
1 What is noncommutative geometry?

“... to savour the strange warm glow of being much
more ignorant than ordinary people, who are only

ignorant of ordinary things.“

(Terry Pratchett, “Equal Rites”)

Noncommutative geometry begins with classical geome-
try and extends into the realm of abstract algebras and opera-
tors. One may, of course, say that noncommutative geometry
studies the geometry of quantum spaces – or, to be more explicit
– the geometry of noncommutative algebras. Clearly, the
word quantum, although at first only superficially related to
quantum mechanics or quantum field theory might be the right
one - both physics and mathematics are involved in many ex-
amples and there is a huge interplay between them. However,
the notion of quantum spaces is a delicate one since the objects
that noncommutative geometry attempts to study are (usu-
ally) not spaces – they cannot be visualized.

Then why study noncommutative geometry? First of all, it
seems to be a natural and rich extension of the concept of
spaces, one that can admit the notion of geometry in its various
aspects. Moreover, within noncommutative geometry one has
various objects on the same footing and one can do more than
within classical geometry.

Last not least one should mention that many basic exam-
ples do arise from physics: the phase space in quantum me-
chanics, the Brillouin zone in the Quantum Hall Effect, the
geometry of finite spaces in the noncommutative description
of the Standard Model, quantum groups in integrable models
or the quantized target space of string theory.

Before we begin this easy walk through the non-
commutative reality, we need to mention that – like any sub-
ject, that is in the early stage of development, it has many
branches. The approach presented here falls close to Connes’
noncommutative geometry (It appears that the wording Con-
nesian variety has also been used to describe this approach...)
– (58B34, to give Mathematical Subject Classification num-
ber) and noncommutative differential geometry – (46L87). How-
ever, the topics that we shall mention range fromC*-algebras,
differential algebras to ideals and exotic traces.

Let us also attempt to place the subject matter of noncom-
mutative geometry in relation to other subjects in physics and

mathematics. Clearly, in mathematics noncommutative ge-
ometry lies between algebra and geometry (meaning rather
differential geometry), based on fundamental results of oper-
ator algebras. There are, however, many other, sometimes not
evident connections – with topology, probability, measure the-
ory, algebraic geometry, ring theory and also with number
theory. In physics, it includes both classical field theory, quan-
tum field theory, renormalization, quantum mechanics as well
as gravity and string theory. Of course, one should be aware
that we are far from certain whether the notion of space-time
is indeed best described by noncommutative geometry and
we still need some crucial theoretical steps to pursue this goal.
Nevertheless some qualitative considerations and also the evi-
dence that we already have from high energy physics make
this line of research quite promising.

In this set of lectures we shall present an overview of
mathematical objects and tools leading us towards the Non-
commutative World. This set of lectures is by no means
self-consistent and many statements are quoted without
proofs. Some statements are also presented not in their most
general form – we do this on purpose, having as a basic guide
the need to explain the ideas rather than technical details.
We assume some basic knowledge of algebra, differential
geometry, operator algebras, Hilbert spaces as well as some
knowledge of gauge theory and characteristic classes. Al-
though not essential some knowledge in these topics is a big
help when learning noncommutative geometry – a good
example of a textbook that can be used as a starting point is
the classical text [4].

Let us finish this introduction with the quotation from
Alain Connes’ interview with George Skandalis (Newsletter of
the European Mathematical Society, No 3. (2007)).

� What is noncommutative geometry? In your opin-
ion, is “noncommutative geometry” simply a better
name for operator algebras or is it a close but distinct
field ?
� Yes, it’s important to be more precise. First, non-
commutative geometry for me is this duality between
geometry and algebra, with a striking coincidence
between the algebraic rules and the linguistic ones.
Ordinary language never uses parentheses inside the
words. This means that associativity is taken into ac-
count, but not commutativity, which would permit
permuting the letters freely.
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2 Towards noncommutative topology
Mathemata mathematicis scribuntur.

(Mathematics is written for mathematicians.)

Nicolaus Copernicus

2.1 Where it all begins: Gelfand-Naimark
When we say space, we usually mean a topological space. It

may, of course, have some additional properties and features
but the basic ingredient, topology, is there. We usually assume
that the topology is Hausdorff, which means that every two
points can be separated by disjoint open sets. We know many
examples of topological spaces and we have a good notion of
continuous (complex valued) functions. One of the very basic
observations (that we know almost intuitively) is that all con-
tinuous functions over a topological space form a complex
vector space and that the product of two continuous functions
is still a continuous function. This says that we have an algebra
of continuous functions and, since we can take a complex con-
jugate of a function, it is a *-algebra. Let us assume for a while
that our space is compact, then clearly to each function we can
associate the supremum of its absolute value. Thus we arrive
at the norm of a function. Going a step further we come to the
notion of a C*-algebra with the following formal definition:

Definition 2.1: An involutive Banach algebra � (that is a com-
plex normed algebra, which is complete as a topological space
in the norm) such that

aa a* � 2, � �a �

is a C*-algebra.
So, to cut the story short: the algebra of continuous func-

tions on a compact Hausdorff space is a C*-algebra with a
unit! But does it work the other way round? Surprisingly (or
not surprisingly) yes, as we can state in the Gelfand-Naimark
theorem:

Theorem 2.2: Gelfand-Naimark A commutative unital C*-al-
gebra is an algebra of continuous functions on a compact
Hausdorff space.

We shall not discuss the details of the proof as this can be
found in numerous textbooks – and is (in principle) quite easy.
The points of the space are provided by the characters of the
algebra, which are continuous algebra morphisms from the
algebra to the complex numbers.

This is the dawn of noncommutative geometry. Why?
Note that C* algebras might not be commutative. Indeed,
take an example: the algebra Mn ( )� of matrices with complex
entries, with hermitian conjugation and matrix multiplication
is a very good and simple example of a noncommutative C*

algebra.
Then in the view of Gelfand-Naimark’s theorem we can

use noncommutative C* algebras as the definition of noncom-
mutative Hausdorff compact spaces. But these space have no
points or have just a couple of points! Coming back to the ma-
trix algebra Mn ( )� we see that for n �1 there are no charac-
ters at all.

Another very good (and generic, as we shall see) example
of a C*-algebra comes from the theory of Hilbert spaces. The

recipe is very easy: take a (separable) Hilbert space � and take
an algebra �(�) of bounded operators on � with an operator
norm. Then any norm closed subalgebra of �(�) is a (separa-
ble) C* algebra. Of course, our toy-model algebra Mn ( )� is in
fact of this type: just take� � �

n . The algebra of all bounded
operators on it is nothing else but Mn ( )� .

Of course, we have shown one of the most restrictive ver-
sions of the theorem. If we forget about unital, we still get
Hausdorff spaces but the are only locally compact.

2.2. Into the C*-world.
What are C* algebras ? There are many (isomorphic) defi-

nitions out of which we have already presented one. We know
that there are many C* algebras, and what we would like is to
have a description of them that would be on the same footing
– independently, whether there are commutative or noncom-
mutative. And we want not an abstract description but a
concrete one. Again, Gelfand, Naimark and Segal come to
our aid:

Theorem 2.3 (GNS): Every abstract C*-algebra � is isometri-
cally *-isomorphic to a concrete C* algebra of operators on a

Hilbert space �. If the algebra � is separable then we can take

� to be separable.

Now we have a powerful tool: a description of all C*-alge-
bras as operators on the Hilbert space. This is a good starting
point for noncommutative topology and towards many other
notions like measurable functions, for instance. To summarize
this section let us quote the dictionary, which establishes par-
allel notions between standard and noncommutative topology:

TOPOLOGY ALGEBRA

(locally compact) topological
space commutative C*-algebra

homeomorphism automorphism

continuous proper map morphism

compact space unital -algebra

open (dense) subset (essential) ideal

compactification unitization

Stone-Čech compactification multiplier algebra

Cartesian product tensor product

2.3 The tricky bits and examples
Among the first problems that arise in the noncommuta-

tive world and have no classical correspondence, are some
ambiguities in construction. For this reason, one should treat
some “equivalences” from the above dictionary with due
respect. A good example is the case of the tensor product of
noncommutative C* algebras, which might depend on the
completion of the algebraic tensor product of two algebras.
Let us first have a look at an example:

Example 2.4: Take an interval I � ( , )0 1 and the algebra of

continuous functions on it, C I( ). Of course, we can interpret
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each element of the tensor product C I C I( ) ( )� as a continu-

ous function on the Cartesian product I I I2 � � , but it clear
that not all continuous functions on I2 are of this form.

Of course, it is true thatC I C I( ) ( )� is dense inC I( )2 , so, in
order to work with tensor products of C* we need to work out
a way to complete the algebraic tensor product. This leads to a
rather extended and not unique construction unlike the topo-
logical Cartesian product of spaces. This is rather bad news
but we might find some comfort in the fact that many algebras
(called nuclear) do have unique completions of tensor prod-
ucts with them. The list includes all commutative algebras,
matrix algebras and – last but not least – the algebra of com-
pact operators (which we shall define later). So in the end,
there is no ambiguity in defining continuous functions on the
square, but it might be a different story for a noncommutative
square! Nevertheless, we shall always work with the algebraic
tensor product, keeping in mind that some further details
and more knowledge are needed when we try to think of
C* algebras.

We shall very often restrict ourselves to the C* algebras
generated by some concrete operators, which are defined by
their actions on the orthonormal basis. So, if T is a bounded
operator on a Hilbert space �, then we shall denote by C T*( )
the C* algebra, which is the norm closure of the algebra of all
polynomials in T, T*. Let us consider a couple of examples,
the first of which defines compact operators:

Example 2.5: Take Pn to be a one-dimensional projection on
a Hilbert space with basis { }ek k	0:

P e en k nk k� � , n k, 	0.

Then the smallest C* algebra that contains all projections Pn,
C Pn

*({ }) is the algebra of compact operators �.

Example 2.6: Let U be a unilateral shift on a Hilbert space
with basis { }ek k��:

U e en n� 
1, n ��.

Then the algebra C U*( ) is isomorphic to the algebra of con-
tinuous functions on the circle, C S( )1 .

Remark 2.7: Note that our intuition is that the operator U

corresponds to the function � � �� e i2 on the circle, where �

is the angle. However, this may not be the case. Take, for in-
stance, any monotonic, continuous function � :[ , ] [ , ]0 1 0 1� .
We can now replace one of the elements of the basis of the

Hilbert space by e i2� � �( ) and using the standard procedure
we can introduce a new orthonormal basis of the Hilbert
space, in which one of the basis vectors is proportional to the
chosen one. Certainly it will not be the basis we have in mind
and the unilateral shift operator U cannot then be identified

with e i2� �.

Example 2.8: Take T to be a unilateral shift on a Hilbert space
with basis { }ek k	0:

T e en n� 
1, n 	0.

Then the algebra C T*( ) is isomorphic to the algebra
C S( )1 
 �, in the following sense: there exist C*-algebra mor-
phisms i, � such that the following sequence is exact:

0 01� � �� � �� �K C T C Si *( ) ( )� .

Example 2.9: Take U, V to be the following unitary operators
on the Hilbert space with basis { }, ,em n m n��:

U e em n m n, ,� 
1 , V e e em n
i m

m n, ,� �



2
1

� � , m n, ��,

where � �� .

