
1  Introduction
Supersymmetric Quantum Mechanics [1] is under inten-

sive development and remarkable new features have been dis-
covered in recent years. This attention is due both to the wide
range of applicability of one-dimensional supersymmetric
theories and especially superconformal quantum mechanics
[2] for extremal black holes [3], in the AdS-CFT correspon-
dence [4] (when setting AdS2), in investigating partial break-
ing of extended supersymmetries [5, 6], as well as for its
underlying mathematical structures. It is well known that
large N (up to N �32, starting from the maximal, eleven-
-dimensional supergravity) one-dimensional supersymmetric
quantum mechanical models are automatically derived [7]
from dimensional reduction of higher-dimensional super-
symmetric field theories. Large N one-dimensional super-
symmetry on the other hand (possibly in the N � � limit)
even emerges in condensed matter phenomena. Controlling
one-dimensional N-extended supersymmetry for arbitrary
values of N (that is, the nature of its representation theory,
how to construct manifestly supersymmetric invariants, etc.)
is a technical, but challenging program with important conse-
quences in many areas of physics, see e.g. the discussion in [8]
concerning the nature of on-shell versus off-shell representa-
tions, for its implications in the context of the supersymmetric
unification of interactions.

Over the years, progress has come from two lines of attack.
In the pivotal work of [9] irreducible representations were in-
vestigated to analyze supersymmetric quantum mechanics.
The special role played by Clifford algebra was pointed out
[10]. Clifford algebras were also used in [11] to construct
representations of the extended one-dimensional supersym-
metry algebra for arbitrarily large values of N. Another line of
attack involved using superspace, so that manifest invariants
could be constructed through superfields. For low values of N
this is indeed the most convenient approach. However, with
increasing N, the associated superfields become highly reduc-
ible and require the introduction of constraints to extract irre-
ducible representations. This approach soon becomes im-
practical for large N. Indeed, only very recently a manifestly

N �8 superfield formalism for one-dimensional theory has
been introduced, see [12] and references therein. A manifest
superfield formalism is however lacking for larger values of N.

In this work we discuss our results [13], [14], [15] concern-
ing the classification of linear irreducible representations real-
ized on a finite number of time-dependent, bosonic and
fermionic, fields. The connection with Clifford algebras and
division algebras is discussed, as well as the construction of
off-shell invariant actions and some associations with graph
theory. Several important topics that have appeared recently
in the literature, like the nature of the non-linear representa-
tions will not be discussed here. There are reviews ([16]) that
cover this and other aspects. Similarly, the quite important
connection with supersymmetric integrable systems in (1+1)
dimensions (such as the supersymmetric extension of the
KdV equation, will not be discussed since they have been cov-
ered elsewhere [17]).

The scheme of the paper is as follows. The next Section
deals with the relevance of one-dimensional Supersymmetric
Quantum Mechanics for understanding higher-dimensional
supersymmetric field theory. Some selected examples of di-
mensional reductions are pointed out. The relation between
irreducible representations of one-dimensional N Extended
Supersymmetry Algebra and Clifford algebras is explained in
Section 3. Section 4 reviews the classification of Clifford alge-
bras and their relation with division algebras, following [18].
In Section 5 the results of [14] concerning the classification of
irreducible representations with length-4 field content are
reported. Section 6 computes off-shell invariant actions of
one-dimensional sigma models within a manifestly super-
symmetric formalism which does not require the introduction
of superfields. In Section 7 an N �8 invariant action con-
structed in terms of octonionic structure constants is pre-
sented. The classification in [15] of nonequivalent N �5 6,
supersymmetry transformations with the same field content is
given in Section 8 and 9. A graphical presentation of super-
symmetry transformations in terms of N-colored oriented
graphs is discussed. Section 10 introduces the fusion algebra
produced by tensoring irreducible representations and pres-
ents it in graphical form.
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2 N Extended supersymmetries in
D �1 and dimensional reduction of
supersymmetric theories in higher
dimensions
One important motivation for investigating N Extended

Supersymmetries in one dimension is the fact that their rich
algebraic setting can furnish useful information concern-
ing the construction of supersymmetric theories in a higher
dimension (such as super-Yang-Mills, supergravity, etc.) Su-
persymmetric quantum mechanics with large number N
encodes large information of these theories. The simplest
way to see this is through dimensional reduction, where all
space-dimensions are frozen and the only remaining depend-
ence is in terms of a time-like coordinate. The usefulness of
this procedure is due to the fact that in such a framework
we can make use of powerful mathematical tools (essential-
ly based on the available classification of Clifford algebras)
which are not available in higher dimensions.

It should be remembered that a four-dimensional field
theory with N extended supersymmetries corresponds, once
it is dimensionally reduced to one-dimension, to a super-
symmetric quantum mechanics with four times (4N) the
number of the original extended supersymmetries [7]. The
most interesting case, in the context of the unification pro-
gram, corresponds to eleven-dimensional supergravity (the
low-energy limit of M-theory), which is reduced to an N �8
four-dimensional theory and later to an N �32 one-dimen-
sional supersymmetric quantum mechanical system.

In this section we will discuss the dimensional reduction of
supersymmetric theories from D � 4 to D �1in some specific
examples. We will prove how certain D � 4 problems can be
reformulated in a D �1language.

It is convenient to start with a dimensional analysis of the
following theories:
i) the free particle in one (time) dimension (D �1) and, for

the ordinary Minkowski space-time (D � 4),
iia) the scalar boson theory (with quartic potential � �4

4
! ),

iib) the Yang-Mills theory and, finally,
iic) the gravity theory (expressed in the vierbein formalism).

We further make a dimensional analysis of the above three
theories when dimensionally reduced (a la Scherk) to a one
(time) dimensional D �1quantum mechanical system.

In the following we will repeat the dimensional analysis for
the supersymmetric version of these theories.

Case i) – the D �1 free particle
It is described by a dimensionless action S given by

S
m

dt� �1 2�� . (2.1)

The dot denotes, as usual, the time derivative. The dimen-
sionality of the time t is the inverse of the mass; we can there-
fore set ([ ]t � �1). By assuming � being dimensionless ([ ]� �0),
an overall constant (written as 1

m) of mass dimension �1has to
be inserted to make S non-dimensional. Summarizing, we
have, for the above D �1model,
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The suffix D �1 has been added for later convenience,
since the theory corresponds to a one-dimensional model.

Case iia) – the D � 4 scalar boson theory
The action can be presented as

S d x M� � ��
�
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A non-dimensional action S is obtained by setting, in mass
dimension,
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Case iib) – the D � 4 pure QED or Yang-Mills theories
The gauge-invariant action is given by

S
e

d x F F� �1
2

4 Tr( )��
�� , (2.5)

where the antisymmetric stress-energy tensor F�� is given by
F D D�� � �� [ , ], (2.6)

with D� the covariant derivative, expressed in terms of the
gauge connection A�

D eA� � ��� � . (2.7)

e is the charge (the electric charge for QED). The action is
non-dimensional, provided that
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Case iic) – The pure gravity case

The action is constructed, see [19] for details, in terms of
the determinant E of the vierbein ea

� and the curvature scalar
R. It is given by

S
G

d x ER
N

� � �6
8

4

	
. (2.9)

The overall constant (essentially the inverse of the gravita-
tional constant GN) is now dimensional ([ ]GN D� � �4 2). The
non-dimensional action is recovered by setting
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Let us now discuss the dimensional reduction from
D D� 
 �4 1.

Let us suppose that the three space dimensions belong to
some compact manifold M (e.g. the three-sphere S3) and let
us freeze the dependence of the fields on the space-dimen-
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sions (application of the time derivative �0 leads to non-van-
ishing results, while application of the space-derivatives�i, for
i �1 2 3, , , gives zero). Our space-time is now given by R � M.
We get that the integration over the three space variables con-
tributes just to an overall factor, the volume of the three-di-
mensional manifold M. Therefore

d x Vol dtM
4 � �� . (2.11)

Since

[ ]VolM D� � �4 3 (2.12)

we can express Vol
m

� 1
3 , where m is a mass-term. A factor 1

m
contributes as an overall factor in one-dimensional theory,
while the remaining part 1

2m
can be used to rescale the fields.

