
1 Introduction
Non-Hermitian Hamiltonians with a complex eigenvalue

spectrum have been studied almost since the formulation
of quantum mechanics, most prominently as consistent de-
scriptions of dissipative systems resulting for instance from
channel coupling [1]. It has also been known for a very long
time that many interesting non-Hermitian Hamiltonians with
a real eigenvalue spectrum result naturally in various circum-
stances. For instance, it was argued more than thirty years ago
that the lattice versions of Reggeon field theory [2]
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with a a
i i
� �†, being standard creation and annihilation ope-

rators and �, ,~g g ��, possess a real eigenvalue spectrum [3]
(I am grateful to John Cardy for pointing this out). The re-
duction of the Hamiltonian in (1) to a single lattice site in zero
transverse dimension [4] is very reminiscent of the so-called
Swanson model [5], which results by replacing the interaction
term with a simpler bilinear expression ga a gaa† † ~� . The lat-

ter model serves currently as a concrete popular solvable
model to exemplify various general features related to the
study of non-Hermitian Hamiltonians [5, 6, 7, 8, 9]. Affine
Toda field theory with a complex coupling constant is a very
prominent class of field theoretical models, which are argued
[10, 11] to be consistent despite their Hamiltonians being
non-Hermitian. Besides the study of such explicit models re-
lated to non-Hermitian Hamiltonians, in particular their
spectral properties, the question of how to formulate the cor-
responding quantum mechanical description consistently was
first addressed in [12]. A useful insight into how to implement

��-symmetry into this formulation was later obtained [13].
The current large interest in the subject of non-Hermitian
Hamiltonian systems was initiated about nine years ago [14]
by the surprising numerical observation that even the class of
simple non-Hermitian Hamiltonians

� � �p g iz N2 ( ) , (2)

defined on a suitable domain, possesses a real positive and
discrete eigenvalue spectrum for integers N 2 with g ��.
Supported by numerous new results and insights (for some
recent reviews see [15, 16, 17, 18]), which have been obtained
since, the natural question arises of how to construct non-
-Hermitan Hamiltonians with real eigenvalue spectra in a
more systematical way.

The question I would like to address in this paper is how
this may be achieved, in particular by generalizing some
integrable models.

2 Real spectra of non-Hermitian
Hamiltonians
The activities in spectral theory usually focus on normal or

self-adjoined operators in some Hilbert space. With regard to
the remarks made in the introduction we shall first briefly re-
view some arguments which may be used to explain the reality
of the spectra of non-Hermitian Hamiltonians and then em-
ploy them to construct new models, which depending on the
argument used are guaranteed, or at least are likely, to have a
real eigenvalue spectrum.

2.1 Pseudo-Hermiticity
Since a Hermitian operator, say h h� †, is guaranteed to

have real eigenvalues, i.e. h� ��� with � ��, one may trivially
construct isospectral Hamiltonians by means of a similarity
transformation H h� �� �1 , such that H� �� � with � � �� �1 .
When � is a Hermitian operator this implies that the conjuga-
tion of H is simply achieved by H H† � �� �2 2. Hamiltonians of
this type are denoted as pseudo Hermitian Hamiltonians [12,
19, 20, 21, 22]. One of the immediate virtues of the these rela-
tions is that �2 can be used consistently as a metric operator.

Given a Hermitian Hamiltonian it is of course trivial to
construct several isospectral non-Hermitian Hamiltonians in
this manner simply by computing � �� �1h H for some posi-
tive �. However, interesting situations arise when given simple
non-Hermitian Hamiltonians, such as (1) and (2), possible to-
gether with the knowledge that they possess a positive real
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spectrum, and one tries to construct their Hermitian counter-
parts by seeking convenient Hermitian operators �, such that
� �H h h� � �1 †. Unfortunately, this is only feasible in an ex-
act manner in some very rare cases [23, 5, 6, 7, 8, 9] and
mostly one has to rely on perturbation theory, see e.g. [24, 25,
26, 8, 27]. More awkward is the fact that when given exclu-
sively the non-Hermitian Hamiltonian H, there might be sev-
eral Hermitian Hamiltonians counterparts and the metric is
therefore not even uniquely determined. One may select out a
particular metric by specifying for instance at least one more
observable [12] or the spectrum.