If � �0 we can identify the algebra with the continuous func-
tions on the torus. If � is irrational then the algebraC U V*( , ) is
the so-called irrational rotation algebra, aka functions on the
Noncommutative Torus.

It is easy to see that U and V satisfy:

U V e VUi� 2� �

Clearly, the above presentation of the Noncommutative To-
rus is not unique. We can take as the Hilbert space L2(S1) and
as operators U and V:

U f z z f z( ) ( )� , V f z f e zi( ) ( )� 2� � .

Both operators are unitary and both satisfy the same commu-
tation relation – is the C*-algebra then the same? It is reassur-
ing that the answer is positive (though it takes some time to
prove it).

3 Differential geometry
(noncommutative way)

Alice laughed: “There’s no use trying,” she said; “one
can’t believe impossible things.”

– “I daresay you haven’t had much practice,” said the
Queen. “When I was younger, I always did it for half
an hour a day. Why, sometimes I’ve believed as many

as six impossible things before breakfast.”

(Lewis Carroll, “Alice in Wonderland”.)

Having started with topology we have established a nice
setup for the discussion of noncommutative spaces. However,
we are still very far from geometry as topology does not distin-
guish between a ball and a cube! Our task in this section is to
carry out the parallels built up for C*-algebras as noncom-
mutative spaces for some more geometric notions. We shall
begin with a pure algebraic setup of differential calculi.

3.1 Differential calculi
In the course of differential geometry one begins with the

notion of a smooth manifold, C functions and vector fields.
This is, however, reserved for a purely commutative world as
can be immediately noticed when on takes the simplest exam-
ple of a noncommutative space, described by the algebra of
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matrices Mn ( )� , n �0. Suppose we want to have a vector field
– what is a vector field then? A good answer is that a vector
field is a derivation on the algebra of smooth functions:

Definition 3.1: A derivation � on an algebra � is a map
� :� �� satisfying the Leibniz rule:

� � �( ) ( ) ( )ab a b a b� 
 , � �a b, � .

A derivation is inner if there exist an elementx�� such that
for every a ��, �( ) [ , ]a x a� . A derivation which is not inner is
called an outer derivation.

Since for commutative algebras there are no inner deriva-
tions, vector fields are (in classical differential geometry)
outer derivations. But let us look at Mn ( )� – where every
derivation is in fact inner (which means that there are no
outer derivations). So, can we call them vector fields?

We can even take a much simpler example: a commutative
algebra of complex functions on two points. As a vector space
it has two basis vectors: a unit (1) and the function which takes
value 1 on the first point and �1 on the other, which we shall
call e. Each function is a linear combination of these two, and
the algebra structure is encoded in one simple identity e2 1� .
Now what is the space of the derivations? Clearly, there are no
inner ones, as the algebra is commutative. Assume that � is a
derivation. Then, using the Leibniz rule we have:

0 1 2� �� �( ) ( )e e,

which simply tells us that apart from the trivial derivation,
� �0, there are no derivations at all.

Of course, a good lesson to learn is that we have chosen a
bad object to start with. Instead of looking at the vector fields
we need to look at differential algebras, which generalize
nicely to the noncommutative world.

Definition 3.2: A differential graded algebra (DGA) over an

algebra � is an �-graded algebra, not necessarily finite, such

that the 0-th grade is isomorphic with � and that is equipped
with a degree linear map (grade increasing), which obeys the
graded Leibniz rule:

d d d( ) ( )�� �� � ��� 
 �1 ,

for any elements �, �, where � denotes the degree of the
form �.

There is, however, no unique way to construct such an ob-
ject in the noncommutative situation and one might have
many different DGAs over a single algebra – even in the com-
mutative case. Before we look at some interesting examples,
let us define an important DGA, which can be canonically
constructed for every algebra.

Proposition 3.3: We assume that the algebra � is unital. Let

	 u
1 ( )� be the kernel of the multiplication map in � �� :

	 u i i
i a b a b

a b

i i i ii

1

0

( )
, ;

�

�

� �
�
�
�

��

�
�
�

�� �
�

� �

Let us take as 	 u( )� the tensor algebra over � of 	 u
1 ( )� .

Then the linear map defined on	 u
0( )� �� as:

d a a au( ) � � � �1 1 ,

extends in a unique way to a degree 1 linear operator on
	 u( )� , which satisfies the graded Leibniz rule and is nil-
potent, du

2 0� . This DGA is called a universal DGA and du is
the universal external derivative.

Proof: It is a good exercise to have a look at the proof. Actually,

most of the properties of du are used in the construction. For

instance, we extend the definition of du in such a way that

the Leibniz rule is assured. The universal one-forms could

be always uniquely expressed as a d bi u ii� , for a bi i, ��,

a bi ii� �0. Indeed, an arbitrary universal one-form is of the

type a bi ii
�� for some a bi i, �� such that a bi i� �0. But:

( ) ( )� � � � 
 � � �� � � �a d b a b a b a bi u i
i

i i
i

i i
i

i i
i

1 .

We set:

d a d b d a d bu i u i
i

u i u i
i

� �
�

�

�
�

�

�

�
�
� �� .

This assures the graded Leibniz rule between elements of the
algebra and one-forms, and makes sure that du

2 0� on �. The
rest is just the application of the Leibniz rule. We extend du to
products of universal one-forms through:

d

d

u k

j
j k

j

k

( )

( )

� � �

� � � �

1 2

1
1 2

1

1

� � �

� � � � �


�
�

� � �

� � �

�

� �

for each �i u�	1 ( )� , i k�1, ,� . Of course, we need to check
that the definition is compatible with the tensor product over
�, which mean that it gives the same result on � ��� a and
� �a �� :

d a

d a d a

d a

u

u u

u

(

( ( ) ( )

( ( ) (

� �


�
 � � �

�
 �

�

�

� � 
 � �

� � 
 �

�

� �

�

1

1) ( ) ( ) ( )

( ( )

� �

�

� � � �

�
 �

� � 
 � �

� 
 � ��
�
�

� � �

�

d a a d

d a d a

u u

u u

1

1 �
�
� � 
 � �

� � 
 � �

�

� �

� �

� � �

� 
 � � �

�

�

( ) ( )

( ( ) ( )

(

1

1

a d

d a a d

d

u

u u

u � �
a ��

It is now a matter of easy verification that du
2 0� . �

From the above construction we obtain a very conve-
nient presentation of universal differential forms: each form
of degree k can be presented as a finite sum of elements
of the type a da dak0 1� . Moreover, having two forms
�a ka da da� 0 1� and �b ka db db� 0 1� they are different un-
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less for each i k�0 1, , ,� , ai and bi are linearly dependent. This
follows directly from the definition of	 u

k ( )� as the products
of k one-forms and the fact that each one-form is already in
that form. The rest is the iterative application of the Leibniz
rule.

Note that this hints at a very nice feature of the universal
differential algebra: each space of forms of fixed grade is gen-
erated as a left-module over � by the image of d. We did not
assume this in the definition of the DGA but we can use the
(nonstandard) name of a proper DGA for those that have this
property.

Finally we come to the question of the name. Universal
differential algebra owes its name its nice property: it is in-
deed universal! What does this mean? The following is due to
Karoubi:

Theorem 3.4: If	*( )� is a graded differential algebra over �

and � :� �� an algebra homomorphism, then there exists a
unique extension of �:

~ : ( ) ( )*� 	 	�
u � �� ,

which is a morphism of graded differential algebras:

d d� �� �� .

For our purposes, we shall actually need a consequence of
this statement,

Corollary 3.5: For any proper DGA, 	( )� , there exists a

surjective morphism of differential graded algebras:

� : ( ) ( )	 	u � �� .

Proof: We set:

�( ) ( )a d a d a a da dau u k k0 1 0 1� �� .

This is a well-defined morphism of differential algebras. But
since the differential graded algebra 	( )� is proper all its
elements are of the form a da dak0 1� and hence in the image
of �. �

Briefly, corollary 3.5 means that every proper differential
graded algebra over the algebra � is isomorphic to a quotient
of	 u( )� by a differential ideal, which is an ideal of the uni-
versal graded algebra, � ��	 u( ), such that du( )� �� .

To see how this works we need to look at a couple of
examples.

Example 3.6: Let � be the algebra of functions on two points
(described earlier). The bimodule of universal one-forms is
generated by due. Applying the Leibniz rule we see that:

e d e d e eu u( ) ( )
 �0,

so there are only two linearly independent one forms: de and
ede. Similarly one constructs all higher-order forms, which (as
in every universal calculus) can be of arbitrary order.

In fact, du is a derivation on the algebra �, but a special one. It
takes values not in � itself (it cannot, as we have shown before)
but in a bimodule over �.

Example 3.7: Let X be a space and � an algebra of functions
on X (we shall not need anything more about this algebra,
so we do not say whether the functions are measurable or
smooth, or just arbitrary). Now, consider the following differ-
ential graded algebra:

� �	k k
k i jX f X f x x i j x x( ) : , ( , , ) , :� � �  ! �� 1 0� if

with the product:

( )( , , , , , ) ( , , ) ( , ,f g x x x x f x x g x xk k k p k k k p" �
 
 
 
1 1 1 1� � � � )

f X g Xk p� �	 	( ), ( ) .

The external derivative d is defined on the functions

f X0
0�	 ( )

as:

d f x x f x f x( )( , ) ( ) ( )0 1 2 1 20 0� � ,

and then extended to forms of arbitrary order through:

( )( , , , ) ( ) ( , , � , , )d f x x x f x x xn n n
i

i n
i

1 1 2 1 21� � �
 
 
� �� ,

where �xi denotes that we just omit the i-th variable.

Exercise 3.8: Prove that d satisfies the graded Leibniz rule

and is nilpotent, du
2 0� . If X is a space consisting of a finite

number of points, can we identify the differential algebra
	( )X ?

Note that the differential graded algebra	( )X is in gen-
eral not a proper one. This depends strongly on the class of
functions that we consider, as we can easily see:

Exercise 3.9: Assume that X is the interval I and 	k X( ) are

polynomials (of variables) understood as functions on I k.
Show that the differential graded algebra is a proper one

in this case (that is, for each k	k X( ) is generated by the image

of d).

What happens if we take	k X( ) to be all continuous functions
on Ik?

Although 	( )X might not be proper, it appears to be a
suitable generalization of the universal differential graded al-
gebra, especially in the case, when the algebraic tensor prod-
ucts might not give us all elements to play with (as is the case
with smooth or continuous functions).

Example 3.10: An interesting question is whether we can
identify the standard de Rham differential graded algebra us-
ing the universal calculus and choosing a suitable quotient.
The answer is positive but again we need to be careful about
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the tensor products. The construction should be similar as in
example 3.7 with the algebra of smooth functions over X.

The de Rham differential calculus is obtained if we take the
quotient of this differential graded algebra	 s X( ) by the ideal
described as follows. Let � be the space of all functions on X2

such that:

lim
( , )

x y

f x y
x y� �

�0, x y X, � .

It is not difficult to observe that multiplication by smooth
functions from both sides does not lead outside �. Taking the
quotient	 s I1( ) � we first obtain all de Rham one-forms on X.
The construction of higher order forms is then a formality.