We have, e.g., for dimensional reduction of the scalar boson
theory that

� �D Dm� ��1 4
1 . (2.13)

The dimensional reduction of the scalar boson theory ii a)
is therefore given by

S
m

dt M D� � ��
�
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where we have
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The D �1 coupling constant �1 is related to the D � 4
non-dimensional coupling constant � by the relation

� �1
2� m . (2.16)

We proceed in a similar way in the case of Yang-Mills the-
ory. We can rescale the D � 4 Yang-Mills fields A� to the D �1
fields B Am� �� 1 . The D �1charge e is rescaled to e e m1 � . We
have, symbolically, for the dimensionally reduced action, a
sum of terms of the type
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The situation is different as far as gravity theory is con-
cerned. In that case the overall factor Vol GM N produces the
dimensionally correct 1

m overall factor of the one-dimensional
theory. This implies that we do not need to rescale the
dimensionality of the vierbein ea

� and of the curvature. Sum-
marizing, we have the following results
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Let us now discuss the N �1 supersymmetric version of
the three D � 4 theories above. First, we have the chiral
multiplet, described in [19], in terms of the chiral superfields
�, �. Next the vector multiplet V, the vector-multiplet in the
Wess-Zumino gauge, the supergravity multiplet in terms of
vierbein and gravitinos and, finally, the gauged supergravity
multiplet presenting an extra set of auxiliary fields. The total
content of fields is given by the following table, which presents
also the D � 4 and respectively the D �1dimensionality of the
fields (in the latter case, after dimensional reduction). We
have

Some comments are in order: the vector multiplet corre-
sponds, in D �1language, to the N � 4 “enveloping represen-
tation” [14] (1, 4, 6, 4, 1). The latter is a reducible, but non-de-
composable representation of the N � 4 supersymmetry. Its
irreducible multiplets are split into (1, 4, 3, 0, 0) and (0, 0, 3, 4,
1). The Wess-Zumino gauge, in D �1 language, corresponds
to selecting the latter N � 4 irreducible multiplet, whose
fields present only non-negative dimensions.

The N �2 four-dimensional super-QED involves cou-
pling a set of chiral superfields together with the vector
multiplet. Due to the dimensional analysis, the correspond-
ing one-dimensional multiplet is the (5, 8, 3) irrep of N �8
given by (2, 4, 2)�(3, 4, 1).
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chiral multiplet : � �,

fields content : (2, 4, 2)

D � 4 dimensionality : [ , , ]1 23
2 4D�

D �1dimensionality : [ , , ]0 11
2 1D�

vector multiplet : V V� †

fields content : (1, 4, 6, 4, 1)

D � 4 dimensionality : [ , , , , ]0 1 21
2

3
2 4D�

D �1dimensionality : [ , , , , ]� � �1 0 11
2

1
2 1D

vector multiplet : V in the WZ gauge

fields content : (3, 4, 1)

D � 4 dimensionality : [ , , ]1 23
2 4D�

D �1dimensionality : [ , , ]0 11
2 1D�

supergravity multiplet : ea
� �


�,

fields content : (16, 16)

D � 4 dimensionality : [ , ]0 1
2 4D�

D �1dimensionality : [ , ]0 1
2 1D�

gauged sugra multiplet : e ba i
� �


�, ,

fields content : (6, 12, 6)

D � 4 dimensionality : [ , , ]0 11
2 4D�

D �1dimensionality : [ , , ]0 11
2 1D�

(2.20)



As far as supergravity theories are concerned, the original
supergravity multiplet corresponds to four irreducible N � 4
one-dimensional multiplets, while the gauged supergravity
multiplet is obtained, in the D �1viewpoint, in terms of three
irreducible N � 4 multiplets whose total number of fields is
(6, 12, 6).

The multiplet of the physical degrees of freedom of elev-
en-dimensional supergravity (44 components for the gravi-
ton, i.e. the components of a SO(9) traceless symmetric tensor,
the 128 fermionic components of the gravitinos and the
84 components of the three form) can be accommodated into
the (44, 128, 84) multiplet of an N-extended one-dimen-
sional supersymmetry. As will be shown later, 128 bosons and
128 fermions can accommodate at most 16 off-shell super-
symmetries that are linearly realized. It is under question
whether an off-shell formulation of eleven-dimensional su-
pergravity indeed exists. In any case it would require at least
32768 bosonic (and an equal number of fermionic) degrees of
freedom to produce an N �32 supersymmetry representa-
tion in D �1.

3 Supersymmetric quantum
mechanics and Clifford algebras
In this section we discuss several results, based on ref. [13],

concerning the classification of irreducible representations
(from now on “irreps”) of the N-extended one-dimensional
supersymmetry algebra and their connection with Clifford
algebras.

The N extended D �1supersymmetry algebra is given by

� �Q Q Hi j ij, � � , (3.21)

where the Qi’s are the supersymmetry generators (for
i j N, , ,�1 � ) and H i t� � �

�
is a Hamiltonian operator (t is

the time coordinate). If the diagonal matrix �ij is pseudo-
-Euclidean (with signature (p, q), N p q� � ) we can speak of
generalized supersymmetries. For convenience we limit the
discussion here (despite the fact that our results can be
straightforwardly generalized to pseudo-Euclidean super-
symmetries, having applicability, e.g., to supersymmetric
spinning particles moving in pseudo-Euclidean manifolds)
to ordinary N-extended supersymmetries. Therefore for our
purposes � 
ij ij� .

The (D-modules) representations of the (3.21) supersym-
metry algebra realized in terms of linear transformations
acting on finite multiplets of fields satisfy the following prop-
erties. The total number of bosonic fields equal the total
number of fermionic fields. For irreps of the N-extended
supersymmetry the number of bosonic (fermionic) fields is
given by d, with N and d linked through

N l n

d G nl

� �

�

8

24

,

( ),
(3.22)

where l �0 1 2, , ,�and n �1 2 3 4 5 6 7 8, , , , , , , . G(n) appearing in
(3.22) is the Radon-Hurwitz function [13]

The modulo 8 property of the irreps of the N-extended
supersymmetry is a consequence of the famous modulo 8 pro-
perty of Clifford algebras. The connection between super-
symmetry irreps and Clifford algebras is specified later.

The D �1 dimensional reduction of the maximal N �8
supergravity produces a supersymmetric quantum mechani-
cal system with N �32 extended number of supersym-
metries. It is therefore convenient to explicitly report the
number of bosonic/fermionic component fields in any given
irrep of (3.21) for any N up to N �32. We get the table

The bosonic (fermionic) fields entering an irreducible
multiplet can be grouped together according to their dimen-
sionality. Sometimes instead of “dimension”, the word “spin”
is used to refer to the dimensionality of the component fields.
This choice of word finds some justification when discussing
the D �1 dimensional reduction of higher-dimensional su-
persymmetric theories. The number (equal to l) of different
dimensions (i.e. the number of different spin states) of a given
irrep, will be referred to as the length l of the irrep. Since there
are at least two different spin states (one for bosons, the
other for fermions), obtained when all bosons (fermions) are
grouped together within the same spin, the minimal length of
an irrep is l �2.

A general property of (linear) supersymmetry in any di-
mension is the fact that the states of highest spin in a given
multiplet are auxiliary fields, whose supersymmetry transfor-
mations are given by total derivatives. Just for D �1 total
derivatives coincide with the (unique) time derivative. Using
this specific property of the one-dimensional supersymmetry
it was proven in [13] that all finite linear irreps of the (3.21)
supersymmetry algebra fall into classes of equivalence, each
class of equivalence being singled out by an associated mini-
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n 1 2 3 4 5 6 7 8
G(n) 1 2 4 4 8 8 8 8

(3.23)

N �1 1 N �9 16 N �17 256 N �25 4096

N �2 2 N �10 32 N �18 512 N �26 8192

N �3 4 N �11 64 N �19 1024 N �27 16384

N � 4 4 N �12 64 N �20 1024 N �28 16384

N �5 8 N �13 128 N �21 2048 N �29 32768

N �6 8 N �14 128 N �22 2048 N �30 32768

N �7 8 N �15 128 N �23 2048 N �31 32768

N �8 8 N �16 128 N �24 2048 N �32 32768

(3.24)



mal length (l �2) irreducible multiplet. It was further proven
that the minimal length irreducible multiplets are in 1-to-1
correspondence with a subclass of Clifford algebras (those
which satisfy a Weyl property). The connection goes as fol-
lows. The supersymmetry generators acting on a length-2
irreducible multiplet can be expressed as

Qi
H

i

i
�

�
�

�
	




�
�

1
2

0
0
�

�~
, (3.25)

where � i and ~�i are matrices entering a Weyl type (i.e. block
antidiagonal) irreducible representation of the Clifford alge-
bra relation

�i
i

i
�
�

�
	




�
�

0
0
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�~
, { , }� �i j ij�2� . (3.26)

The Qi’s in (3.25) are supermatrices with vanishing
bosonic and non-vanishing fermionic blocks, acting on an ir-
reducible multiplet m (thought of as a column vector) which
can be either bosonic or fermionic. We conventionally con-
sider a length-2 irreducible multiplet as bosonic if its upper
half part of component fields is bosonic and its lower half is
fermionic. It is fermionic in the converse case. The connec-
tion between Clifford algebra irreps of the Weyl type and
minimal length irreps of the N-extended one-dimensional
supersymmetry is such that D, the dimensionality of the (Eu-
clidean, in the present case) space-time of the Clifford algebra
(3.26) coincides with the number N of the extended super-
symmetries, according to

The matrix size of the associated Clifford algebra (equal to
2d, with d given in (3.22)) corresponds to the number of
(bosonic plus fermionic) fields entering the one-dimensional
N-extended supersymmetry irrep.