2.2 Supersymmetry
Another standard procedure produces isospectral Hamil-

tonians is to employ Darboux transformations or equivalently
a supersymmetric quantum mechanical construction [28, 29].
For this one considers Hamiltonians �, which can be decom-
posed into the form

� � � � �� �H H QQ QQ~ ~ (3)

As indicated in (3) one assumes that the two superpartner

Hamiltonians H� factor into the two supercharges Q and ~Q ,

which intertwine the Hamiltonians H� as QH H Q� �� and
~ ~QH H Q� �� . Evidently the two charges commute with the

Hamiltonian �, i.e. [ , ] [ ,~]� �Q Q� �0 , and thus the sl(1/1)

algebra constitutes a symmetry of �. As pointed out by vari-

ous authors [30, 31, 32, 33, 34, 35, 36], one does not require

the Hamiltonians H� to be Hermitian, such that we allow

H H� ��† . The only constraints which are natural to impose

when one wishes to make contact with the pseudo-Hermitian

treatment in the previous section are that the individual fac-

tors of H� are conjugated as [34]

Q Q† ~
� � �� �

�2 2 and ~ ~†Q Q� � �� ��2 2, (4)

where the operators �� are Hermitian � �� ��† . As an im-

mediate consequence of (4), both Hamiltonians H� in (3)
become pseudo-Hermitian and possess Hermitian counter-
parts h h� ��†

H H h H� � � � � � � �� � �† � � � �� �2 2 1. (5)

By construction all four Hamiltonians h�, H� are therefore
isospectral

H�
� ��� �� and h�

� ��� � � (6)

and their corresponding wavefunctions are intimately related

� �� �
�
�

�� �Q � �1 and � �� �
�
�

�� �
~Q � �1 . (7)

One may now characterize four qualitatively different
cases depending on the properties of the Hermitian opera-
tors �� in (7), namely i) for generic �� we have isospectral

quartets, ii) for generic �� and �� � � and iii) for generic ��

and �� � � we find isospectral triplets and finally iv) for
�� � � we have isospectral doublets. The interesting cases ii)
and iii), which contain a Hermitian Hamiltonian, have been
considered in [31].

Next, one needs to specify the explicit representation for
the supercharges in terms of the superpotential W(x). Setting
the parameter �

2 2 1m � , the simplest choices are differential
operators of the first order

Q
x

W� �
d
d

and ~Q
x

W� � �
d
d

(8)

such that the two superpartner Hamiltonians may be written
as

H W W V� �� � � � � � � �� �2 . (9)

Alternative choices with higher order differential opera-
tors are discussed for instance in [37]. Assuming further that
H� possesses a discrete spectrum H n n n�

� ��� �� , one may
adjust the energy scale such that H n�

� �� 0 for some chosen
m. In order to single out this groundstate wavefunction we de-
note it as 	m m mc W x: exp� � ��

��
�
	


� �� d , c��. Consequently
the superpartner potentials may be expressed in terms of the
groundstate wavefunctions and acquire the forms

Wm
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Therefore the Hamiltonians

H V E W W Em m
m m m m� �� � � � � � � � � �� � 2 (11)

are isospectral

H Em
n n n�
� ��� � for n m� . (12)

In order to disentangle the Hermitian from the non-
-Hermitian case, we separate the superpotential into its real
and imaginary part W w iwm m m� � � with w wm m� †, � �

†w wm m�

and likewise for the groundstate energy E im m m� �� �� . With
these notations we can re-write (11) as

H w w w

i w w w

m
m m m m

m m m m

� � � � � � � �

� � � �

� �

( � � � ).
�

�2
(13)

Clearly we encounter the situation ii) or iii) when

w
w

wm
m m

m
�
� � �� �

�

�

2
or �wm �0 , (14)

respectively.