We already know that there are many noncommutative
differential calculi over one algebra. The universal one, apart
from its universality property, is not actually very interesting.
It carries very little information about the “space” un-
derneath. The interesting examples are “smaller” calculi.
Actually, even in the commutative case we might have many
differential graded algebras, which are neither de Rham, nor
universal. See the following example:

Example 3.11: Consider an algebra of smooth functions on
the circle and the following differential graded algebra. The

zero-forms are the smooth functions, 	k S C S( ) ( )1 1�  . The

bimodule of one-forms and the entire differential algebra is
generated by two one-forms, � and �. The following gives the
algebra rules and the action of the external derivative:

d f f f

d

f f f

d
f f

� 


�

� 


� #

�

#

( ) ( ) ,

,

( ) ,

,
,

  �

 �

�

� �

�

�

�

� �

� �

�

2

0

2

� � #

# �

� �

� �

,
,0

wheredenotes the standard derivative of the function on the
circle.

Note that a priori the differential algebra is infinite-dimen-
sional, as we can construct product of arbitrary numbers of �.
However, since � �# generates a differential ideal, we might
take a quotient and therefore set � �# �0. A point worth
mentioning is that although the algebra is commutative the
differential forms (which are not universal) do not commute
with functions!

3.2 Involution, tensor products and
representations

3.2.1 Involution

If the algebra � is equipped with an involution, we would
like to have this operation extended onto the differential alge-

bra. This is by no means a problem for the universal calculus,
as on the zero-forms we take the assumed involution on the
algebra and for higher-order universal forms we set:

( ) ( )* *da d a� � .

So the problem, when reduced to the universal case, is
trivial and the only thing we need to take care of is that the
differential ideal � ��	 u( ) is involution invariant � �* � .

Example 3.12: On the algebras of complex functions we have
a natural involution – complex conjugation. Taking the trivial

(but still interesting) example of two-point geometry, e e* � ,

we have de de� �( )*.

Exercise 3.13: Verify that in example 3.11 of the nonstandard

differential algebra over the circle we have: � �* � � and

� �* � .

3.2.2 Tensor products
Next, let us discuss the procedure for constructing the

differential graded algebra for the tensor product of two
algebras � and �. Assuming that the respective differential
algebras	*( )� ,	*( )� are given, there exists a canonical pro-
cedure for creating a differential algebra over the tensor
product, which uses the �2-graded tensor product:

	 	 	* * *( ) ( ) � ( )� � � �� � �

where �� means that we take the symmetric or antisymmetric
part of the tensor product, with respect to the degree of
forms. In other words the product of two forms of fixed
degrees �� ��	*( ) and �� ��	*( ) is always commutative
or anticommutative depending on their degrees:

� � � �
� �

� � � �
� �# � � #( )1 .

3.3 Representations of differential algebras
Finally, let us consider a specific way of obtaining differen-

tial graded algebras – connected with representations and
commutators. Let � be an algebra and let � be its representa-
tion on a vector space (not necessarily finite dimensional). Let
F be an endomorphism (a linear operator, in other words)
of this vector space.

Lemma 3.14: If � is a representation of the algebra �, then
for each linear operator F the following gives a representa-
tion of the universal differential algebra	 u( )� :

�

� � � �

F n

n

a da da da
a F a F a F a

( )
( )[ , ( )][ , ( )] [ , ( )]

0 1 2

0 1 2

�

��
(1)

Note that �F is nothing else but a representation of the al-
gebra, and neither the grading nor the external derivative are
in any way preserved. This follows from the fact that the ker-
nel of �F might not be a differential ideal. We also need to be
careful while dealing with infinite dimensional representa-
tions, such as representations on the Hilbert space. In such a
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case, it is natural to assume that all operators �(a) and the
commutators [ , ( )]F a� are bounded for all a ��. This natu-
rally implies that the image of an arbitrary form is a bounded
operator. F itself might not be bounded and we shall see the
most natural examples when it is not the case.

There exists a canonical way to obtain a differential
graded algebra through �F: we have to take

� � 
ker (ker )� �F Fd .

This is a differential ideal within 	 u( )� and then 	 u( )� �

will be a differential algebra.
Note that unless d F F(ker ) ker� �� the obtained differential
algebra will not have a representation on the Hilbert space.
One might always choose for a higher-order form its repre-
sentative in the image �F u( ( ))*	 � , however, this cannot be
done in a unique way.

3.4 From representations to differential calculi
In view of the previous section we might consider just a

different way of obtaining differential graded algebras. Just
start with a representation � of the algebra, choose a suit-
able operator F, and consider all commutators [ , ( )]F a� as
one-forms. With a bit of luck (and some additional assump-
tions) we shall the obtain a good example of a differential
calculus.

We shall consider two canonical cases. First, let F be a
selfadjoint F F� †. This assures that for an involutive algebra
� and a *-representation we have d a da( ) ( )* *� � :

d a F a a F a F d a( ) ([ , ( )]) [ ( ) , ] [ ( ), ] ( )* † † † * *� � � � �� � � .

Moreover, let us take F2 1� , which means that (as seen on a
Hilbert space) F is a sign operator with eigenvalues being 
1
and �1.

We have:

Lemma 3.15. Let F F� † and F2 1� be an operator on the

Hilbert space � and let � be the representation of � as

bounded operators on �. Then �u defined in 1 is a represen-
tation of the differential algebra, with:

� �
� � �

� � �
F

u

u
d

F
F

( )
[ , ( )]
[ , ( )]

�
�
�
� 


even
odd

for any universal form �, [ , ]" " 
 denotes anticommutator.

Proof: First observe:

[ , ] [ , ]F x F F F x� � , � �x B( )� .

Then:

� � � �

�

F n nda da da da F a F a F a
F

( ) [ , ( )][ , ( )] [ , ( )]
(

0 1 2 0 1� ��

� a F a F a
a F a F a

F

n

n

0 1

0 1

)[ , ( )] [ , ( )]
( )[ , ( )] [ , ( )]

(

� �

� � �

�

��

� � � �

� �

( )[ , ( )] [ , ( )])

( ) ( ( )[ , ( )] [ ,

a F a F a

a F a F

n
n

0 1

0 11

�

�� � �

� � �

( )])
[ , ( )[ , ( )] [ , ( )]] ,

a F
F a F a F a

n

n� $0 1 �

where the $ sign at the last bracket means that we take the
commutator (or anticommutator) depending on n.

Clearly d2 0� , as:
[ ,[ , ] ] [ ,[ , ]]F F x F F x
 
� �0.

�

We have a first crude method for obtaining differential al-
gebra through the representation of � on a Hilbert space. Of
course, the differential calculi obtained in that way are not
very nice. Even for the commutative algebras they are rather
awkward and – in particular – infinite dimensional. Consider
the example of a circle:

Example 3.16: Let � be the algebra of functions on the circle
(for our purposes we shall take the only polynomials in U,
with the representation on the Hilbert space with basis { }en ,
n �� given as U e en n� 
1. We take the operator F to be:
F e sign n en n� 
( )1

2 . What are then the differential forms? We
calculate dU:

dU e F U e sign n sign n en n n� � 
�
�
�

�
�
� � 
�

�
�

�
�
�

�

�
�

�

�
�[ , ]

3
2

1
2 


� 
�

1

1 12�n ne,

The differential form dU is an operator of finite rank and, as
we can easily see, 1

2 U dU* is a projection on the subspace
spanned by e�1.

Exercise 3.17: Show that every differential form over the
algebra of polynomials in U and U* is in fact a finite rank
operator. Can we generalize this result to the one-forms con-
structed with F over the algebra of continuous function over
the circle?

The obtained calculus is somehow strange – but we shall see
that it plays an important role. Surely enough it is genuinely
noncommutative even for such a commutative space as a
circle. We may, however, look for some examples of the dif-
ferential graded algebras, which are more “reasonable”.

Example 3.18: Let � be the algebra of polynomial functions
on the circle. We take the same representation on the Hilbert
space as in example 3.16. But instead of taking the operator F
let us consider an unbounded operator D, De nen n� . Of
course, D, as an unbounded operator is only densely defined,

so we need to work with a dense subspace of �. The one-
-forms are all generated by the commutator [ , ]D U :

[ , ]D U e en n� 
1

and dU is a bounded operator (and hence well-defined on the
entire Hilbert space). Since all one-forms and higher order
forms arise from products of the elements of the algebra and
dU, the representation �D is into bounded operators.

Observe that:
U dU dU U� , U dU dU U* *� ,
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so, the one-forms really do commute with the elements of the
algebra. Since D2 1! the image of the universal DGA is not a
DGA itself. For instance, in the differential algebra we would
have:

0 2� � �d U dU dU U dU dU( ) ,

but on the other hand � �D DdU dU( ) ( ) is certainly a non-zero
operator:

( ( ) ( ))� �D D n ndU dU e e� 
2

To obtain a true differential graded algebra we need to quo-
tient the algebra generated by U and dU by the differential
ideal. The above calculation was not a coincidence, as it hap-
pens that dU dU is exactly the element which should be added
to the ideal generated by ker �D in order to make it a differ-
ential one. As a result, we have a differential graded algebra
with central one-forms (commuting with the elements of the
algebra) and all higher-order forms vanishing. But this is
nothing else than the de Rham differential algebra over a cir-
cle, when restricted to polynomial functions!

Finally, let us come back to the case of functions on
two-points:

Exercise 3.19: Take the algebra of complex-valued functions

on two points and its representation on the Hilbert space �
2.

Show that the universal differential calculus is isomorphic to
the calculus given by the operator F:

F �
�

�
�

�

�
�

0 1
1 0

.

4 The pleasures of geometry
“Geometry is the only science that it hath pleased God

hitherto to bestow on mankind.”

(Thomas Hobbes)

So far we have extended one geometric notion: that of dif-
ferential algebras and differential forms. We still have many
tasks ahead of us, at least from the practical point of view
of applications to physics. We need to understand the non-
commutative generalization of vector bundles (so we shall
come back to the notion of vector fields in the end), connec-
tions on them, integration and, last not least, we need to
recognize whether our constructions fall into the same classes
from the topological point of view.

4.1. Projective modules
In the same manner as we have dealt with spaces, which

we have replaced by (suitable) algebras we shall tackle vector
bundles. So, instead of taking the vector bundle itself we take
the linear space of all its sections. What is the structure of that
space? Clearly, it is not an algebra but since each section
might be multiplied by the function in the algebra we have
the structure of a module.

Definition 4.1: � is a left-module over the algebra � if it is a
linear space and there exists an associative action:

� �� m a am� �� �

which satisfies:
a m m am am( )1 2 1 2
 � 
 , a bm ab m( ) ( )� ,

for all a b, ,�� and m m m, ,1 2 ��.
However, for a vector bundle we have a condition of local

triviality, which is an essential ingredient. Cutting the story
short, it could also be nicely translated to the language of
modules, based on the crucial result of Serre-Swan. First we
need a definition:

Definition 4.2: The module � over an algebra � is projec-

tive if there exists a module �
% such that � � �& '% n

for some n �0. The module is said to be finitely generated if
there exist a finite number of elements m mk1, ,� such that

�

�

�
�
�
�

��

�
�
�

��� �
� a mi i
i

k

a i
1

Then we have Serre-Swan equivalence:

Theorem 4.3: The continuous sections of a vector bundle
over a manifold form a finitely generated projective module
over the algebra of continuous functions on the manifold. In
turn, every finitely generated projective module over a com-
mutative algebra of continuous functions is of that form.

Due to this theorem we have another straightforward gen-
eralization: sections of vector bundles are just elements of
projective modules! Note that there are, of course, several
equivalent but different definitions of projectivity in addition
to 4.2.