The classification of Weyl-type Clifford irreps, furnished
in [13], can be easily recovered from the well-known classifica-
tion of Clifford irreps, given in [20] (see also [21] and [22]).

The (3.25) Qi’s matrices realizing the N-extended su-
persymmetry algebra (3.21) on length-2 irreps have entries
which are either c-numbers or are proportional to the
Hamiltonian H. Irreducible representations of higher length
(l �3) are systematically produced [13] through repeated ap-
plications of the dressing transformations

Q Q S Q Si i
k k

i
k

� � ( ) ( ) ( )�
�1

(3.28)

realized by diagonal matrices S k( )’s (k d�1 2, ,� ) with entries
s ij

k( ) given by

s Hij
k

ij jk jk
( ) ( )� � �
 
 
1 . (3.29)

Some remarks are in order [13]:

i) The dressed supersymmetry operators �Qi (for a given set
of dressing transformations) have entries which are inte-
gral powers of H. A subclass of the �Qi s dressed operators
is given by the local dressed operators, whose entries
are non-negative integral powers of H (their entries have
no 1

H poles). A local representation (irreps fall into this
class) of an extended supersymmetry is realized by lo-
cal dressed operators. The number of the extension,
given by � � �N N N( ), corresponds to the number of local
dressed operators.

ii) The local dressed representation is not necessarily an
irrep. Since the total number of fields (d bosons and d
fermions) is unchanged under dressing, the local
dressed representation is an irrep iff d and �N satisfy the
(3.22) requirement (with �N in place of N).

iii) The dressing changes the dimension (spin) of the fields
of the original multiplet m. Under the S k( ) dressing
transformation (3.28), m S mk

�
( ) , all fields entering m

are unchanged apart from the k-th one (denoted, e.g., as
�k and mapped to ��k). Its dimension is changed from
[ ] [ ]k k� �1. This is why the dressing changes the length
of a multiplet. As an example, if the original length-2
multiplet m is a bosonic multiplet with d spin-0 bosonic
fields and d spin-1

2 fermionic fields (in the following
such a multiplet will be denoted as ( ; ) ( , )x d di j s� � �0, for
i j d, , ,�1 � ), then S mk( ) , for k d� , corresponds to a
length-3 multiplet with d �1bosonic spin-0 fields, d spin-
1
2 fermionic fields and a single spin-1 bosonic field (in the
following we employ the notation ( , , )d d s� �1 1 0 for such
a multiplet).

Let us now fix the overall conventions. The most general
multiplet is of the form (d d dl1 2, , ,� ), where di for i l�1 2, , ,�

specify the number of fields of a given spin s i� �1
2 . The spin s,

i.e. the spin of the lowest component fields in the multiplet,
will also be referred to as the “spin of the multiplet”. When
looking purely at the representation properties of a given
multiplet the assignment of an overall spin s is arbitrary,
since the supersymmetry transformations of the fields are not
affected by s. Introducing a spin is useful for tensoring multi-
plets and becomes essential for physical applications, e.g. in
the construction of supersymmetric invariant terms entering
an action.

In the above multiplet l denotes its length, dl the number
of auxiliary fields of highest spins transforming as time-deriv-
atives. The total number of odd-indexed equal the total num-
ber of even-indexed fields, i.e. d d d d d1 3 2 4� � � � � �� � .
The multiplet is bosonic if the odd-indexed fields are bosonic
and the even-indexed fields are fermionic (the multiplet is
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� of space-time
dim. (Weyl-Clifford)

� � of extended su.sies
(in 1-dim.)

D � N

(3.27)



fermionic in the converse case). For a bosonic multiplet the
auxiliary fields are bosonic (fermionic) if the length l is an odd
(even) number.

Just like the overall spin assignment, the assignment of a
bosonic (fermionic) character to a multiplet is arbitrary since
the mutual transformation properties of the fields inside a
multiplet are not affected by its statistics. Therefore, mul-
tiplets always appear in dually related pairs so that to any
bosonic multiplet there exists its fermionic counterpart with
the same transformation properties (see also [23]).

Throughout this paper we assign integer valued spins to
bosonic multiplets and half-integer valued spins to fermionic
multiplets.

As pointed out before, the most general (d d dl1 2, , ,� )
multiplet is recovered as a dressing of its corresponding N-ex-
tended length-2 (d, d) multiplet. In [13] it was shown that all
dressed supersymmetry operators producing any length-3
multiplet (of the form ( , , )d p d p� for p d� �1 1, ,� ) are of lo-
cal type. Therefore, for length-3 multiplets, we have � �N N.
This implies, in particular, that the ( , , )d p d p� multiplets are
non-equivalent irreps of the N-extended one-dimensional
supersymmetry. As concerns length l � 4 multiplets, the gen-
eral problem of finding irreps was not addressed in [13]. It
was shown, as a specific example, that the dressing of the
length-2 (4, 4) irrep of N � 4, realized through the series of
mappings ( , ) ( , , ) ( , , , )4 4 1 4 3 1 3 3 1� � , produces at the end a
length-4 multiplet ( , , , )1 3 3 1 carrying only three local super-
symmetries ( � �N 3). Since the relation (3.22) is satisfied when
setting the number of extended supersymmetries acting on a
multiplet equal to 3 and the total number of bosonic (fer-

mionic) fields entering a multiplet equal to 4, as a conse-
quence, the ( , , , )1 3 3 1 multiplet corresponds to an irreducible
representation of the N �3 extended supersymmetry.

Based on an algorithmic construction of representatives of
Clifford irreps, we present an iterative method for classifying
all irreducible representations of higher length for arbitrary
N values of the extended supersymmetry.

4 Clifford algebras and division
algebras
Due to the relation between Supersymmetric Quantum

Mechanics and Clifford algebras, we present here a classifica-
tion of the irreducible representations of Clifford algebras in
terms of an algorithm which allows us to single out, in arbi-
trary signature space-times, a representative in each irreduc-
ible class of representations of Clifford’s gamma matrices.
The class of irreducible representations is unique apart from
special signatures, where two non-equivalent irreducible rep-
resentations are linked by sign flipping (� �� �� � ). The
construction goes as follows. First, we prove that starting from
a given spacetime-dimensional representation of Clifford’s
Gamma matrices, we can recursively construct D � 2 space-
time dimensional Clifford Gamma matrices with the help of
two recursive algorithms. Indeed, it is a simple exercise to ver-
ify that if �i’s denotes the d-dimensional Gamma matrices of a
D p q� � spacetime with (p, q) signature (namely, providing a
representation for the C(p, q) Clifford algebra) then 2d-di-
mensional D � 2 Gamma matrices (denoted as �j) of a D � 2
spacetime are produced according to either
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1 * 2 * 4 * 8 * 16 * 32 * 64 * 128 * 256 *
(1, 0) � (2, 1) � (3, 2) � (4, 3) � (5, 4) � (6, 5) � (7, 6) � (8, 7) � (9, 8) �

�
(1, 4) � (2, 5) � (3, 6) � (4, 7) � (5, 8) � (6, 9) �

(0,3)
�

(5,0) � (6, 1) � (7, 2) � (8, 3) � (9, 4) � (10, 5) �

�
(1, 8) � (2, 9) � (3, 10) � (4, 11) � (5, 12) �

(0,7)
�

(9, 0) � (10, 1) � (11, 2) � (12, 3) � (13, 1) �

�
(1, 12) � (2, 13) �

(0, 11)
�

(13, 0) � (14, 1) �

�
(1, 16) �

(0, 15)
�

(17, 0) �

Table 1: Table with the maximal Clifford algebras (up to d � 256) (4.33)
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or

� j
i

i

d

d

d

d

p q

�
�

�

�
	




�
�

�

�
	




�
�

�
�

�
	




�
�

0
0

0 1
1 0

1 0
0 1

�

�
, ,

( , ) (� q p� 2, ).

