platform

for medical image processing. Fig. 1 illustrates the work flow
of the framework.

3.1 Image Acquisition
A source is chosen by the user to generate image data.

This source is encapsulated in a DLL file and uses the inter-
face defined by the framework to place image data in the
source buffer.

The image source can be replaced by any module imple-
menting the image retrieval process for a new source. No
change to the framework has to be made. An example of this
would be the replacement of the installed frame grabber card
by another model. A new source module can be implemented
and then easily selected via the GUI.

3.2 Image processing
Data from the source buffer is sent to a user defined chain

of processing modules implementing image manipulation
and processing steps. These steps may include algorithms for
improving the image quality or significance, filtering, and
storing in videos or file sequences. The functionality of the
processing modules is again encapsulated in DLL files.

The process chain can be configured to hold an arbitrary
combination of processing modules, and is not limited by any
implemented restriction. With respect to real time processing
and the required CPU time for the process chain, however,
there are limitations.

3.3 Graphical user interface
The graphical user interface (GUI) delivered with our

RealTimeFrame is depicted in Fig. 2. It offers control options
for all operations performed by RealTimeFrame on the left
side of the window.

Drop down menus list all available sources and processing
modules. Parameters for the selected modules are repre-
sented by check boxes, spin boxes, and text lines. These
parameters and their visual representations are automatically
extracted from the associated modules and integrated into
the GUI. The process chain can be configured via GUI and
turned on and off during an intervention.

The right hand side of Fig. 2 displays the processed im-
age. A full screen mode is available, offering an enlarged
image display area during medical interventions.

3.4 Available modules
Video source plug-ins shipped with RealTimeFrame are

SourceFrameGrabber for accessing Euresys Picolo series
frame grabber cards, SourceVideo for accessing video files
and SourceSingleImage for loading image sequences from
the hard drive.

Processing modules shipped with RealTimeFrame include a
median filter, a colour channel inversion module and the
Canny-Edge-Detector.

Documented examples and ready-to-use templates for
source and processing modules are included in the source

16 © Czech Technical University Publishing House http://ctn.cvut.cz/ap/

Acta Polytechnica Vol. 48 No. 3/2008

Image

Display

Data

Manipulation

Image

Acquisition

Source

Source
Buffer

Process
Module 1

Process

Module N

Process
Thread

Source
Thread

Display
Thread

Display

Buffer

Graphical

User
Interface

Image

Display

Data

Manipulation

Image

Acquisition

Source

Source

Buffer

Process

Module 1

Process

Module N

Process
Thread

Source
Thread

Display
Thread

Display

Buffer

Graphical

User

Interface

Fig. 1: Work flow concept for the RealTimeFrame software frame-
work

Fig. 2: Screenshot of the main window, showing configuration
buttons and a processed medical image

code. Therefore, creating new modules based on the template
files is fast and relatively easy.

4 Software concepts
The premises for the software require careful planning,

and especially the postulated flexibility and expandability
have to be considered. An object-orientated approach is a
prerequisite for successful creation of an easily extendable
software framework.

4.1 Model-View-Controller concept
The Model-View-Controller (MVC) concept is a well-

-known and widely-used pattern in object orientated software
architecture [4]. The central idea is to increase the flexibility
of the software project, to simplify the reuse of code parts and
to shorten the time needed for familiarisation with the code.

The concept introduces functional units and enforces en-
capsulation of the associated code. The software developer
can concentrate on certain parts of the code, which can be
modified or even replaced without any change to the rest of
the framework. The only necessity is to leave the interfaces to
the other program parts unchanged. Applying the MVC
concept, the functionality of a program can be divided into
three functional blocks:

� Model

� View

� Controller
Fig. 3 shows an organisational diagram of RealTimeFrame,

indicating the separation of program parts into functional
blocks.

The model is responsible for storage of the processed and
unprocessed image data. It does not have any knowledge of
the source of the data or its meaning. In RealTimeFrame,s
case, the model does not hold any information on whether
the stored frame is from a video or a single image, a frame
grabber or any other image source. The model does not know
if the data will be processed or displayed at all. It simply offers
memory to store and read the frame data.

The task of the view is to display data. The view is sepa-
rated from acquisition, storage or processing of the data. Data
handed over to the view module is presented to the user.

The controller is responsible for modifying the data and
for administering the image manipulation process. It is sepa-
rated from the data storage in the view module and the repre-
sentation of the data in the view module.

4.2 Multithreading
Multithreading enables the work load to be spread into

different work flows. These work flows, so-called threads, run
simultaneously and independently. Interaction is possible be-
tween threads, and enables them to exchange data, to wait for
signals or to start and stop each other. This also enables user
interaction while running program tasks in the background.

However, multithreaded programming has some draw-
backs [5]. The method usually leads to less understandable
code. It is left to the programmer to identify all possible prob-
lems with thread interactions and to solve them. Bug tracking
in these cases is difficult and time consuming.

4.3 Parallel processing
Performance is one of RealTimeFrame’s key requirements,

as we are working under real time conditions. Performance
can be boosted in several ways. One of the ways, if a multi-
processor computer is available, is parallel processing.