Exercise 4.4: Let � be a left module over �. Show that if
any surjective module morphism � :	 �� splits for any

� left module 	, (which means that there exists a morphism

� :� 	� , such that � �� � id�) then the module � is

projective.

Another equivalent statement is that for any surjective
module morphism � : ( �	 	 every homomorphism
� :� 	� can be lifted to a homomorphism ( � (� :� 	

such that � � �� (� .

Why don we not play with projective modules, which are
infinitely generated? Certainly, a good reason is that they do
not correspond to locally trivial bundles. Moreover, the world
of infinitely generated modules is a strange one. Look, for in-
stance, at the so-called Eilenberg swindle. Take a projective
module � and an infinitely generated free module �

.
Then, if �

% is the completion of � to a free module we
have:

� � � � � � �& � & & & & & % %( ) ( ) �,

so:

� � � � � �& � & & & & % %( ) ( ) �

and hence:
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� � �& � .

In the next step we need to learn a bit more: how to con-
struct projective modules and how to distinguish between
different projective modules!

4.1.1 Modules and projections

Starting with an algebra � we already know how to con-
struct a certain class of projective modules: �

n , called free
modules. Now, imagine we have a projection p Mn� ( )� , which
is an n n� matrix with entries from the algebra �, such that
p p2 � .

Lemma 4.5: Let p Mn� ( )� be a projection. Let �p be de-

fined as a subspace of all elements in �
n such that mp m� :

m p mi ji
i

n

j
�
� �

1

where we have explicitly taken m n�� as a collection of ele-
ments from �, m m mn� { , , }1 � and denoted the entries pij of
the matrix p.

Then �p is a finitely generated projective module.

Proof. We need to show that �p is indeed a left-module over

�. This, however, follows immediately from the definition, if

m satisfies mp m� so does a m (as the multiplication in � is as-

sociative). If ei denotes the basis of� n , an element with zeroes

at all entries apart from the i-th where it has 1, then all ele-

ments of �p are generated by { } , ,e pi i n�1 � . Moreover, be-

cause 1� p is also a projection, � � �p p
n& ��1 , so the

module �p is projective. �

Example 4.6: Take the algebra of functions over sphere S2

and the following projection in M C S2
2( ( )):

p
e

e

i

i�



�

�

�
�
�

�

�
�
��

1
2

1
1

cos sin
sin cos

� �

� �

�

�
.

The projective module defined by �p is nontrivial (that is, it
is not free) – and has a deep physical meaning. It is a projec-
tive module associated with the vector bundle of the magnetic
monopole. The module with1� p is then the antimonopole.

The next example shows that we need to be careful about
the algebra we take. In the commutative case this simply
means that it does matter whether we take polynomials,
smooth functions or continuous functions.

Example 4.7: Let C(T2) be the algebra of continuous func-
tions over a torus. Consider the following projection:

p
f g h e

g h e f

i

i�




 �

�

�
�
�

�

�
�
��

( ) ( ) ( )
( ) ( ) ( )

� � �

� � �

�

� 1
,

where real-valued functions f, g, h satisfy: gh �0 and
g h f f2 2 2
 � � , and 0 2) )�� � � denotes the usual coor-
dinates on the torus. Although the verification that p is a
projection is easy, we need to wait a while to show that it might
correspond to a nontrivial line bundle (a 1-dimensional com-
plex vector bundle) over the two-torus!

Actually, we might propose a different projection:

Example 4.8: Let C(T2) be again the algebra of continuous
functions over torus. Let us take the following projection �p:

� 
 
 
 


�

1
2 2

1 1 1
2 2 2

1

1

2sin (cos ) sin (cos (cos ) sin�
�

� �
� �
i i

2 2 2
1 1

2 2
12i isin (cos (cos ) sin sin (cos )� �

� �

�

�
 � 


�

�

�
�
��

�

�

�
�
��

which (certainly) is not of the above form. Again, to see what
the vector bundle is we need to wait a bit.

An interesting observation is that while the projection p might
be smooth (provided that f, g, h are smooth), �p is only continu-
ous! The advantage is, however, that �p is close (of course, in a
naive sense) to the matrix algebra over polynomials in e i� and
e i�.

The notion of equivalence of projective modules is a natu-
ral one, given through module isomorphisms. (To be more
precise the notion could be slightly relaxed to a stable iso-
morphism: two modules are stably isomorphic, if they are
isomorphic after adding a free module.) But how can we
distinguish that two modules given by two different projec-
tions are equivalent? For this purpose we need a notion of
the equivalence of projections, which is due to Murray-von
Neumann.

Definition 4.9: We say that the projections p and q are equiva-

lent, if there exists u Mn� ( )� such that u u p* � and u u q* � .

Note that any projection p Mn� ( )� can always be embedded
in MN( )� , N n� , putting p in the upper left corner and fill-
ing the remaining entries with zeroes. This means that the
equivalence of projections needs to be understood in M( )�

(seen as an inductive limit of Mn ( )� , n � ).

To finish this section let us mention what we can do with
the newly established set of all equivalence classes of projec-
tions. First, a little help comes from the lemma:

Lemma 4.10: The space of equivalence classes of projections
has the structure of a semigroup, with the addition:

[ ] [ ]p q
p

q

 �

�

�
�

�

�
�

*

+
,

-

.
/

0
0

.

And thus we have met the K-theory.
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Definition 4.11: We define the K0 group of the algebra �

as the Groethendieck group associated with the semigroup

V(�). Formally we can speak of abstract classes of pairs with
the equivalence relation:

([ ],[ ]) ~ ([ ],[ ]) [ ]:[ ] [ ] [ ] [ ] [ ] [p q p q r p q r p q( ( 0  
 ( 
 � ( 
 
 r].

The origins of K-theory are based in the classification
problems of (real) vector bundles over manifolds. The con-
struction of the K0-group in the seminal work of Atiyah was
the breakthrough of topological K-theory – this together
with the Serre-Swan theorem, which formulates the equiva-
lence between vector bundles and finitely generated projec-
tive modules over commutative algebras enabled to push the
theory to the C*-algebraic setup.

We were very sloppy here on the details – for example,
whether we use arbitrary algebras or C*-algebras. For the pur-
pose of the first K-theory group, K0, this does not really matter
(in the sense that for C* algebras the algebraic K-theory we de-
fined is the same as the topological K-theory. The difference
arises later, when one turns to higher K-groups – but gra-
ciously we shall not touch this topic here.

In principle, K-theory of a C*-algebra is a functor from this
category to the category of abelian groups: K0 is defined
through equivalence classes of projections, whereas K1 is the
�0 of the Gl group of the algebra (the inductive limit of in-
vertible matrices over the algebra). We skip here the details of
the construction and its properties, which can be found in
many textbooks. The interested reader is recommended to
consult them (see the list at the end of the notes).

For us, there are two important things: first of all, K-theory
can be calculated (thanks to advanced tools such as excision
and the connecting morphism between K0 and K1). Further-
more, it provides important information about the algebra
itself, like the existence and classification of nontrivial (non-
commutative) vector bundles. What is also significant, is that
K-theory depends actually on the dense (and stable under
holomorphic functional calculus) subalgebra; that is, in the
commutative case one might work with continuous as well
with smooth functions, and K-theory still does not change.

4.2 Connections on projective modules
Finally we can use what we have already learned and apply

to both differential algebras and projective modules to con-
struct a new object (known from differential geometry, of
course): a connection.

In differential geometry we know that the theory of con-
nections on vector bundles is equivalent to connections on
principal fibre bundles. In noncommutative geometry we
have all the necessary tools so we can start the theory in just
the same way. Such objects are interesting from many points
of view: first of all, they provide an element of the theory

that enables some practical calculations of noncommutative
Chern characters. This links K-theory with noncommuta-
tive differential forms. From the point of view of physics,
connections are just a tool for the gauge theory and gravity.
Therefore we can view this as a step towards the notion of
noncommutative gauge theory!

Although the use of connections appears in many places,
including Connes and Rieffel’s seminal work on the Noncom-
mutative Torus [24], it is worth mentioning that systematic
analysis and proof of the relation between projectivity and the
existence of universal connections is a great result of Cuntz
and Quillen [33].

Let us start with a definition and some interesting
properties.

Definition 4.12: Let � be a left projective module over an al-

gebra � and let	*( )� be a DGA over �. A connection1 on

� is a linear map:

1 �: ( )� � ��� 	1 ,

such that:

1 � 1 
 �( ) ( )a m a m a da m�

where m ��, a ��.

Before we proceed further, let us pose the question of exis-
tence. Evidently, if � is a left projective module then we have
a projection p Mn� ( )� such that � �� n p. Then one might
always construct a canonical (so-called Grassmanian) connec-
tion. On a free module it is a trivial exercise to set:

1 �( )A dA,

where A n�� and the expression on the right-hand side is
understood as an element of� n . Then using the inclusion of
a projective module into �

n we construct the Grassmanian
connection as a composition of the connection on the free
module with the projection:

1 � �( )Ap dA p�

It is a nice feature that the existence of universal connec-
tions, that is connections related with the universal differen-
tial algebra, is actually equivalent to the projectivity of the
module.

Before we define the curvature of a connection let us
observe that the space of connections is an affine space over
�-linear module endomorphisms of �, that is every two
connections differ by an element of End� �� � �( , ( ))	1 � .

The connection is also easily extended to a general de-
gree-one linear map satisfying the graded Leibniz rule on
	*( )� ��� . The difference of connections is always a
	*( )� -module homomorphism.

In particular, for a free module the connection is always of
the form:

1 � 
( ) ( )A dA A� ,

where �� �End n n
� �� � �( , ( ))	1 can be understood as a

matrix of one-forms over �.
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The curvature of a connection is its square, 12, which
itself is a degree two �-linear module endomorphism of
	*( )� ��� . For a free module we have:

1 � 
2 2( ) ( )( )A d A� � ,

which is a well-known formula from the gauge theory but now
applicable to a general class of noncommutative objects!

We shall finish this short review of connections by men-
tioning that in case the module � has an �-valued hermitian
inner product one might require that the connection is
Hermitian:

1 ( 
 1 ( � (m m m m d m m, , , ,

where the left-hand side is the natural extension of the in-
ner product on the tensor products with one-forms. In the ca-
nonical example of the free module (and the canonical inner
product) this translates to the requirement that � �* � � (as a
matrix of differential forms).

To make the picture a bit more comprehensible, let us
study two important examples.

Example 4.13: Take the algebra � of complex valued func-
tions on the space of two points. It has (of course) only free

modules and we take just the simple one, � itself. It is
equipped with the standard hermitian product arising just

from the complex conjugation and product in �. Let us
consider all hermitian connections with respect to universal

differential calculi. We have, for a �� (but � seen as a

left-module)

1 � 
( ) �a da a� ,

where �� is an arbitrary one-form, so �� �� de, with � a com-
plex function on two points. Since ��must be antiselfadjoint,
when we recall all the rules of differential calculus (see exam-
ples 3.6 and 3.12), we have:

( )* *� � �de de de� � �

Since e de de e� � the function � is given by a complex num-
ber �:

� � � 
 
( ) ( )* *� � � �1 e .