(4.31)

It is immediately clear, e.g., that the two-dimensional
real-valued Pauli matrices �A, �1, �2 which realize the Clifford
algebra C(2, 1) are obtained by applying either (4.30) or
(4.31) to the number 1, i.e. the one-dimensional realization of
C(1, 0). We have indeed

� � �A �
�

�

�
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�

�
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� �

�
�
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�
�

0 1
1 0

0 1
1 0

1 0
0 11 2, , . (4.32)

All Clifford algebras are obtained by recursively applying
algorithms (4.30) and (4.31) to the Clifford algebra C(1, 0)
( )�1 and the Clifford algebras of the seriesC m( , )0 3 4� (with m
non-negative integer), which must be previously known. This
is in accordance with the scheme illustrated in the Table1.

Concerning the previous table, some remarks are in order.
The columns are labeled by the matrix size d of the maximal
Clifford algebras. Their signature is denoted by the (p, q)
pairs. Furthermore, the underlined Clifford algebras in the
table can be named as “primitive maximal Clifford algebras”.
The remaining maximal Clifford algebras appearing in the
table are “maximal descendant Clifford algebras”. They are
obtained from the primitive maximal Clifford algebras by
iteratively applying the two recursive algorithms (4.30) and
(4.31). Moreover, any non-maximal Clifford algebra is ob-
tained from a given maximal Clifford algebra by deleting a
certain number of Gamma matrices (as an example, Clifford
algebras in even-dimensional spacetimes are always
non-maximal).

It is immediately clear from the above construction that
the maximal Clifford algebras are encountered if and only if
the condition

p q� �15 8, mod (4.34)

is matched.

The notion of a Clifford algebra of the generalized Weyl
type, namely satisfying the (3.26) condition, has already been
introduced. All maximal Clifford algebras, both primitive and
descendant, are not of the generalized Weyl type. As already
pointed out, the notion of generalized Weyl spinors is based
on real-valued representations of Clifford algebras which, for
classification purposes, are more convenient to use w.r.t. the
complex Clifford algebras that one in general deals with. For
this reason generalized Weyl spinors exist also in odd-dimen-
sional space-time, see formula (3.26), while standard Weyl

spinors only exist in even-dimensional spacetimes. This can
be understood by analyzing a single example. The real irrep
C(0, 7), with all negative signs, is 8-dimensional, see table
(4.33), while the real irrep C(7, 0) is 16-dimensional, but of
generalized Weyl type (3.26). Accordingly, Euclidean 8-di-
mensional fundamental spinors can be understood either as
the 8-dimensional “Non-Weyl” spinors of C(0, 7), or as 8-di-
mensional “Weyl-projected” C(7, 0) spinors. In the complex
case, the sign flipping C C( , ) ( , )0 7 7 0� can be realized by
multiplying all Gamma matrices by the imaginary unit “i”. No
doubling of the matrix size of the �’s is found and the notion
of Weyl spinors cannot be applied. One faces a similar situa-
tion in one-dimensional spacetime. In the complex case we can
realize C(1, 0) with 1 and C(0, 1) with i (both one-dimen-
sional). On the other hand, in the real case, C(0, 1) can only be
realized through the 2-dimensional irrep

0 1
1 0�

�

�
	




�
�,

which is block-antidiagonal. Throughout the text Weyl (Non-
-Weyl) spinors are always referred to the (3.26) property
with respect to real-valued Clifford algebras. Non-maximal
Clifford algebras are of the Weyl type if and only if they are
produced from a maximal Clifford algebra by deleting at
least one spatial Gamma matrix which, without loss of gener-
ality, can always be chosen as the one with diagonal entries.

Let us now illustrate how non-maximal Clifford algebras
are produced from the corresponding maximal Clifford alge-
bras. The construction goes as follows. We illustrate at first the
example of the non-maximal Clifford algebras obtained from
the 2-dimensional maximal Clifford irrep C(2, 1) furnished
by the three matrices �1, �2, �A given in (4.32). If we restrict the
Clifford algebra to �1, �A, i.e. if we delete �2 from the previous
set, we get the 2-dimensional irrep C(1, 1). If we further de-
lete �1 we are left with �A only, which provides the 2-dimen-
sional irrep C(0, 1) discussed above. On the other hand, delet-
ing �A from C(2, 1) leaves us with �1, �2, the 2-dimensional
irrep C(2, 0).

To summarize, from the 2-dimensional irrep of the ”maxi-
mal Clifford algebra” C(2, 1) we obtain the 2-dimensional
irreps of the non-maximal Clifford algebras C(1, 1), C(0, 1)
and C(0, 2) through a “�-matrices deleting procedure”. Please
note that, through deleting, we cannot obtain from C(1, 2) the
irrep , since the latter is one-dimensional.

In full generality, non-maximal Clifford algebras are pro-
duced from the corresponding maximal Clifford algebras ac-
cording to the following table, which specifies the number of
time-like or space-like Gamma matrices that should be de-

64 ©  Czech Technical University Publishing House http://ctn.cvut.cz/ap/

Acta Polytechnica Vol. 48  No. 2/2008



leted, as well as the generalized Weyl (W) character or not
(NW) of the given non-maximal Clifford algebra. We get

W NW

(4.35)

( mod ) ( mod )
( , ) ( , )

0 8 1 8
1

�

� �p q p q
( mod ) ( mod )

( , ) ( , )
2 8 1 8

1
�

� �p q p q

( mod ) ( mod )
( , ) ( , )

4 8 5 8
1

�

� �p q p q
( mod ) ( mod )

( , ) ( , )
3 8 1 8

2
�

� �p q p q

( mod ) ( mod )
( , ) ( , )

6 8 1 8
3

�

� �p q p q

( mod ) ( mod )
( , ) ( , )

7 8 1 8
2

�

� �p q p q

In the above entries x mod8 specifies the mod8 residue of
t s� for any given ( , )t s spacetime. Non-maximal Clifford al-
gebras are denoted by p t� , q s� , while maximal Clifford
algebras are denoted by ( , )� �p q , with � �p p, � �q q. The differ-
ences � �p p, � �q q denote how many Clifford gamma matrices
(of time-like or respectively space-like type) have to be deleted
from a given maximal Clifford algebra to produce the irrep of
the corresponding non-maximal Clifford algebra. To be spe-
cific, e.g., the6 8mod non-maximal Clifford algebra C(6, 0) is
obtained from the maximal Clifford algebra C(9, 0), whose
matrix size is 16 according to (4.33), by deleting three gamma
matrices.

To complete our discussion what it remains to specify the
construction of the primitive maximal Clifford algebras for
both C n( , )0 3 8� series (which can be named as “quaternionic
series”, due to its connection with this division algebra, as we
will see in the next section), and also the “octonionic” series
C n( , )0 7 8� . The answer can be provided with the help of the
three Pauli matrices (4.32). We first construct the 4×4 matri-
ces realizing the Clifford algebra C(0, 3) and the 8×8 matrices
realizing the Clifford algebra C(0, 7). They are given, respec-
tively, by

C
A

A

A

( , )
,
,
.

0 3
1

2

2

�

�

�

�

� �

� �

�1
(4.36)

and
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(4.37)

The three matrices of C(0, 3) will be denoted as �i �1 2 3, , .
The seven matrices of C(0, 7) will be denoted as~ , , ,�i �1 2 7� .

In order to construct the remaining Clifford algebras of
the two series we first need to apply the (4.30) algorithm to

C(0, 7) and construct the 16×16 matrices realizing C(1, 8)
(the matrix with a positive signature is denoted as �9, �9

2 �1,
while the eight matrices with negative signatures are denoted
as �j, j �1 2 8, , ,� , with � j

2 � �1). We are now in the position to
explicitly construct the whole series of primitive maximal Clif-
ford algebras C n( , )0 3 8� , C n( , )0 7 8� through the formulas
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(4.38)

and similarly

C n
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(4.39)

Please note that the tensor product of the 16-dimensional
representation is taken n times. The total size of the (4.38) ma-
trix representations is then 4×16n, while the total size of
(4.39) is 8×16n.