When given a Hamiltonian, irrespective of being Hermi-
tian or non-Hermitian, and at least one wavefunction, the
exploitation of supersymmetry is a very constructive proce-
dure to obtain isospectral Hamiltonians, which could also be
Hermitian or non-Hermitian.
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2.3 ��-symmetry
A further very simple and transparent way to explain the

reality of the spectrum of some non-Hermitian Hamiltonians
results when we encounter unbroken ��-symmetry, which
in the recent context was first pointed out in [13]. This
means that both the Hamiltonian and the wavefunction re-
main invariant under a simultaneous parity transformation
� : x x� � and time reversal � : t t� � , that is we require

� �H,�� �0 and �� � �� , (15)

where � is a square integrable eigenfunction on some do-

main of H. It is crucial to note that the ��-operator is an
anti-linear operator, i.e. it acts as
�� �� ��( ) * *
 � 
 �� � � �� � � with 
 �, ��

and �, � being some eigenfunctions. An easy way to convince
oneself of this property is to consider the standard canonical
commutation relation [ , ]x p i� . Since �� : ,x x p p� � � , we
require �� : i i� � : to keep this relation invariant. Utilizing
now both relations in (15) and the anti-linear nature of the

��-operator, a very simple argument leads to the reality of
the spectrum

� � � �� � � � � � �� � � � � �H H H�� �� �� ��
* * (16)

Whereas the first relation in (15) is usually trivial to check,
the second is in general difficult to access as one rarely knows
all the wavefunctions. In case it does not hold, one speaks of a
broken ��-symmetry and the eigenvalues come in complex
conjugate pairs. All arguments in this subsection were essen-
tially already known to Wigner in 1960 [38] relating to anti-
-linear operators in a completely generic form. Noting that
the ��-operator is an example of such an operator these ideas
have been revitalized in a modified form and developed fur-
ther in the recent context of the study of non-Hermitian
Hamiltonians [13].

3 ��-symmetry as a guiding principle
to construct new models
If we now wish to construct new models with real eigen-

value spectra, we may in principle use any of the previous
arguments. Clearly the exploitation of ��-symmetry on the
level of the Hamiltonian is the most direct and transpar-
ent way, as one can just read of this property immediately.
Thereafter one can write down some new ��-symmetric
Hamiltonians by means of simple deformations, i.e. replac-
ing for instance the potential V(x) by V(x) f(ix), V(x) f(ixp),
V(x)+ f(ix) or V(x)+ f(ixp), etc. with f being some arbitrary
function. Clearly the Hamiltonians in (1) and (2) are of this
type. Of course these new models are not guaranteed to have
real spectra as the second property in (15) might be spoiled.

Nonetheless, they have a high chance to describe non-dis-
sipative physics and are potentially interesting.

3.1 ��-symmetric extensions for multi-particle
systems

Basu-Mallick and Kundu [39] were the first to write down
some non-Hermitian extensions for some integrable many-
-particle systems, i.e. the rational A�-Calogero models [40]

�BK ii
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( )

~
( )�

(17)

with g g,~ ��, q p, � �
�

� 1. There are some immediate ques-
tions one may pose [41] with regard to the properties of �BK:
i) How can one formulate �BK independently of the repre-
sentation for the roots? ii) Can one generalize �BK to other
potentials apart from the rational one? iii) Can one general-
ize �BK to other algebras or more precisely Coxeter groups?
iv) Is it possible to include more coupling constants and, in
particular, v) Are the extensions still integrable? It turns out
that the answers to all these questions become all quite simple
when one realises that (17) corresponds in fact to the stan-
dard Calogero model simply shifted in the momenta. This
means the similarity transformation � is simply the transla-
tion operator in p-space.

In order to see this and to answer the above questions we
ignore the confining term in (17) by taking  �0 and we
re-write the Hamiltonian as

�� ��
� �� � � � �

��1
2

1
2

2 2p g V q i p( )
�

, (18)

where � is now any root system invariant under Coxeter

transformations, � � ���
� �

��1 2 ~ ( )g f q
�

, F x x( ) �1 and

V x f x( ) ( )� 2 . We have also introduced coupling constants

g g� �,~ for each individual root. The Hamiltonians �� are

meaningful for any representation of the roots and all

Coxeter groups. For a specific choice of the representation

for the roots, namely � � �i i i� � �1 for1� �i � with � � �i j ij� �

and the Coxeter group, i.e. A�, we recover the expression in

(18). To establish the integrability of these models it is crucial

to note the following not obvious property

� � � � �
� �

2 2 2 2 2� � � �
� �� �s s l lg V q g V q

s l

~ ( ) ~ ( )
� �

(19)

where �s, �l denotes the short and long roots, respectively.
For the details of the proof of this identity we refer to [41]. As

a consequence of (19), we may re-express �� in form of the
usual Calogero Hamiltonian with shifted momenta together
with some redefinitions of the coupling constants
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Therefore, upon redefining of the coupling constant, we
may obtain �� by a similarity transformation as

H h� � �� �1
Cal with � �� � �e x .