The curvature of the connection1,12 is:

1 � 
2 2( ) � �a d� � ,

which rewritten in the language of forms de gives:

1 � 
 �2 4( ) ( )* *a de de� � �� ,

Next, by introducing H � �1 4� we obtain:

1 � �2 1
4

1( ) ( )*a HH de de .

Suppose now that we think of H as a gauge connection field
and calculate the square of the curvature. Integrating this
square over the space (two points) we get

F HH2 1
2

12 � �( )* .

If we construct a weird type of Kaluza-Klein theory with the
extra space being the usual one, we might interpret this as an
action for a field H(x), which arises from the discrete geome-
try of two-points.

It is a surprise that this type of action is well known and has a
very important role in physics as the action for the Higgs
field!

5 Cycles and cyclic cohomology
“Most of the fundamental ideas of science are

essentially simple, and may, as a rule, be expressed in
a language comprehensible to everyone.”

(Albert Einstein)

Let us recall that the classical theory of connections on
vector bundles leads to the notion of characteristic classes.
The square of the connection, curvature, which is a differen-
tial two-form valued in the algebra of endomorphisms of the
vector bundle is the basic building block of the theory.

In the noncommutative setup we have almost the same
possibility, with the exception that the differential calculi
are plentiful and therefore some of them (in particular the
universal differential calculus) may carry no cohomology in-
formation, that can be used to construct characteristic classes.
However, when we accept this approach we shall have no
general principle in the theory: every single case needs to be
studied separately! Moreover, it is rather unrealistic to study
all possible differential calculi that can bring some new data.
Again, the solution to the problem lies in the approach – we
need to introduce a more general notion which replaces de
Rham cohomology in the noncommutative setup.

Definition 5.1: Consider Cn ( )� – space of linear maps from

�
� 
( )n 1 to �, and the linear map b C Cn n: ( ) ( )� �� 
1 :

( )( , , , , ) : ( , , , )
( ,

b a a a a a a a a
a a a

n n n� �

�

0 1 1 0 1 2 1

0 1 2

� �
 
�

� , , )

( ) ( , , , )

( ) ( ,

�

�

�

a

a a a a

a a

n

n
n n

n
n
















 �


 �

1

0 1 1
1

1 0

1

1

�

� a an1, , ),�

where � is an n 
1-linear functional and

a a an0 1 1, , ,� 
 ��.

Then b2 0� , and we can define the cohomology of the com-
plex { , }C bn

n�� ,which is called the Hochschild cohomology
of A and denoted HH *( )� :

HH
b

b
n C

C

n

n

( )
ker

Im
� � .

Example 5.2: Let us see what is the zeroth Hochschild co-

homology group for any algebra �. From the definition, it
consists of all linear functionals �, which obey:
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b a a a a a a� �� ��( , ) ) )0 1 0 1 1 0 0� � � .

Therefore HH 0( )� is nothing else but the linear space of all
traces on the algebra �!

Higher Hochschild cohomology groups are more difficult
to calculate (but still calculable in most examples). For the
purpose of making connections with the commutative dif-
ferential geometry let us quote:

Theorem 5.3: For an algebra of smooth functions on a mani-
fold M, the continuous Hochschild cohomology group

HH C Mk( ( )) is canonically isomorphic with the space of

de Rham currents on the manifold M (which are continuous
linear functional on the space of de Rham forms).

For proof (and for more details) we refer to the seminal
work of Connes [23].

So, we have a space, which corresponds (roughly) to the
differential forms (although it is not a differential algebra)!
What we need is to find a subcomplex which would give us
in the commutative situation some information about the
de Rham cohomology.

Definition 5.4: Consider Cn
� ( )� - space of linear maps from

�
� 
( )n 1 to �, which are cyclic:

� �( , , , ) ( ) ( , , , , )a a a a a a an
n

n0 1 1 2 01� �� �

and the linear map b C Cn n: ( ) ( )� �� �� 
1 , which is the restric-
tion of the coboundary b defined above.
The homology of the cochain complex ( , )C bn

n� �� is the cyclic

cohomology of �, denoted HC*( )� .

Example 5.5: Let M be a manifold of dimension and	dR M( )

the differential algebra of de Rham forms over M. For smooth
functions a a an0 1, , ,� we define:

�( , , , ) :a a a a da dan n0 1 1 0 1� �
 � # #2 ,

where 2 is the standard integral on the manifold. Then � is a
cyclic cocycle of dimension n. The cyclicity of � follows from
the Leibniz rule and the fact that the wedge product of forms
is antisymmetric. We check explicitly that � is a Hochschild
cocycle:
b a a a a a a a a

a a a

n n� �

�

( , , , , ) ( , , , )

( , , ,
0 1 2 1 0 1 2 1

0 1 2

� �

�


 
�

� a a a a

a a a

n
n

n n
n

n n


 








 
 �


 �

�

1 0 1
1

1 0

1

1

) ( ) ( , , )

( ) ( , , )

� �

�

�

�

( ) ( )

( )

a a da da a d a a da

a da

n n

n

0 1 2 1 0 1 2 1

0 11

# # � # # 



 � #


 
2 � � �

� �

�

# 
 � #

# � � # #







d a a a a da

da a da da

n n
n

n

n
n

( ) ( )

( )
1

1
1 0 1

0 1

1

1 n n
n

n n

a

a a da da








 � # #

�

1
1

1 0 11
0

( ) �

A cycle is a noncommutative generalization of what we
have in differential geometry (as presented earlier): functions
and forms together with the integral and the (inevitable)

Stokes theorem. However, it is not at all that easy and if one
goes noncommutative then, in general, there is no default con-
struction of such a structure.

Definition 5.6: A cycle of dimension n over � is a graded dif-

ferential algebra over � together with a closed graded trace
2 �: ( )	 � �:

�� ���2 2� �( )1 , ���	( )� ,

d�2 �0, ��	( )� .

Using cycles one might easily construct cyclic cocycles.

Lemma 5.7: Each cycle of dimension n over algebra � defines

a class of a cyclic cocycle in HCn ( )� :

�( , , , ) ( ) ( ) ( )a a a i a di a di an n0 1 0 1� �� 2 .

For proof see [5], Proposition 4, p.186.

Recall that we have met a very nice prescription for the
construction of differential graded algebras through the rep-
resentation and commutators with an operator F, F2 1� . Can
we get a cycle in this way? The answer is positive, provided that
we are ready to add a couple of additional features.

Definition 5.8: If � is an algebra, � its representation as
bounded operators on the Hilbert space, and F a selfadjoint

operator such that F2 1� and for every a �� the commuta-

tors [ , ( )]F a� are compact then we call ( , , )� � F a Fredholm

module over �. We say that the Fredholm module is even if

there exists an operator � �� †, �2 1� which commutes with

the representation � and anticommutes with F.

Actually we have already met an odd Fredholm module in
the example of the “strange” differential algebra for the func-
tions on the circle 3.16. And we have shown that indeed all
commutators with the algebra elements were compact!

To define the graded trace on the cycle we need to know
something about the summability of the Fredholm module,
i.e. we need to assume that the products of commutators
[ , ( )]F a� fall into the ideal of trace class operators. Trace class
operators are operators such that the series of partial sums of
their eigenvalues is summable. More precisely, we say that the
Fredholm module is p 
1-summable, if for any p 
1-elements
the product of compact operators:

[ , ][ , ] [ , ]F a F a F ap1 2 1� 


is an operator of trace class.
Then we have:

Lemma 5.9: For a ( )n 
1 summable Fredholm module, the

closed graded trace of dimension is given by:

� � �2 � 

1
2

Tr( )F F ,

in the odd case, and for even Fredholm modules by:
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� � � �2 � 

1
2

Tr ( )F F .

As a corollary we have:

Corollary 5.10: Each n 
1-summable Fredholm module gives
rise to an n-cyclic cocycle.

To exploit relations with K-theory and formulate the
Chern map using connections one needs an additional in-
gredient. This is cyclic cohomology (or rather a version of
it, so-called periodic cyclic cohomology) that is the natural
receptor for the Chern map. We will see how differential
graded algebras can help us to construct cyclic cohomology
elements.

Example 5.11: Recall again the construction of the diffe-

rential algebra for the circle, with the operator F, F2 1� in
3.16. The commutators of with the elements of the algebra
are compact and in particular, commutators with polynomials
are finite rank operators. Therefore they are trace class and
we can easily define a 1-cyclic cocycle on the polynomial
algebra:

�( , ) ( [ , ] [ , ] )a a a F a Fa F a F0 1 0 1 0 1
1
2

� 
Tr Tr .

We calculate this explicitly for homogeneous polynomials.
First,

U F U e sign p k sign p en k
p p k n[ , ] ( ) ( )� 
 
 � 
�

�
�

�
�
� 
 


1
2

1
2

.

Therefore:

TrU F U
k n kn k[ , ]

,
�


 ��
�
�

2 0
0

if
otherwise.

Then:
� �( , ) ,U U kn k

n k� 
 02 .

Let us verify that it is a cyclic cocycle. First of all, observe that it
is cyclic:

� � � �( , ) ( , ), ,U U k n U Un k
n k n k

k n� � � � �
 
0 0 .

Furthermore:
b U U U U U U U U Uk m n k m n k m n k n m

k

� � � �

�

( , , ) ( , ) ( , ) ( , )� � 


�


 
 



2 m n n m n m
 � 
 


�

( ( ) )
0

Note that up to some rescaling we obtain the same cocycle as
the one arising from classical de Rham forms and the stan-
dard integration:

� � �� �
dR

n k in ik
n kU U d e de i k( , ) ( ) ,� �2 
� � �2 2

0

1

02 .

Now we can turn to the truly noncommutative world.

Example 5.12: Do you remember the Noncommutative To-

rusUV e VUi� 2� � ? We shall construct a two-dimensional cycle
over it. First, the differential forms. We take two generating
one-forms�U and�V, which are central. The external deriva-
tive becomes:

da a aU U V V� 
� � � �( ) ( ) ,

where �U and �V are two outer derivations on the algebra of
the Noncommutative Torus:

�n
n m n mU V nU V( , ) � , �m

n m n mU V mU V( , ) � .

The two-forms are generated by the wedge product of the
one-forms:

� � � �U V V U# � � # .

For the trace we take:

a aU V� �# �2 Tr ,

where Tr is the standard trace on the algebra, defined on the
polynomials as:

Tr U Vn m
n m� � �, ,0 0.

Clearly 2 is a graded trace (since the basic one-forms anti-
commute and Tr is a trace), so we need only to show that it is
closed:

d U V U V mU V kU V

mU V k

n m
U

k l
V

n m k l
U V

n m

( ) ( )

(

� � � �
 � � 
 #

� � 


2 2
Tr U V

m k

k l

n m k l

)

., , , ,� � 
 �� � � �0 0 0 0 0

The resulting two-cyclic cocycle is:

�

� � � � �

( , , )

( ( ) ( ) ) ( (

a a a a da da

a a a aU U V V U

0 1 2 0 1 2

0 1 1

�

� 
 #

2
2 2 2

0 1 2 2 1

) ( ) )

( ( ) ( ) ( ) ( ))

� � �

� � � � � �

U V V

U V U V U V

a

a a a a a




� � #2
� �Tr( ( ( ) ( ) ( ) ( ))).a a a a aU V U V0 1 2 2 1� � � �

We shall use this construction later – also in the case � �0,
which is the usual commutative torus.