With the help of the formulas presented in this section we
are able to systematically construct a set of representatives of
the real irreducible representations of Clifford algebras in
arbitrary space-times and signatures. It is also convenient to
explicitly present of Clifford algebras with the division alge-
bras of the quaternions (and of the octonions).

This relation can be understood as follows. First we note
that the three matrices appearing in C(0, 3) can also be ex-
pressed in terms of the imaginary quaternions �i satisfying

� � 
i j ij� � � � �ijk �k . (4.40)

As a consequence, the whole set of maximal primitive Clif-
ford algebras C n( , )0 3 8� , as well as their maximal descen-
dants, can be represented with quaternionic-valued matrices.
In its turn the spinors now have to be interpreted as quater-
nionic-valued column vectors.

Similarly, there exists an alternative realization of the basic
relations of the generators of the Euclidean Clifford algebra ,
obtained by identifying its seven generators with the seven
imaginary octonions (for a review on octonions see e.g. [24])
satisfying the algebraic relation

� � 
 �i j ij ijk kC� � � � (4.41)

for i j k, , , ,�1 7� and Cijk the totally antisymmetric octonionic
structure constants given by

C C C C C C C123 147 165 246 257 354 367 1� � � � � � � (4.42)
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and vanishing otherwise. The octonions are non-associative
and cannot be represented in matrix form with the usual ma-
trix multiplication. On the other hand, a construction due to
Dixon allows us to produce the seven 8×8 matrix generators
of the C(0, 7) Clifford algebras in terms of the octonionic
structure constants. Given a real octonion x x xi ii

� � �0 � ,
with real coefficients x0, xi, for i �1 7, ,� , the left action of the
imaginary octonions �i ( � � �x xi� ) is reproduced in terms of
the 8×8 Clifford gamma matrix �i, linearly acting on x0, xi’s.

5 The field content of irreducible
representations
It is now possible to plug the information contained in

Clifford algebras and apply the construction outlined in
Section 3 to compute the admissible field content for the
length-4 multiplets for arbitrary values of N. This construc-
tion was done in [14]. We present here the list of length-4 field
content up to N �11.

Up to N �8 we have

N �1 NO

(5.43)

N �2 NO

N �3 (1, 3, 3, 1)

N � 4 NO

N �5 (1, 5, 7, 3), (3, 7, 5, 1), (1, 6, 7, 2), (2, 7, 6,
1), (2, 6, 6, 2), (1, 7, 7, 1)

N �6 (1, 6, 7, 2), (2, 7, 6, 1), (2, 6, 6, 2), (1, 7, 7, 1)

N �7 (1, 7, 7, 1)

N �8 NO

Since there are no length-l irreps with l �5 for N �9, the
above list, together with the already known length-2 and
length-3 irreps, provides the complete classification of the
admissible field content of the irreducible representations for
N �8.

Please note that the length-4 irrep of N �3, (1, 3, 3, 1), is
self-dual under the [14] high � low spin duality, while two
of the non-equivalent length-4 N �5 irreps are self-dual,
(2, 6, 6, 2) and (1, 7, 7, 1). The remaining ones are pair-
-wise dually related (( , , , ) ( , , , )1 5 7 3 3 7 5 1� and ( , , , )1 6 7 2 �

( , , , )2 7 6 1 ).
The N �9 length-4 irreducible multiplet (d d d d1 2 3 4, , , ) is

for simplicity expressed in terms of the two positive integers
h d� 1, k d� 4, since d h3 16� � , d k4 16� � . The complete list
of N �9 length-4 fields content is expressed by h, k satisfying
the constraint

h k� �8. (5.44)

N �10 is the lowest supersymmery admitting length-5
irreps. The field content of its length-4 irreps is given by
( , , , )d d d d1 2 3 4 , expressed in terms of the two positive integers
h d� 1, k d� 4, since d h3 32� � , d k4 32� � . If we set

r h k� min( , ) (5.45)

the non-equivalent length-4 field content is given by the or-
dered pair of positive integers h, k satisfying the constraint

h k r� � �24. (5.46)
For N �11the length-4 fields content ( , , , )d d d d1 2 3 4 is ex-

pressed in terms of the two positive integers h d� 1, k d� 4,
since d h3 64� � , d k2 64� � . Setting as before r h k� min( , )
and introducing the s(r) function defined through

s r
r r

( )
, ,

�
� ��

 
!

"
#
$

8
0

1 7for
otherwise

�
(5.47)

we can express the constraints on h, k as
h k r s r� � � �( ) 48. (5.48)

6 The off-shell invariant actions of the
N � 4 sigma models
In the late 1980’s and early 1990’s, the whole set of

off-shell invariant actions of the N � 4 supersymmetries were
produced ([5] and references therein), by making use of the
superfield formalism. This result was reached after slowly
recognizing the multiplets carrying a representation of the
one-dimensional N � 4 supersymmetry. The results discussed
here allow us to reconstruct, in a unified framework, all
off-shell invariant actions of the correct mass-dimension (the
mass-dimension d �2 of the kinetic energy) for the whole set
of N � 4 irreducible multiplets. They are given by the (4, 4),
(3, 4, 1), (2, 4, 2) and (1, 3, 4) multiplets.

We are able to construct the invariants without using a
superfield formalism. We use instead a construction which
can be extended, how we will prove later, even for large values
of N, in the cases where the superfield formalism is not avail-
able. We will use the fact that the supersymmetry generators
Qi’s act as graded Leibniz derivatives. Manifestly invariant ac-
tions of the N-extended supersymmetry can be obtained by
expressing them as

I t Q Q f x x xN k� � �� d ( ( , , , ))1 1 2� � (6.49)

with the supersymmetry transformations applied to an ar-
bitrary function of the 0-dimensional fields xi’s, i k�1, ,�

entering an irreducible multiplet of the N-extended super-
symmetry. Since the supersymmetry generators admit mass-
-dimension � 1

2 (being the “square roots” of the Hamiltonian),
we have that (6.49) is a manifestly supersymmetric invariant
whose lagrangian density Q Q f x x xN k1 1 2� �� �( , , , ) has a di-
mension d N� 2 . For N � 4 the lagrangian density has the cor-
rect dimension of a kinetic term.

The k variables xi’s can be regarded as coordinates of a
k-dimensional manifold. The corresponding actions can
therefore be seen as N � 4 supersymmetric one-dimensional
sigma models evolving in a k-dimensional target manifold.
For each N � 4 irrep we get the following results. In all cases
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below the arbitrary 
( )xi function is given by 
 � � f x( ). We
get the following list.
i) The N � 4 (4, 4) case. We have:
Q x x x x xi j j i ij ijk k i ij ijk k( , ; , ) ( , ; � , � � )� � � 
 � � � 
 �� � � � � ,

( , ; , ) ( , ; �, � ).Q x x x xj j j j4 � � � ��
(6.50)

The most general invariant Lagrangian L of dimension
d �2 is given by
L x x x

x

j j j

x j j ijk i j
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1
�

6
� �� � �ljk l k k.

(6.51)

ii) The N � 4 (3, 4, 1) case. We have:
Q x g x g xi j j ij ijk k i ij ijk k i( ; , ; ) ( ; � ; � ; ),� � 
 � � � 
 � �� � � � �

Q x g g xj j j j j4( ; , ; ) ( ; , � ; ).� � � ��
(6.52)

The most general invariant Lagrangian L of dimension
d �2 is given by
L x x g

x g

j j j

i ijk j k j k

� � � �

� �


 �� � �

� 
 � ��� � �

( )[ � � � ]

[ �

� 2 2

1
2

) � ]

.

� �

�

g xi i j j

ijk i j k

�� � �



� �� � �

�

6

(6.53)

iii) The N � 4 (2, 4, 2) case. We have:
Q x y g h x g h y1 0 1 2 3 0 3 1( , ; , , , ; , ) ( , ; �, , , � ; � , �� � � � � � � �� � � � 2

2 0 1 2 3 3 0 2

),
( , ; , , , ; , ) ( , ; �, , , �; �Q x y g h y h g x� � � � � � �� � � � , � ),
( , ; , , , ; , ) ( , ; , � �, ;

�
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�
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1

3 0 1 2 3 2 1Q x y g h h y x g �
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� �
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3 0

4 0 1 2 3 1 2Q x y g h g x y h; � , � ).� �0 3

(6.54

)
The most general invariant Lagrangian L of dimension

d �2 is given by
L x y x y g h

y
j j

x
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(6.55)
iv) The N � 4 (1, 4, 3) case. We have:
Q x g g x gi j j i i ij ijk k ij ijk k( ; , ; ) ( , � ; � � )� � � � 
 � 
 � � �� � � � � ,

( ; , ; ) ( ; �, ; � ).Q x g x gj j j j4 � � � ��
(6.56)

The most general invariant Lagrangian L of dimension
d �2 is given by
L x x g

x g g

i i i

i i ijk i j k
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(6.57)

It is worth recalling that N � 4 is associated, as we have
discussed, to the algebra of the quaternions. This is why in
cases (4, 4), (3, 4, 1) and (1, 4, 3) the invariant actions can be
written by making use of the quaternionic tensors 
ij and �ijk.