The results of section 2.1 apply therefore and one may
construct for instance the corresponding wavefunctions by
�� � �� �1

Cal. Similarly one can establish integrability with
the help of a Lax pair with a shifted momentum. One may
verify that

L p i H i g f q E

M=m H i g f q E

� � � � �

� � � �

��( ) � ( )

� ( )

� �

�

� ��

� ��

�

and

�� �

(21)

fulfill the Lax equation � �� ,L L M� , upon the validity of the

classical equation of motion resulting from (18), where the
Lie algebraic commutation relations

� � � �

� � � �
H H H E E

E E H E E E

i j i
i, , , ,

, , , .

� �

� � �� �

0 � �

� � � � ��� � �

�

� �

are taken to be in the Cartan-Weyl basis, i.e. they are normal-
ized as tr( )H Hi j ij� � , tr( )E E� �� �1 . The vector m can be
expressed in terms of the structure constant ��� � and the po-
tential in the usual fashion. We note that the Lax equation is

��-symmetric as �� : ,L L M M� � � . Naturally the con-

served charges I Lk
k� tr ( ) 2, notably the Hamiltonian I2,

have the same property.

Having established the integrability of the Calogero
models one may address the question ii) and try to ex-
tend these considerations to other potentials. Allowing now
f x x( ) sinh�1 and f x x( ) sin�1 , we obtain the hyperbolic
and elliptic case with V x f x( ) ( )� 2 . The integrability is guar-
anteed by means of the same Lax pairs (21). However, when
expanding the square in (20) the resulting Hamiltonian is not
quite of the form (18)

�� ��
� � �� � � � � �

��1
2

1
2

1
2

2 2 2p g V q i p� ( )
�

, (22)

because the identity (19) does not hold for the other poten-
tials. This means that the Hamiltonians in (22) constitute
non-Hermitian integrable extensions for Calogero-Moser-
-Sutherland (CMS)-models for all crystallographic Coxeter
groups, including, besides the rational, also trigonometric,
hyperbolic and elliptic potentials. Dropping the last term
would break the integrability for the non-rational potentials.

3.2 ��-symmetric deformations of the Korteweg
deVries equation

An even more popular integrable model than the CMS-
-model is one having the Korteweg-de Vries (KdV) equation
[42] as the equation of motion

u uu ut x xxx� � �0 . (23)
This equation is known to remain invariant under x x� � ,

t t� � , u u� , i.e. it is ��-symmetric. By the same recipe out-
lined above we may then carry out the following deformation
u i iux x� � ( )� with � ��, which was originally performed for
the second term in [43] and for the third term in [44], leading
to the equations

u iu iu ut x xxx� � � �( )� �0 � (24)

and

u uu i iu u iu ut x x xx x xxx� � � � �� �� � �� �( )( ) ( )1 02 2 1 , (25)

respectively. For the model in (24) one can establish the
following properties: the Galilean symmetry is broken, the
model possesses two conserved quantities in terms of infinite
sums and exhibits steady state solutions. However, it is un-
clear how ��-symmetry can be utilized further. Instead (25),
despite being more complicated, has some simpler proper-
ties: it is Galilean invariant, possesses three simple conserved
charges, exhibits steady state solutions, ��-symmetry can be
utilized to explain the reality of the energy and it allows for a
Hamiltonian formulation with non-Hermitian Hamiltonian
density

� � �
�

��u iux
3 11

1 �
��( ) � . (26)

Analogues of various different types of solutions of the
KdV-equation have been studied in [43, 44]. No soliton solu-
tions have been found and it seems unlikely that the models
are integrable.

4 Conclusions
We have demonstrated that ��-symmetry serves as a very

useful guiding principle for constructing new interesting
models, some of which even remain integrable. Being closely
related to integrable models, these new models have ap-
pealing features and deserve further investigation. Naturally
one may also reverse the setting and employ methods that
have been developed in the context of integrables to ad-
dress questions which arise in the study of non-Hermitian
Hamiltonians. For instance, one [45] may employ Bethe an-
satz techniques to establish the reality of the spectrum for
Hamiltonians of type (2).
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