5.1 Chern-Connes pairing
In this section we shall use the cyclic cohomology to pro-

duce invariants of projective modules. We must be aware that
in doing so we cut a really long story short. Details and more
aspects of the theory are left for the intrigued reader to fur-
ther self-study.

Assume now we have an algebra �. Let p be a projection in
Mn ( )� which is associated to a finitely generated projective
module �p. On the other side, let � be an even cyclic cocycle
over �. Even without knowing much about the theory we can
construct the following pairing:

� �, ( , , , )
, ,

p p p pi i i i i i
i i

k

k

� � 1 2 2 3 1

1

�

�

, (2)

which (for brevity) we shall always write as �( , , , )p p p� . As
such, it is only a number. However, the following theorem
makes it a really important number:

Theorem 5.13: The pairing (refChern depends only on the
equivalence class of the of the projection p and also only on

48 ©  Czech Technical University Publishing House http://ctn.cvut.cz/ap/

Acta Polytechnica Vol. 48  No. 2/2008



the class of the cocycle � within the cyclic cohomology group

HCeven ( )� .

For proof we refer to Connes [5].
What we have gained? An extremely useful tool of non-

commutative geometry applicable to noncommutative
topology: we have a very precise way of distinguishing dif-
ferent topological classes of projective modules. Let us test
this knowledge on some examples.

Example 5.14: Let us take the two-dimensional sphere and
the projection of the magnetic monopole from example 4.6.
Taking the standard cyclic cocycle that arises from de Rham
differential forms and the standard integration, we have:

pdpdp
e

e

d

i

i�



�

�

�
�
�

�

�
�
�

"
�

�
1
8

1
1

cos sin
sin cos

sin

� �

� �

�

�

�

� � � �

� � � � �

cos sin
cos sin sin

e d i e d
e d i e d d

i i

i i

� �

� �

�

�




�

�

�
�
�

�

�
�
�

"
� 


�

sin cos sin
cos sin

� � � � �

� � �

d e d i e d
e d i e

i i

i i

� �

�

�
�

�

�d d

i i e
i e

i

sin

sin ( cos sin
sin

� �

� �
 �

�

�

�
�
�

�

�
�
�

�



�

1
4

1 2

2 i i
d d

�
��

sin ( cos� �

�

1�

�

�
�
�

�

�
�
� #

The integral over S2 of the trace of the above expression is:

d d i d d i� � � � �

0 0

2
1
2

2
� �

�2 2 #�
�
�

�
�
� �sin .

Since the trivial line bundle over the sphere S2 given by the
trivial projection (p �1) has a trivial pairing with the two-cyclic
cocycle (for the obvious reason that p �1and hence dp �0) –
we have the proof (based, of course, on theorem 5.13) that the
projective module of the magnetic monopole is not trivial.

Example 5.15: Let us take the commutative two-torus, with
the cyclic cocycle given by the de Rham forms and integra-
tion. First, we start with the smooth projection 4.7. Skipping
the easy calculation we show the result:

Tr p dp dp i g t f t g t f t g t g t

s

� ( � ( � (




2 2 2( ( )( ( ) ( ) ( ) ( ) ( ) )
cos( ) ( )( ( ) ( ) ( ) ( ) ( ))).g t f t h t h t f t h t2 2( � ( � (

Since the integral of cos( )s vanishes, only the first component
contributes to the pairing. We rewrite it further as:

( ( ) ( )) ( ) ( ) ( ( ))f t g t f t g t g t2 2 23
1
2

( � ( � (.

Integrating by parts, and using the fact that all functions are
smooth and periodic we get the result for the pairing as:

( ) ( ) ( ))4 3 2

0

2

�

�

i dt( f t g t(2 .

Recall that the function f g h, , must obey:

g t h t( ) ( ) �0, g t h t f t f t( ) ( ) ( ) ( )2 2 2
 � � .

Then:

( ) ( ) ( )) ( ) ( )( ( ) ( ))4 3 4 32

0

2
2� �

�

i dt( f t g t i f t f t f t( � ( �2
supp g t

j
i i

j

n
i f x f x

( )

( ) ( ) ( ) ( ) .

2

�� � ��
�
�

�
�
�




�

4 1
3
2

1 2 3

1

�

where the points xi are such that:
supp g t x x x x

t g t
n( ) ( , ) ( , ) ( , )

{ : ( ) }.

� 3 3 3

� ) ) !

0 2

0 2 0
1 1 2 � �

�

Since points xi are the boundary points of a set where g (and
thus h) do not vanish, by continuity both g and h must vanish
each xi. So, f satisfies f x f xi i

2( ) ( )� and therefore it is either 0
or 1 at each point. Hence, we introduce

� j i if x f x� ��
�
�

�
�
� �

�
�
�

2
3
2

0
1

2 3( ) ( )

Since f is periodic, f f( ) ( )0 2� � and the points 0 and 2� can-
cel each other in the sum. In the end we have:

( ) ( )2 1 1

1

� �i j
j

j

n
� � 


�
� .

Therefore, independently of the choice of f the result is an in-
tegral multiple of 2�i!

Example 5.16: Let us turn to the second presentation of the
(supposedly) nontrivial projection on the torus. We use the cy-
clic cocycle as derived in in example 5.12, keeping in mind
that the functions that we use in the projection are in fact only
continuous and are not differentiable at one point (t �0, iden-
tified with t �1).

We calculate the pairing (again skipping the tedious but un-
complicated algebraic manipulations), obtaining:

� �2
1
4 2

1 2( , , ) sin (cos( ) ) ( )p p p i i� � �
�
�

�
�
� 
 � �Tr

�
� ,

where we have taken the not-normalized trace coming from
the integration (Tr1 2 2� ( )� ).

Again, we obtain a result different from zero, which en-
sures that the projective module is nontrivial. Shall we worry
that the projection was not actually a smooth one? Yes, but
only a little bit. Note that each function in the matrix ele-
ments of the projection has a well-defined left derivative
at each point. However, even though this derivative is not
continuous at one point, we can multiply functions with such
discontinuities without problems. Since the integration is also
well-defined fur such functions, we see that no significant
problems arise.

Finally, we turn to a very nontrivial (and very) noncom-
mutative example.

Example 5.17: Consider the following family of projective
(and smooth) modules the over the Noncommutative Torus:

�q
qS� �( )� � , q�� ,
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where S( )� denotes the space of Schwartz functions (rapidly
decreasing functions on �) with the module structure:

U s v e s w vis
u( ( ) ) ( ) ( )� ��� � �2 ,

V s v s
p
q

w vv( ( ) ) ( )� �� � � 

�

�
��

�

�
�� �� ,

where wu, wv are matrices satisfying

w w e w wu v
i

v u

p
q�

2�
.

It is not evident that these modules are projective and that ev-
ery projective module over the NC Torus is either free or is of
this form. Details are to be found in papers by Rieffel and
Connes [24]. Here we shall just use this knowledge to find
the pairing between the standard two-cyclic cocycle over the
Noncommutative Torus and the module. The drawback is
that we do not know the projection – and although one can
construct it (surprisingly enough it is a projection in the alge-
bra of the Noncommutative Torus itself!) – it is sufficiently
complicated to make this form of approach rather difficult.

In turn we shall construct the connections and curvature over
the module. Then using a function of the curvature (like in
the case of characteristic classes) we shall recover the pairing.

As the connection on the module we take:

( )( ) ( )
( )

1 �
�

� 
 �� �
�
� � �

�
s i

sq
p q

s
d s

dsU V2 ,

where we use the forms �U, �V introduced earlier. The verifi-
cation that1 is the connection is explicit. The curvature is

F
iq

p q U V� �
�

#
2�

�
� � .

The pairing, in this two-dimensional case, is given by apply-
ing the closed graded trace in the differential algebra to the
trace of the curvature two-form (remember that the curvature
is a two-form but with values in the endomorphism of the pro-
jective module):

1
2

2
�

�

�i
iq

p q
id

�
Tr( )� ,

and since:

Tr( )id p q� � � � ,

we get the integer q as the value of the pairing.

Here we smuggled in the information about the dimension of
the projective module (or whatever we might call it) – which
could be defined as the trace of the identity endomorphism.
In fact, one may use the pairing and some facts about its
integrality (which we do not mention in these notes) to get
this value. Nevertheless, although we are dealing with a very
strange family of projective modules in a pure noncom-
mutative setup, we can still say that we can distinguish

between those which are not equivalent to each other with the
help of the Chern-Connes pairing.

5.2 Summary
We may now summarize all the tools and construction that

we have learned in this crash course on noncommutative ge-
ometry. We just extend the dictionary, which we constructed
first for noncommutative topology:

GEOMETRY ALGEBRA

vector bundles finitely generated projective
modules

differential forms differential graded algebra

integration of differential
forms

closed graded trace on DGA

simplicial (de Rham)
homology

cyclic homology

infinitesimals compact operators

integral trace (exotic trace)

connection on a vector
bundle

connection on a projective
module

characteristic classes Chern-Connes character

6 Spectral geometry and its
applications

Ubi materia, ibi geometria.
(Where there is matter, there is geometry.)

(Johannes Kepler)

In this last part of the lectures we shall use (and probably
overuse) the word spectral. Its sense will be described in the
definition of properties of spectral triples – a concise proposi-
tion for noncommutative spin manifolds. The clue is that (almost)
everything is set by the Dirac operator and it, in turn, is de-
fined through its set of discrete eigenvalues with multiplici-
ties. We briefly touch the main proposition, which links the
theory with physics: the construction of gauge theories and
the spectral action principle.

6.1 Enter: the Dirac operator
In the example of the differential graded algebra on the

circle we tested a peculiar unbounded operator D (example
3.18). Of course, this was not a coincidence and the story
could have been repeated for any compact spin manifold.
Taking as the Hilbert space the square-summable sections of
the spinor bundle L2(M, S) and D as the true Dirac operator
(for a given Riemannian metric) we shall always (in a similar
manner) recover the de Rham differential algebra. The Dirac
operator on a compact spin manifolds is indeed a very ele-
gant object: an unbounded, self-adjoint operator, with a dis-
crete spectrum and with the growth of eigenvalues governed
by the dimension of the manifold.
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The Dirac operator is also a very useful tool: it encodes a
lot of topological and geometrical information about the
manifold, in particular about the differential algebra and the
metric. We shall mimic this construction in the noncom-
mutative world, assuming that it is the basic data that makes
noncommutative geometry the geometry. But to do this we shall
learn one more tool: the construction of exotic traces.

6.2 Exotic traces and residues
Let us start with a definition:

Definition 6.1. Assume we have a positive, compact operator
T on a Hilbert space, with the eigenvalues �i T( ), i �1 2, ,�
Suppose that the eigenvalues decrease to 0 so fast that the fol-
lowing expression makes sense:

Tr� �( ) lim
log

( )T
N

T
N

i
i

N
�

�
�
�1

1

.

If it exists then we call it a Dixmier trace.

Example 6.2: Let us take, for instance, the operator

( )D 
 �1 1, where D is the Dirac operator on the circle, men-

tioned in the previous example. Since each positive integer
(apart from 1) enters into the spectrum of D 
1exactly twice,
we have:

Tr�( ) lim
log

lim
log

D
N i

N

N
i

N

N


 �
�

�

�
�

�

�

�
�

�

�

�
�

�

�1
1 2

2
1

1

1

(log( ) ( )) ,N o N
 
 �� 2

where we have used the formula for the asymptotic form of
the harmonic numbers, and � is the Euler constant.