In the (2, 4, 2) case two fields are dressed to be auxiliary fields
and this spoils the quaternionic covariance property.

7 Octonions and N � 8 sigma-models
Just as the N � 4 supersymmetry is related with the alge-

bra of quaternions, the N �8 supersymmetry is related with
the algebra of the octonions. More specifically, it can be
proven that the N �8 supersymmetry can be produced from
the lifting of the Cl(0, 7) Clifford algebra to Cl(0, 9). On the
other hand, it is well-known, as we have discussed before, that
the seven 8×8 antisymmetric gamma matrices of Cl(0, 7) can
be recovered by the left-action of the imaginary octonions on
the octonionic space. As a result, the entries of the seven
antisymmetric gamma-matrices of Cl(0, 7) can be expressed
in terms of the totally antisymmetric octonionic structure con-
stants Cijk’s. The non-vanishing Cijk’s are given by

C C C C C C C123 147 165 246 257 354 367 1� � � � � � � (7.58)

The non-vanishing octonionic structure constants are associ-
ated with the seven lines of the Fano projective plane, the
smallest example of a finite projective geometry, see [24]. The
N �8 supersymmetry transformations of the various irreps
can, as a consequence, be expressed in terms of octonionic
structure constants. This is in particular true for the dressed
(1, 8, 7) multiplet, admitting seven fields which are “dressed”
to become auxiliary fields. This is an example of a multiplet
which preserves the octonionic structure since the seven
dressed fields are related to the seven imaginary octonions.
We have that the supersymmetry transformations are given
by

Q x g g x C g Ci j j i i ij ijk k ij ijk k( ; , ; ) ( , � ; � � )� � � � 
 
 � �� � � � � ,

( ; , ; ) ( ; �, ; � ).Q x g x gj j j j8 � � � ��
(7.59)

for i j k, , , ,�1 7� . The strategy for constructing the most gen-
eral N �8 off-shell invariant action of the (1, 8, 7) multi-
plet makes use of the octonionic covariantization principle.
When restricted to an N � 4 subalgebra, the invariant actions
should have the form of the N � 4 (1, 4, 3) action (6.57). This
restriction can be made in seven non-equivalent ways (the
seven lines of the Fano plane). The general N �8 action
should be expressed in terms of octonionic structure con-
stants. With respect to (6.57), an extra-term could in principle
be present. It is given by �dt x Cijk i j k l� � � � �( ) and is con-
structed in terms of the octonionic tensor of rank 4

C Cijkl ijklmnp mnp�
1
6

� (7.60)

(where �ijklmnp is the seven-index totally antisymmetric ten-
sor). Please note that the rank-4 tensor is obviously vanishing
when restricting to the quaternionic subspace. One immedi-

©  Czech Technical University Publishing House http://ctn.cvut.cz/ap/ 67

Acta Polytechnica Vol. 48  No. 2/2008



ately verifies that the term �dt x Cijk i j k l� � � � �( ) breaks the
N �8supersymmetries and cannot enter the invariant action.
As concerns the other terms, starting from the general action
(with i j k, , , ,�1 7� )

�S t x x g

x g C g

i i i

i i ijk i

� � � �

� � �

� d 
 �� � �


 � � �

( )[ � � � ]

( )[

2 2

1
2

�

j k

ijk i j k
x

C

�



� � � �

]

( )
[ ]�

��

6

(7.61)

we can prove that the invariance under the Qi generator
( , , )�1 7� is broken by terms which, after integration by parts,
contain at least a second derivative ��
 . We obtain, e.g., a
non-vanishing term of the type � ��dt C gijk i k l
 � �

�
2 . In order

to guarantee the full N �8 invariance (the invariance under
Q8 is automatically guaranteed) we have therefore to set
�� �
 � �x 0, leaving 
 a linear function in x. As a result, the most

general N �8 off-shell invariant action of the (1, 8, 7) multi-
plet is given by

�S t ax b x g

a g C g

i i i

i i ijk i j

� � � � �

� �

� d ( )[ � � � ]

[

2 2

1
2

�� � �

� � � � �k ] .
(7.62)

We can express this result in the following terms: the associa-
tion of the N �8 supersymmetry with the octonions implies
that the octonionic structure constants enter as coupling con-
stants in the N �8 invariant actions. The situation w.r.t. the
other N �8 multiplets is more complicated. This is due to the
fact that the dressing of some of the bosonic fields to auxiliary
fields does not respect octonionic covariance. The construc-
tion of the invariant actions can however be performed along
similar lines, the octonionic structure constants being re-
placed by the “dressed” structure constants. The procedure
for a generic irrep is more involved than in the(1, 8, 7) case.
The full list of invariant actions for the N �8 irreps is cur-
rently being written. The results will be reported elsewhere.
The method proposed is quite interesting because it allows us
in principle to construct the most general invariant actions.
It is worth mentioning that various groups, using N �8super-
field formalism, are still working on the problem of con-
structing the most general invariant actions.

Let us close this section by pointing out that the only sign
of the octonions is through their structure constants entering
as parameters in the (7.62) N �8 off-shell invariant action.
(7.62) is an ordinary action, in terms of ordinary associative
bosonic and fermionic fields closing an ordinary N �8 super-
symmetry algebra.

8 Non-equivalent representations with
the same field content

The irreducible representations of the N-extended super-
symmetry algebra are nicely presented in terms of N-colored
graphs with arrows (we will explain below how to draw the
graphs). The existence of irreducible representations admit-
ting the same field content, but non-equivalent graphs was
pointed out in [25]. In [15] the non-equivalent graphs associ-
ated to irreducible representations up to N �8were classified.
We discuss here both construction of [15] and also its main re-
sults. Since it can be quite easily proved that non-equivalent
graphs are not encountered for N � 4, it is sufficient to dis-
cuss the irreducible representations of N �5 6 7 8, , , , which are
obtained through a dressing of the N �8 length-2 root multi-
plet of type (8, 8) (see the previous discussion). Inequivalent
graphs (see [15]) are described by the so-called connectivity of
the irreps. Connectivity can be understood as follows. For the
class of irreducible representations under consideration any
given field of dimension d is mapped, under a supersymmetry
transformation, either

i) to a field of dimension d � 1
2 belonging to the multiplet

(or to its opposite, the sign of the transformation being
irrelevant for our purposes) or,

ii) to the time-derivative of a field of dimension d � 1
2.

If the given field belongs to an irrep of the N-extended
one-dimensional supersymmetry algebra, therefore k N� of
its transformations are of type i), while the N k� remaining
ones are of type ii). Let us now specialize our discussion to a
length-3 irrep (the interesting case for us). Its field content is
given by (n n n n1 1, , � ), while the set of its fields is expressed by
( ; ; )x gi j k� , with i n�1 1, ,� , j n�1, ,� , k n n� �1 1, ,� . The xi’s
are 0-dimensional fields (the �j are 1

2-dimensional fields and
gk are 1-dimensional fields, respectively). The connectivity
associated to the given multiplet is defined in terms of the �g

symbol. It encodes the following information. The n 1
2-dimen-

sional fields �j are partitioned in the subsets of mr fields
admitting kr supersymmetry transformations of type i) (kr can
take the 0 value). We have m nrr� � . The �g symbol is
expressed as

� g k km m� � �1 21 2
� (8.63)

As an example, the N �7 (6, 8, 2) multiplet admits con-
nectivity � g � �6 22 1 (see (9.68)). This means that there are
two types of fields �j. Six of them are mapped, under super-
symmetry transformations, into the two auxiliary fields gk.
The two remaining fields �j are only mapped into a single
auxiliary field.