Having more than one processor core enables the pro-
grammer to distribute the work load. Theoretically, one
would expect four cores to work four times faster than a single
core. This, however, is not the case, for the following reasons:

� Coordinating the distribution and ensuring load balancing
for four processors will create a computational overhead.

� If the process waits for hardware resources or user input,
the number of processors is of no consequence for the du-
ration of the delay.

� Not all problems can be distributed evenly or at all. Some
results may depend on others and calculations may need
previous results. This prevents operations from being run
simultaneously.

Even taking these constraints into account, there is still a
considerable performance increase when running applicable
tasks on multiple CPUs and, therefore, we make use of par-
allel processing whenever possible, as image manipulation
algorithms can often be vastly accelerated by parallel process-
ing, in comparison with a single processor system.

4.4 Dynamic link libraries
The linking process was invented to bind multiple ob-

ject-files created by the compiler from different source code
files into one single executable. Libraries were used to supply
additional functionality, and to reduce code size and compile
time. An often used library was likely compiled into multiple
programs. Thus it finally used a large amount of hard drive
space and, even more important, a large amount of the
computer’s main memory.

In the late 1960s dynamic linking was developed to cope
with problems of disk space. The linker process only records
the necessary library and the entry point for the functions

© Czech Technical University Publishing House http://ctn.cvut.cz/ap/ 17

Acta Polytechnica Vol. 48 No. 3/2008

Main

GUI

Source
control

Process
control

Source
buffer

Display
Buffer

State

Source Process
step

Controller

Model

View

Main

Source
control

Process
control

Source
buffer

Display
Buffer

State

Source Process
step

Controller

Model

View

Main

GUI

Source
control

Process
control

Source
buffer

Display
Buffer

State

Source Process
step

Fig. 3: Model-View-Controller concept for the RealTimeFrame
software framework

called, but does not include the object code of the library itself
in the binary. A library only has to be stored once on a hard
drive of the computer and its path must be made known to
the operating system. All programs can then load this library
if needed to perform their operations.

Dynamic loading on the other hand seeks to free up sys-
tem memory by directing all programs in need of a certain
library to the same memory location. The library is loaded
only once. Thus, multiple programs use the same instance of
the library, which is unloaded when the last program that
depends on the library exits.

Dynamic linking and loading offers more advantages than
just the originally intended effect of saving disc space and
memory. Replacing a library with a new version takes effect
for all programs which refer to it. The programs do not need
to be changed and are completely separated from the im-
plementation of the library. There is no need to recompile
the programs, and introducing updated versions or addi-
tional functionalities in libraries is therefore uncomplicated.
However, the library creator has to ensure that the library’s
interface remains unchanged and the entry points referenced
in the code still exist.

The expandability postulated for RealTimeFrame can be
achieved with dynamic link libraries (DLL) without the need
to recompile the main program. We decided to define an in-
terface for all source and processing modules to use. At
start-up RealTimeFrame will check for available DLLs and
load each of them.

Adding a source or processing module therefore only re-
quires moving the DLL into the appropriate directory. This
will help developing additional functionality and servicing
customer deployed copies of RealTimeFrame, as new or up-
dated functionality can be installed easily and no change to
the rest of the framework is necessary.

5 Development Platform
We chose our hardware and software to fit the require-

ments defined in Chapter 2.

5.1 Software
The software was chosen for performance, features and

flexibility as well as for improved and simplified
implementation.

We opted to use Windows XP Professional rather than
Windows Vista. Windows Vista was introduced on January 30,
2007, and users then experienced various problems with the
new operating system, including numerous driver compati-
bility and availability issues. This convinced us to use Windows
XP Professional, as the manufacturers of our hardware pro-
vided drivers for this operating system and most issues with
this software platform are well-known and have been solved in
the meantime.

The development platform was Microsoft Visual Studio
2003.Net. We decided to replace the standard Microsoft com-
piler with the Intel C�� Compiler 10.0 for Windows, as it pro-
vides better support for multithreading and generates faster
code.

Apart from the choice of the operating system and the in-
tegrated development environment (IDE), the choice of the

underlying libraries has a major influence on the imple-
mentation. Many functions and algorithms are provided by
libraries. Using these well tested, reliable libraries speeds up
the implementation process.

The graphical user interface (GUI) is based on Trolltech’s
Qt. It offers fast and comfortable GUI design as well as an in-
terface for multithreading and inter-thread communication.
The images are displayed using Microsoft DirectX9 to take
advantage of hardware acceleration.

We use Intel’s Open Computer Vision library (OpenCV)
for image handling and manipulation. As OpenCV uses the
outdated Video for Windows interface to access video files, we
replaced this functionality with FFmpeg’s libavcodec. Thus,
RealTimeFrame is able to handle video files larger than 2 GB,
which is reached rapidly when we store medical video data in
high quality.