Theorem 6.3: The space of all operators for which the Dix-
mier trace can be calculated is a two-sided ideal in the algebra
of bounded operators, moreover for R bounded and T in this
ideal:

Tr Tr� �RT TR� .

For the proof of the theorem and also for verification that
the Dixmier trace is well defined and is indeed a trace, we
refer to Connes’ book [5].

Assume now that we have an unbounded operator D such
that D �1 is compact (for simplicity we eliminate zeroes from
the spectrum of D). For sufficiently large s �0 the operator
D s� will be a trace class and thus the function:

�D
ss D( ) � �Tr ,

makes sense. Using the functional calculus on a Hilbert space
we can define this function at least on the part of the complex
plane forRe( )s big enough. Suppose now that we make an an-
alytic continuation of the function �D and that it extends to
the entire complex plane with the exception of several iso-

lated points. Then at each of these points we can calculate the
residue of �D s( ) – just as a functional.

We have:

Theorem 6.4: If D �1 is an operator of Dixmier class then:

Tr� D s Ds
z

z�
�

�� Re 1 .

Example 6.5: An elliptic differential operator on a manifold
is just a special case of an unbounded operator. For instance,
taking the Laplace operator � on a compact manifold of di-

mension n, it appears that ��
n
2 is in the Dixmier class and its

Dixmier trace is related to the Wodzicki residue (which is a
functional on the space of differential operators given explic-
itly by the integral of the principal symbol).

As a specific example take (again) the 2-dimensional torus
and its Laplace operator � � �� 
 2 2 , where 0 	 �, � 42�
are again the standard coordinates on the torus.

The principal symbol of � (and so ��1) is constant, so the
Wodzicki residue, which is (in two dimensions) its integral
over the sphere bundle and the manifold, is:

Wres( ) ( )�� �1 24 2� � .

To calculate the Dixmier trace of we need to calculate the fol-
lowing limit:

lim
log ( )N

m n N
N m n�


 )



�

�

�
�

�

�

�
��1 1

2
1

2 2 2
2 2 2�

.

Leaving the evaluation of the asymptotics of the sum as an ex-
ercise (see [2], for hints) let us state the result:

Tr�
�

( )�� �1 1
2

.

The ratio:

Wres( )
( )

( )
�

�

�

� �
1

1
22 2

Tr�
� ,

and is, in fact, universal (in this dimension 2).

6.3 Spectral triples
Imagine we want to encompass everything we have learned in
one compact definition. So, we work with a suitable algebra,
which is a subalgebra of a C* algebra. It is represented (faith-
fully) on a Hilbert space. Further, we need to have a suitable
definition of a differential algebra – and here we need just to
choose a suitable unbounded operator D on the Hilbert space
so that the differential one-forms, the commutators of D with
the elements of the algebra remain bounded. The sign of D
will define for us a Fredholm module, and thus a cyclic
cocycle. Moreover, suitably chosen D will allow us to introduce
noncommutative integrations through the residua of �D. So,
we are ready for the formal definition:
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Definition 6.6: Let us have an algebra �, its faithful represen-

tation � on a Hilbert space �, a selfadjoint unbounded opera-
tor D with compact resolvent, such that

� �a � , [ , ( )] ( )D a B� � � ,

then we call ( , , )� � D a spectral triple.

Since the definition is very basic, we shall need (in most
cases) some additional structures. We say that the spectral
triple is even if there exists an operator � such that � �� †,
�� � �( ) ( )a a� and � �D D
 �0. We say that the spectral triple
is finitely summable if the operator D�1 has eigenvalues of the
order o n p( )� for some p 	0. If the growth of eigenvalues of D
is exactly of the order np, we say that the spectral triple is of
metric dimension p. For such a triple we might introduce the
noncommutative integral:

� �2 �
�T T Dz

zRes 0Tr( ).

This exists for all operators T, which are products of �(a),
powers of D and their commutators with D and D .

Definition 6.7: A real spectral triple of KO-dimension n mod
8 is a spectral triple with an antilinear unitary operator J,

J J* �1, such that:

DJ � 
 JD, J2 � 
', J � � 
''� J. (3)

and

[ ( ) , ( )]J a J b� � �0, [[ , ], ( ) ]D a J b J� �0, (4)

for all a b, ��, and where the signs 
, 
', 
'' depend on the
KO-dimension modulo 8 according to the following rules:

n mod 8 0 1 2 3 4 5 6 7


 
 � 
 
 
 � 
 



' 
 
 � � � � 
 



'' 
 � 
 �

The first of conditions 4 states that conjugation by J maps the
algebra to its commutant, whereas the second condition, the
so-called order-one condition, states that the one forms com-
mute as well with the commutant of �.

The following establishes (precisely) the relation of spec-
tral triples to classical differential geometry (for proof see [2]).

Theorem 6.8: If� � C M( ), M is a spin Riemannian compact

manifold, S is a spinor bundle over M, � � L S2( ) (summable

sections of spinor bundle) and D is the Dirac operator on M
then to ( , , )� � D is a spectral triple (with a real structure), of
KO and metric dimension dim(M).

Even more interesting is the Reconstruction Theorem,
which states the inverse:

Theorem 6.9: If � is a commutative algebra and( , , )� � D is a

spectral triple satisfying all required conditions then M is a

spin manifold and � � C M( ), � � L S2( ), and D is the Dirac

operator on M.

A weaker version of the theorem is due to Bondia & Varilly
[2], a proof of the full version was proposed by Varilly & Ren-
nie [44] and then improved by Connes.

We did not present here any further requirements for the
spectral triples. This includes further algebraic conditions,
like the existence of a certain Hochschild cycle, which is
mapped to � or 1 (depending on the dimension), or the
Poincaré duality in K-theory. There are also some very restric-
tive conditions, more of the “analysis” type. They ensure, for
instance, that the algebra is smooth with respect to the deriva-
tion given by the commutators with D and D , and the suitable
domain of definition of these operators on the Hilbert space
is a projective module over this algebra. Although all of this
plays a crucial role in the reconstruction theorem, it is not
certain that the formulation of these requirements is in its fi-
nal form in the noncommutative situation. In fact, some of
the recent examples coming from q-deformed spaces can
hardly meet these requirement, yet they have reasonable
Dirac operators.

6.3.1 The use of spectral geometries and examples
If spectral geometries are applicable to noncommutative

algebras then we should learn how to extract the geometric
data. We already know how to obtain a differential graded al-
gebra. But, how can we get the metric? It appears that a sim-
ple formula allows us to recover the distances on the manifold
(and in general, also introduce a metric on the space of
states):

d x y x a y a
D a

( , ) sup ( ) ( )
[ , ]

� �
)1

, (5)

where x y M, � and a C M� ( ). We already know that

a a D n2 � �Tr��( )

is well-defined. Once we are sure that the Dixmier trace of
D n� exists we can use this as a definition of the integral on
the manifold. Summarizing – all practical information of geo-
metry is encoded in the datum of the spectral triple.

Example 6.10: We might come back to the canonical example
of two points. As the Dirac operator we take an arbitrary

self-adjoint off-diagonal operator on �
2. Clearly all condi-

tions of the spectral triple are fulfilled: even more, we can con-
struct a real spectral triple, of course, of dimension 0.

For this, we double the Hilbert space to � �
2 2� . It is now

convenient to write every operator in a block diagonal form:

�( )a
a

a
�
�

�
�

�

�
�

0
0

, � �
�

�

�
�

�

�
�

1 0
0 1

,

J
J

J
�
�

�
�

�

�
�

0
0
0

0
, D

D
D

�
�

�
��

�

�
��

0
0
0

0
† ,
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where J0 is the standard complex conjugation on �
2.

The condition D J J D� gives:

D DT
0 0� ,

whereas the order-one condition is satisfied for any D. There-
fore the spectral triple is set by a symmetric two-by-two matrix
D0. Of course, since the diagonal entries do not contribute to
the commutators, it is the off-diagonal term that matters and
that fixes, for instance, the metric. Indeed, we might ask what
the distance is between these two points?

Using the formula 5, we need to calculate f f( ) ( )
 � � , where

, � denotes the two points of the space, for any function such
that [ , ]D f )1. First, take f z we� 
 , where z w, �� and e is
the generating function of the algebra e2 1� . We calculate:

[ , ]
[ , ]

[ , ]†D f
w D e

w D e
�
�

�
��

�

�
��

0
0
0

0
.

Next:

[ , ]
( )

( )
D e

D
D0

0 12

0 12
2

0
0

�
��

�
�

�

�
�.

where we have used that ( ) ( )D D0 12 0 21� (symmetric matrix D0).
The norm of [ , ]D f is:

[ , ] ( )D f D w� 4 0 12 .

For the function f given above f f w( ) ( )
 � � �2 , therefore
the distance between the two points, in the noncommutative
geometry given by the Dirac operator D, is:

dist( , ) sup
( )( )


 � � �
)4 1 0 120 12

2
1
2

1

D w
w

D
.

It is a more difficult task to calculate the distance for
the circle. There, we need to consider all smooth functions on
S1, represent them on the Hilbert space and calculate their
operator norm!

Finally, let us study the best known example of the spectral
triple: that of the Noncommutative Torus. There are several
ways to guess or derive the construction – we shall, however,
be very minimalistic and just provide it.

Example 6.11: We take the algebra of the Noncommutative

Torus as generated by U, V, with the relation UV e VUi� 2� � ,
together with the faithful representation on the Hilbert space

� (presented in example 2.9). We double the Hilbert space,
take the diagonal representation of the algebra and introduce
the operators J, D, � as block-type operators. First we set:

J e e em n
i mn

m n0
2

, ,� �
� �

� � ,

�e m in em n m n, ,( )� 
 .

Then:

� �
�

�

�
�

�

�
�

1 0
0 1

,

J
J

J
�

��

�
�

�

�
�

0
0

0

0
,

D �
�

�
��

�

�
��

0
0
�

�† .

gives the data of the real spectral triple of KO and metric di-
mension 2 on the Noncommutative Torus.

Exercise 6.12: Verify that all properties of spectral triples are
satisfied!

6.4 Making (noncommutative) physics
Suppose we accept that spectral triples do describe non-

commutative manifolds. Is there any physical contents in them?
Can we use them to describe some noncommutative physics?
The answer is yes and, indeed, we shall be able to provide – at
least – some partial answers.

6.4.1 Gauge theory and gravity

If we have a spectral triple( , , )� � D we may always wonder
whether the Dirac operator we have chosen is a good one.
Certainly nothing (apart from some symmetries) guarantees
it and, in fact, a simple transformation

D D A� 
 ,

where A is a self-adjoint one-form A a D bi i��� �( )[ , ( )] al-
lows us to construct a spectral triple with the same algebra and
Hilbert space but a – slightly – modified Dirac operator.
Moreover, when we look at it, we see that in this way we recon-
struct the gauge theory and is nothing else but the gauge
potential. We call this inner fluctuations of the Dirac operator. It is
a small step to calculate D2, recover the curvature of the
gauge potential and construct the action. In this approach
there are, however, some hidden obstacles, which have origin
in the fact that D defines a differential algebra only after
we quotient out an additional ideal. Then, there are many
non-equivalent ways of embedding the two-forms into the
algebra of operators on the Hilbert space (which we need if
we want to use noncommutative integrals to calculate the
action).