An analogous symbol, x�, can be introduced. It describes
the supersymmetry transformations of the xi fields into the �j
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fields. This symbol is, however, always trivial. An N-irrep with
( , , )n n n n1 1� field content always produces x n N� � 1 . Let us
now discuss how to compute the connectivities. (8, 8) involves
8 bosonic and 8 fermionic fields entering a column vector (the
bosonic fields are accommodated in the upper part). The
8 supersymmetry operators �Qi (i �1 8, , )� in the (8, 8) N �8
irrep are given by the matrices

� , � ,Q
H

Q
Hj

j

j
�

� �
�

�
		




�
�� �

�
�

�
	




�
�

0
0

0
08
8

8

�

�

1
1

(8.64)

where the �j matrices ( j �1 7, ,� ) are the 8×8 generators of
the Cl(0, 7) Clifford algebra and H i t� d

d is the Hamiltonian.
The Cl(0, 7) Clifford irrep is uniquely defined up to similarity
transformations and an overall sign flipping [22]. Without
loss of generality we can unambiguously fix the �j matrices to
be given as in the Appendix. Each �j matrix (and the 18 iden-
tity) possesses 8 non-vanishing entries, one in each column
and one in each row. The whole set of non-vanishing entries
of the eight (A.1) matrices fills the entire 8 8 64� � squares of
a “chessboard”. The chessboard appears in the upper right
block of (8.64).

The length-3 and length-4 N �5 6 7 8, , , irreps (no irrep
with length l % 4 exists for N �9, see [14]) are acted upon by
the Qi’s supersymmetry transformations, obtained from the
original �Qi operators through a dressing,

� �Q Q DQ Di i i� � �1, (8.65)

realized by a diagonal dressing matrix D. It should be noted
that only the subset of “regular” dressed operators Qi (i.e.,
having no 1

H or higher poles in its entries) act on the new irre-
ducible multiplet. Apart from the self-dual (4, 8, 4) N �5 6,
irreps, without loss of generality, for our purpose of comput-
ing the irrep connectivities, the diagonal dressing matrix D
which produces an irrep with ( , , )n n n n1 1� fields content can
be chosen to have its non-vanishing diagonal entries given by

pq qd , with dq �1 for q n�1 1, ,� and q n n� �1 2, ,� , while
d Hq � for q n n� �1 1, ,� . Any permutation of the first n
entries produces a dressing which is equivalent, for comput-
ing both the field content and the �g connectivity, to D. The
only exceptions correspond to the N �5 (4, 8, 4) and N �6
(4, 8, 4) irreps. Besides the diagonal matrix D as above, non-
-equivalent irreps can be obtained by a diagonal dressing �D
with diagonal entries 
pq qd� , with � �d Hq for q � 4 6 7 8, , , and
� �dq 1for the remaining values of q.

Similarly, the( , , , )n n n n n n1 2 1 2� � length-4 multiplets are
acted upon by the Qi operators dressed by D, whose non-
-vanishing diagonal entries are now given by 
pq qd , with dq �1
for q n�1 1, ,� and q n n n� � �2 1 22 , ,� , while d Hq � for
q n n n� � �1 21 2, ,� .

The N �5 6 7 8, , , length-2 (8, 8) irreps are unique (for the
given value of N), see [26].

It is also easily recognized that all N �8 length-3 irreps
of a given field content produce the same value of �g con-
nectivity (8.63). As concerns the length-3 N �5 6 7, , irreps
the situation is as follows. Let us consider the irreps with
( , , )k k8 8 � field content. Their supersymmetry transforma-
tions are defined by picking an N &8 subset from the com-
plete set of 8 dressed Qi operators. It is easily recognized that
for N �7, no matter which supersymmetry operator is dis-
carded, any choice of the seven operators produces the same
value for the �g connectivity. Irreps with different connectivity

can therefore only be found for N �5 6, . The
8
6

28
�

�
	




�
� � choices

of N �6 operators fall into two classes, denoted as A and B,
which can, potentially, produce ( , , )k k8 8 � irreps with dif-

ferent connectivity. Similarly, the
8
5

56
�

�
	




�
� � choices of N �5

operators fall into two A and B classes which can, poten-
tially, produce irreps of different connectivity. For some given
( , , )k k8 8 � irrep, the value of �g connectivity computed in
both N �5 (as well as N �6) classes can actually coincide. In
the next Section we will show when this feature does indeed
happen.

To be specific, we present a list of representatives of
the supersymmetry operators for each N and in each N �5 6,
A, B class. We have, with diagonal dressing D,

N
N

N A
N B
N A
N B

�

�

�

�

�

�

8
7

6
6
5
5

( )
( )
( )
( )

case
case
case
case

�

�

�

�

�

�

Q Q Q Q Q Q Q Q
Q Q Q Q Q Q Q
Q

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7

, , , , , , ,
, , , , , ,

1 3 4 5 6 7

1 2 3 4 5 6

3 4 5 6 7

2

, , , , ,
, , , , ,
, , , ,
,

Q Q Q Q Q
Q Q Q Q Q Q
Q Q Q Q Q
Q Q Q Q Q3 4 5 6, , ,

(8.66)

and, with diagonal dressing �D for the (4, 8, 4) irreps,

N A
N A

Q Q Q Q Q Q
Q Q Q

� �

� �

�

�

6
5

1 3 4 5 6 7

3 4

( )
( )

, , , , ,
, ,

case
case 5 6 7, ,Q Q

(8.67)

We are now in a position to compute the connectivities of
the irreps (the results are furnished in the next Section). Quite
literally, the computations can be performed by filling a chess-
board with pawns representing the allowed configurations.

9 Classification of the irrep
connectivities
In this Section we report the results of the computation of

the allowed connectivities for the N �5 6 7, , length-3 irreps. It
turns out that the only values of N �8 allowing the existence
of multiplets with the same field content but non-equivalent
connectivities are N �5and N �6. The results concerning the
allowed �g connectivities of the length-3 irreps are reported
in the following table (the A, �A , B cases of N �5 6, are
specified)
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It is useful to explicitly present, in at least one pair of ex-
amples, the supersymmetry transformations (depending on
the �i global fermionic parameters) for multiplets admitting
different connectivities and the same field content. We write
below a pair of N �5 irreps (the (4, 8, 4)A and the (4, 8, 4)B
multiplets) differing by connectivity. It is also convenient to vi-
sualize them graphically. The graphical presentation at the
end of this Section is given as follows. Three rows of (from bot-
tom to up) 4, 8 and 4 dots are associated with the xi, �j and gk
fields, respectively. Supersymmetry transformations are rep-
resented by lines of 5 different colors (since N �5). Solid lines
are associated to transformations with a positive sign, and
dashed lines to transformations with a negative sign. It is eas-
ily recognized that in the type A graph there are 4 �j points
with four colored lines connecting them to the gk points, while
the 4 remaining �j points admit a single line connecting them
to the gk points. In the type B graph we have 4 �j points with
three colored lines and the 4 remaining �j points with two col-
ored lines connecting them to the gk points.

The supersymmetry transformations are explicitly given
by
i) The N �5 (4, 8, 4)A transformations:


 � � � � � � � � � �


 � � � � � � � �

x

x
1 2 3 4 5 3 6 1 7 5 8

2 2 4 3 5 4 6 5

� � � � �

� � � � 7 1 8

3 2 1 1 5 5 6 4 7 3 8

4 2 2 5 5

�

� � � � � �

� � � �

� �
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x
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i x g g g g�
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i x g g g
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(9.69)

ii) The N �5 (4, 8, 4)B transformations:

 � � � � � � � � � �
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x

x
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(9.70)
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lenght-3 N �7 N �6 N �5

(9.68)

(7, 8, 1) 7 11 0� 6 21 0� 5 31 0�

(6, 8, 2) 6 22 1� 6 22 0� (A)
4 42 1� (B)

4 2 22 1 0� � (A)
2 62 1� (B)

(5, 8, 3) 5 33 2� 4 2 23 2 1� � (A)
2 63 2� (B)

4 3 13 1 0� � (A)
1 5 23 2 1� � (B)

(4, 8, 4) 4 44 3� 4 44 2� (A
2 4 24 3 2� � ( �A )
83 (B)

4 44 1� (A)
1 3 3 14 3 2 1� � � ( �A )
4 43 2� (B)

(3, 8, 5) 3 55 4� 2 2 45 4 3� � (A)
6 24 3� (B)

1 3 45 4 2� � (A)
2 5 14 3 2� � (B)

(2, 8, 6) 2 66 2� 2 66 4� (A)
4 45 4� (B)

2 2 45 4 3� � (A)
6 24 3� (B)