5.2 Hardware
Today’s hardware offers ample performance to create a

system capable of acquiring images, manipulating image data
and displaying results with only an insignificant lag. We de-
cided to use standard personal computer hardware compo-
nents as they offer solid performance at a reasonable price.

Our hardware platform consists of two Intel Xeon 5140
Dual Core processors with 2.2 GHz. The two CPUs are placed
on a Tyan server motherboard with 4 GB RAM.

We use two 70 GB hard drives in a raid setup for the oper-
ating system, RealTimeFrame, and the development tools. Two
500 GB SATA2-hard drives offer performance for simulta-
neous data storage and reading.

We use an NVIDIA GeForce 7950 GX2 graphics adapter
which offers the possibility of performing matrix calculation
operations via a programmable interface. For video acquisi-
tion from medical devices, we installed a Euresys Picolo series
industrial frame grabber card.

6 Results
RealTimeFrame is run on two identical systems. One is the

development platform, which remains at the Institute of Im-
aging and Computer Vision, RWTH Aachen University. The
other system is used in clinical trials.

RealTimeFrame has proved to be of exceptional value for
the development, testing, and clinical evaluation of algo-
rithms for medical image processing.

Our framework was recently used as a basis for the im-
plementation of our fascia enhancement algorithm [6]. It
currently serves as the operating platform in the associated
clinical trials during surgical interventions.

Clinical trials have shown that RealTimeFrame introduces
an acceptable time lag. The complete system, including the
endoscope used in the interventions, delayed the image
by about 90–110 ms on average. Activating the fascia en-
hancement algorithm increases this number to 130 ms. The
endoscope alone causes an average lag of 60 ms. Taking this
into account, the postulated maximum increase by 100 ms has
not been exceeded.

The software framework itself causes a very low CPU load.
At a refresh rate of 25 frames per second, about 2 % of the
CPU capacity on our presented hardware platform is con-

18 © Czech Technical University Publishing House http://ctn.cvut.cz/ap/

Acta Polytechnica Vol. 48 No. 3/2008

sumed by image acquisition via a frame grabber card and dis-
play on the screen.

7 Summary and conclusion
RealTimeFrame is a solution for real time video processing

in medical environments. It provides services for image acqui-
sition from various image sources. The data is processed by a
chain of processing steps before it is displayed.

The process chain may include filtering, analysis, and
saving frame sequences or entire videos in an arbitrary
combination.

We have designed source and processing modules to
encapsulate the functionality. The module initialisation is
performed at start up and the GUI offers control and configu-
ration options for all RealTimeFrame plug-ins found. Thus,
adding new modules is straightforward, and is done without
changes to the framework.

RealTimeFrame meets the requirements listed in chapter
two. The concepts of the implementation were illustrated in
chapters three to five. Based on the results highlighted in
chapter six, we are convinced that RealTimeFrame will be of
exceptional value for medical image processing in clinical
environments and also in the development of new algorithms
in the future.

8 Acknowledgments
We would like to thank Prof. T. Aach of the Institute of

Imaging and Computer Vision, RWTH Aachen University for
supervising the research described in this paper.

We would also like extend our thanks to Prof. Dr. med.
Bruch and Dr. med. Keller at the University Medical Center
Schleswig-Holstein, Lübeck, Germany for their cooperation
and their efforts in connection with the clinical evaluations
employing RealTimeFrame.

Part of the project was funded by Olympus Winter & Ibe
GmbH, Hamburg, Germany. We are grateful to them for sup-
porting our research.

References
[1] Aach, T., Schiebel, U., Spekowius, G.: Digital Image Ac-

quisition and Processing in Medical X-Ray Imaging.
Journal of Electronic Imaging. Vol. 8 (1999), p. 7–22.

[2] Aach, T., Mayntz, C., Rongen, P., Schmitz, G., Stegehuis,
H.: Spatiotemporal Multiscale Vessel Enhancement
for Coronary Angiograms. Medical Imaging 2002:
SPIE, Vol. 4684, SPIE, p. 1010–1021, San Diego, USA.

[3] Gross, S., Stehle, T., Behrens, A., Aach, T.:
RealTimeFrame – A real time image processing solution
for medical environments. In: 41. DGBMT-Jahrestagung
Biomedizinische Technik 2007.

[4] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design
Patterns – Elements of Reusable Object-Orientated Software.
Addison-Wesley, 2003, p. 4–6

[5] Lee E. A.: The problem with threads. Computer, Vol. 39
(2006), No. 5, p. 33–42

[6] Stehle, T., Behrens, A., Bolz, M., Aach, T.: Visual En-
hancement of Facial Tissue in Endoscopy. SPIE Medical
Imaging 2008 (to appear).

Sebastian Gross
e-mail: sebastian.gross@lfb.rwth-aachen.de

Thomas Stehle
e-mail: thomas.stehle@lfb.rwth-aachen.de

Institute of Imaging and Computer Vision

RWTH Aachen University
Sommerfeldstraße 24
D-52074 Aachen, Germany

© Czech Technical University Publishing House http://ctn.cvut.cz/ap/ 19

Acta Polytechnica Vol. 48 No. 3/2008