Clearly, the information that is encoded in D includes also
the metric and hence the Riemannian connection. Are we
able to construct the gravity action as well? A partial answer
was provided some time ago by Kastler, Kalau and Walze, who
proved that the Einstein-Hilbert functional (the integral of
the scalar of curvature, in other words) on manifolds can be
expressed as a Wodzicki residue of a certain power of the op-
erator D [38, 39].

Now, we are ready to see the proposition that encompasses
both contributions.
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6.4.2 The spectral action
Again, assume that we have a spectral triple, that is

( , , )� � D . The following defines a functional on the space of
all admissible Dirac operators:

S D f D( ) ( )� Tr 2 ,

where f is a cut-off function, which, for instance, vanishes for
arguments bigger than a certain number �. This idea ap-
peared for the first time (in a similar phrasing) in the work of
Sakharov [41] in 1965.

Of course, the action functional depends on the choice of
f. However, it appears that the dependence is not as significant
as we might suspect, as we shall see later.

Let us consider now the easy example of two-points and
the spectral action in this case.

Example 6.13: Recall the construction of the spectral triple
for the algebra of two-points and its Dirac operator D. The
only free parameter in D was a complex number ( )D0 12. A
most general self-adjoint one-form A is given as:

A �
�

�
�

�

�
�

0
0
�

�† ,

where

� �
�

�
�

�

�
�( )D

w
z0 12
0

0
,

for arbitrary w z, ��. Since our triple is a real one and
JD D J� , we need to require the same for the gauge poten-
tial A and thus we have z w� . Then the spectral action is:

Tr( ) ( ) ( )( )D A D z z
 � 
 
2
0 12

24 1 1 .

It is not an exciting answer but, in fact, we did not expect
anything exciting here. More interesting things happen when
we consider the continuous geometry of the C-functions on
a manifold and the spectral action of the true Dirac operator!

Lemma 6.14: For the spectral triple( ( ), ( , ), )C M L M S D 2 over

a 4-dimensional manifold, the spectral action (modulo topo-
logical and boundary terms) has the following asymptotic
expansion:

Tr f
D

f f
f

g d x

f

2

2 2 4
4

2
2 0 4

2

1
16 2

1
96

�
� �

�

�

�
�
�

�

�
�
� � 
 


�

2�

�

( )

( ��

��
��

�
�

���







" � � 


2f R g d x

f R R R R R

0
4

2

0
2

1
4

1
360

5 2 12 2

)

( ;

�

� R���� ),2
where f f u u duk

k� �


2 ( ) 1

0
for k �0 and f f0 0� ( ) are the mo-

ments of f.
This is a pure gravity action, which includes the cosmologi-

cal constant, the Einstein-Hilbert action and some additional

term, which depend on the Riemannian curvature tensor, the
Ricci tensor and the scalar curvature.

If we introduce just a bit of noncommutative geometry,
by taking as the algebra not C M( ) but C M MN

 �( ) ( )� , the
algebra of matrix valued functions on M we obtain the possi-
bility of constructing an SU(N) gauge theory. The gauge con-
nection one-form A A dx� �

� (in local coordinates) will enter
the spectral action as well and we shall additionally obtain
(apart from some change in the coefficients in the two first
terms) another term in the�-independent part of the expan-
sion: the Yang-Mills action:

1
4

1
1202 0

�
��

��" 2f F FTr( ) .

6.5 The standard model
So far we have recovered important parts of theoretical

physics all encoded in one simple action. There is, however,
more to it as we shall finally see in this section. The crucial
point is to take the geometries of the type M F� , where M is a
Riemannian manifold and F is a discrete geometry. It is like a
Kaluza-Klein model but with the extra dimensions being in
fact of (classical dimension) zero.

We shall study here a toy model of the construction, refer-
ring to the recent papers by Connes [31, 32] for the detailed
advanced construction, which makes contact with the real
physical Standard Model.

Example 6.15: Let us begin with the construction of the (real)
spectral triple for the algebra of functions on M F� 2, with F2

the space of two points. The standard procedure is to take the
spectral triples on both spaces and construct their tensor
product. However, we shall simplify the construction: we shall
just postulate the Dirac operator. Another simplification that
we make is that we skip the requirement of the reality condi-
tions (in the sense of J-reality) and take the manifold to be flat
(say a 4-torus!).

As a Hilbert space we take the two copies of the spinorial
Hilbert space over manifold M : � � &L M S L M S2 2( , ) ( , ).
The functions act on � so that

f h h f h f h( ) ( ) ( )
 � 
 �& � 
 & � .

As the Dirac operator we take:

D �

�

�

�
�

�

�

�
�

�  �

� � 

�
�

�
�

5

5 ,

where by �5 we denote the �2-grading of the standard spec-
tral triple over M (which in physical notation is �5) and
�  ��

� �( )� is the standard Dirac operator expressed in local
coordinates with the spin connection ��. The most general
inner fluctuations of the Dirac operator are:

A
A x H x

H x A x
�


�

�

�
�

�

�

�
�




�
� �

� �

�
�

�
�

( ) ( )

( ) ( )*

5

5
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The next step is a not a trivial one – but using the knowledge
of the asymptotic expansion and Seeley-de Witt coefficients
(see [22, 25] for explanation and details) we find out what will
change in the expansion of the spectral action. We skip the
exact calculation (which we recommend, however, as a good
exercise!)

It is no surprise that the additional terms involve certain
covariant functionals of H:

� the vacuum energy of field H(x) (both in�2 and�0 parts)

g d x H x H x4 ( ) ( )*2 ,

� the coupling of H to the scalar of curvature (�0 part)

g d x H x H x R4 ( ) ( )*2 ,

� the kinetic term for the H(x) field:

g d x D H x D H x4 ( ( ) ( ) )*
�

�2 .

� the potential of the H(x) field:

g d x H x4 4( )2 .

Here D� denotes there the U U( ) ( )1 1� -covariant derivative. We
can interpret these contributions in physical terms as the ki-
netic action of the Higgs field H(x) and the Higgs potential,
which after some rescaling can be written as:

g d x H x H x4 2 2( ( ) ( ) )*� $2 .

The crucial information (from the physical point of view) lies
actually not in the exact values of the coefficients but their
relative signs. If H 2 and H 4 appear with opposite signs we
have the standard Higgs potential leading to the symmetry
breaking mechanism.

Since (a priori) � and all coefficients fk from the cutoff func-
tion are free parameters we can actually fix them so that the
signs are correct.

For the more realistic approach to the Standard Model
we need to take a slightly complicated model, with the finite
algebra being � �& &� M3( ). It comes as no surprise that
this construction leads to the full gauge group of the Standard
Model: U SU SU( ) ( ) ( )1 2 3� � . Taking an appropriate spectral
triple over the finite algebra (which is actually of KO-dimen-
sion 6) and tensoring it with the usual spectral triple over a
manifold, one obtains as a spectral action:

S f f c
f

d g d x

f f c
R g d

� � 
�
�
�

�
�
�
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 b g d x2 ,

where F, B, G are curvatures of the electro-weak and strong
gauge fields and � is the SM Higgs doublet (seen as a qua-
ternionic field).

For more details, please consult [6].

6.6 Where and why learn more?
In these three lectures we have tried to give a glimpse of

noncommutative geometry – a theory, which, motivated by
examples, extends the notion of geometry into the algebraic
world. What we still need to supply is a word about prospects:
first of learning (where to learn more) but also the prospects
of the field (why learn it).

6.6.1 The sources
For the more interested reader we recommend further

reading. First of all, there is an excellent introduction to
almost all of the topics of these lectures: “Elements of Non-
commutative Geometry” [2] by José Gracia-Bondia, Joseph
Várilly and Hector Figueroa. It offers a comprehensive and
detailed course in noncommutative geometry reviewing also
the most recent trends and links with physics. There are,
of course, the books by Alain Connes: the seminal work
“Noncommutative Geometry” [5] and the more recent book
with Mathilde Marcolli [6]. Other textbooks which give a
review of selected topics (and are written more from the
perspective of mathematical physicist) are “An Introduction
to Noncommutative Differential Geometry and its Physical
Applications”, [17], by John Madore and “An introduction
to noncommutative spaces and their geometry”, [14], by
Giovanni Landi.
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where A x�( )$ are two copies of the U( )1 gauge potential and H x( ) is a complex-valued field!

We calculate the square of the Dirac operator paying particular attention to the terms that involve H. The rest, depending only
on A x�( , )$ , does not differ from the usual classical theory. The terms that depend on H in the square of the Dirac operator
D A
 are:

H x H x A x A x H x

A x

( ) ( ) ( ( ) ( ) ) ( )

( ( )

* � � 

� � 

�
� � �

�
� �

5

5
1
 � �





 �

� 
�

�

�

�
�

�

�

�
�A x H x H x H x�( ) ) ( ) ( ) ( )* *



There are, of course, numerous books on some mathemat-
ical aspects of noncommutative geometry, e.g. K-theory, for
instance. We shall not list here all possible available books and
monographs but will give only single examples. First of all,
there is an excellent monograph of Jean-Louis Loday [16] on
cyclic homology, Hochschild and related subjects. A concise
and useful review of the topis is given by Husemoller [12].
Cyclic homology within noncommutative geometry is pre-
sented in [8]. A very good and comprehensible introduction
to K-theory can be found in a friendly approach to K-theory by
Wegge-Olsen [19] and also in the book by Blackaddar [1].
The overview of the link between cyclic cohomology, K-theory
and Chern parings is nicely explained in the book of Jacek
Brodzki [3]. Almost everything on operator algebras can be
found in the excellent monograph by Richard Kadison, John
Ringrose [13]. A review of differential graded algebras can be
found in the lecture notes by Michel Dubois-Violette [35, 36].
One of the basic classical texts on all aspects of topology, dif-
ferential geometry, gauge theories and characteristic classes
is the textbook “Analysis, Manifolds and Physics”, [4], by
Choquet-Bruhat and DeWitt-Morette. Everything one wants
to know about spin geometry is in the book (surprise, sur-
prise): “Spin Geometry”, [15], by Lawson and Michelsohn. All
properties of Dirac operators are explained in the work of
Thomas Friedrich “Dirac Operator” [10]. The most recent
concise introduction to spectral triples (treating the classical
and noncommutative examples) is contained in the book by
Joseph Varilly, [18], “An Introduction to Noncommutative
Geometry”.

There are, of course, numerous reviews and lecture notes
from courses at institutions and schools (for example: [7, 9,
11]). Written for different purposes and by different authors,
they offer views of the topic from many differen angles. A
selection can also be found found on the internet, on the
web pages of noncommutative geometers or common sites like
the „Noncommutative blog“.

6.6.2 The outlook
It is hard to see at the moment whether Noncommutative

Geometry will become the right tool for describing the phys-
ics: both known physics and physics yet to be discovered. We
have mentioned that NCG finds applications in a range of
topics, from the Quantum Hall Effect [20], Standard Model
[43, 40] up to string theory [42, 28]. There are other branches
of noncommutative geometry that we have not even touched:
Hopf algebras, quantum groups and quantum deformations,
deformation quantization, noncommutative field theory,
Hopf algebras in renormalization – to list only those, which
(more or less) have some links to physics.

One may say that we are just at the dawn of noncom-
mutative geometry: it is a world still to be discovered.
Whether this geometry will be the geometry used to describe
the world is not known. But we might soon find out.
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