(1, 8, 7) 1 77 6� 2 66 5� 3 55 4�

Fig. 1: Graph of the N � 5(4, 8, 4) multiplet of 4 44 1� connectiv-
ity (type A)
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10 Tensoring irreducible
representations: their fusion
algebras and the associated graphs

The tensor product of linear irreducible representations
can be decomposed into their irreducible constituents. This
decomposition contains useful information in the construc-
tion of bilinear (in general, multilinear) terms entering a
supersymmetric invariant action. We recall that the auxiliary
fields in a given representation transform as a total derivative
(a time derivative in one dimension). Useful information con-
cerning the decomposition of the tensor products of the irre-
ducible representations can be encoded in the so-called fusion
algebra of the irreps and their supersymmetric vacua. The
notion of a fusion algebra of the supersymmetric vacua of the
N-extended one dimensional supersymmetry, introduced in
[14], is constructed by analogy with the fusion algebra for ra-
tional conformal field theories. Fusion algebras can also be
nicely presented in terms of their associated graphs. We ex-
plicitly present here the N �1 and N �2 fusion graphs (with
two subcases for each N, according to whether or not the
irreps are distinguished w.r.t. their bosonic/fermionic statis-
tics). Let us discuss here how to present the [14] results in
graphical form. The irreps correspond to points. Nij

k oriented

lines (with arrows) connect the [j] and the [k] irrep if the de-
composition [ ] [ ] [ ]i j N kij

k� � holds. The arrows are dropped
from the lines if the [j] and [k] irreps can be interchanged. The
[i] irrep should correspond to a generator of the fusion alge-
bra. This means that the whole set of N Nl lj

k� fusion matrices
is produced as the sum of powers of the N Ni ij

k� fusion
matrix.

Let us discuss explicitly the N �2 case. We obtain the fol-
lowing list of four irreps (if we discriminate their statistics):

[ ] ( , ) ;
[ ] ( , , ) ;
[ ] ( , ) ;
[ ] ( , ,

1 2 2
2 1 2 1
3 2 2
4 1 2

�

�

�

�

Bos

Bos

Fer

1)Fer

(10.71)

The corresponding N �2 fusion algebra is realized in terms
of four 4×4, mutually commuting, matrices given by

N X

N N

1

2 4

1 2 1 0
0 2 0 2
1 0 1 2
0 2 0 2

0 2 0 2
0 2 0 2
0 2
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�

�
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�
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�

�
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Y

N

;

�
�

� Z.

(10.72)

The fusion algebra admits three distinct elements, X, Y, Z
and one generator (we can choose either X or Z), due to the
relations

Y X X Z X X X� � � � � �
1
8

2
1
4

6 43 3 2( ), ( ). (10.73)

The vector space spanned by X, Y, Z is closed under
multiplication

X Z ZX X Y Z

XY Y YZ Y

2 2

2

2

4

� � � � �

� � �

, (10.74)

This fusion algebra corresponds to the “smiling face” graph
below. We obtain the following four tables for the fusion
graphs of the N �1and N �2 supersymmetric quantum me-
chanics irreps. The “A” cases below correspond to ignore the
statistics (bosonic/fermionic) of the given irreps. In the “B”
cases, the number of fundamental irreps is doubled w.r.t. the
previous ones, in order to take the statistics of the irreps into
account. We have

©  Czech Technical University Publishing House http://ctn.cvut.cz/ap/ 71

Acta Polytechnica Vol. 48  No. 2/2008

Fig. 2: Graph of the N � 5 (4, 8, 4) multiplet of 4 43 2� connectiv-
ity (typeB )



11 Conclusions
Supersymmetric quantum mechanics is a fascinating sub-

ject with several open problems. The potentially most inter-
esting one concern the construction of off-shell invariant
actions with the dimension of a kinetic term for large values of
N (let us say N %8). They could provide a hint towards an
off-shell formulation of higher dimensional supergravity and
M-theory. Other important topics concern the nature of the
non-linear realizations of the supersymmetry and their con-
nection with linear representations. We have here presented
the rich mathematics underlying the linear irreducible repre-
sentations realized on a finite number of time-dependent
fields. We have shown how to use this information to construct
supersymmetric invariant one-dimensional sigma models.
We have seen that behind supersymmetric quantum mechan-
ics there exists an interlacing of several mathematical struc-
tures, Clifford algebras, division algebras, graph theory. Fur-
ther mathematical structures seem to enter the picture
(Cayley-Dickson algebras, exceptional Lie algebras, etc.). The
theory of supersymmetric quantum mechanics is rich in sur-
prises and seems to lie at the crossroads of various mathemati-
cal disciplines. We have just given a taste of it here.
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Appendix

We present here for completeness the set (unique up to similarity transformations and an overall sign flipping) of the seven
8×8 gamma matrices �i which generate the Cl( , )0 7 Clifford algebra. The seven gamma matrices, together with the 8-dimen-
sional identity 18, are used in constructing the N �5 6 7 8, , , supersymmetry irreps, as explained in the main text.

�1

0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1
0 0 0 0 0

�

�

�

0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0

0 1

2

�

�

�

�

	
	
	
	
	
	
	
	
	
	




�

�
�
�
�
�
�
�
�
�
�

��

0 0 0 0 0 0
1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0

�

�

�

0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

0 0 0 0 0 0 1

3

�

�

�

	
	
	
	
	
	
	
	
	
	




�

�
�
�
�
�
�
�
�
�
�

��

0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0

�

�

� 0 0
0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0
0 0 0 1

4

�

�

�

	
	
	
	
	
	
	
	
	
	




�

�
�
�
�
�
�
�
�
�
�

��

0 0 0 0
1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0

�

�

�

�

0 0 0 1 0 0

0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0

5

�

�

	
	
	
	
	
	
	
	
	
	




�

�
�
�
�
�
�
�
�
�
�

��

0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0
0 0 1 0 0 0 0

�

�

�

� 0

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0

6

�

�

	
	
	
	
	
	
	
	
	
	




�

�
�
�
�
�
�
�
�
�
�

�

�

�

0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

�

�

�

�

�

	
	
	
	
	
	
	
	
	
	




�

�
�
�
�
�
�
�
�
�
�

�

�

�

�7

0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

�

�

�

�

	
	
	
	
	
	
	
	
	
	




�

�
�
�
�
�
�
�
�
�
�

�18

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

�

�

	
	
	
	
	
	
	
	
	
	




�

�
�
�
�
�
�
�
�
�
�

(A.1)



[15] Kuznetsova, Z., Toppan, F.: Mod. Phys. Lett., Vol. A 23
(2008), p. 37 (also hep-th/0701225).

[16] Bellucci, S., Krivonos, S.: hep-th/0602199.
[17] Toppan, F.: Nucl. Phys. B (Proc. Suppl.) 102 &103 (2001),

p. 270.
[18] Carrion, H.L., Rojas, M. Toppan, F.: JHEP 0304 (2003),

p. 040.
[19] Wess, J., Bagger, J.: Supersymmetry and Supergravity, 2nd

ed., Princeton Un. Press (1992).
[20] Atiyah, M.F., Bott, R., Shapiro, A.: Topology (Suppl. 1),

Vol. 3 (1964), p. 3.
[21] Porteous, I.R.: Clifford Algebras and the Classical Groups,

Cambridge Un. Press, 1995.

[22] Okubo, S.: J. Math. Phys., Vol. 32 (1991), p. 1657; ibid.
(1991), p. 1669.

[23] Faux, M., Gates Jr., S.J.: Phys. Rev. D 71 (2005) 065002.
[24] Baez, J.: The Octonions, math.RA/0105155.
[25] Doran, C.F., Faux, M.G., Gates Jr., S.J., Hubsch, T., Iga,

K.M., Landweber, G.D.: hep-th/0611060.
[26] Toppan, F.: hep-th/0612276.

Francesco Toppan
e-mail: toppan@cbpf.br

CBPF
Rua Dr. Xavier Sigaud 150
cep 22290-180, Rio de Janeiro (RJ), Brazil

74 ©  Czech Technical University Publishing House http://ctn.cvut.cz/ap/

Acta Polytechnica Vol. 48  No. 2/2008


	Table of Contents
	Lectures on Classical Integrable Systems and Gauge Field Theories 3
	M. Olshanetsky

	25 Years of Quantum Groups: from Definition to Classification 23
	A. Stolin

	Correlation Functions for Lattice Integrable Models 27
	F. Smirnov
	3öLectures on Noncommutative Geometry 34
	A. Sitarz

	Extended Supersymmetries in One Dimension 56
	F. Toppan






<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /CZE <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


