Acta Polytechnica Vol. 47 No. 2-3/2007

PT-symmetry and Non-Central

Potentials

G. Lévai

We present a general procedure by which solvable non-central potentials can be obtained in 2 and 3 dimensions by the separation of the
angular and radial variables. The method is applied to generate solvable non-central PIT-symmetric potentials in polar coordinates.
General considerations are presented concerning the PT transformation properties of the eigenfunctions, their pseudo-norm and the nature
of the energy eigenvalues. It is shown that within the present framework the spontaneous breakdown of PT symmetry can be implemented

only in two dimensions.
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1 Introduction

The most widely studied quantum mechanical potentials
are formulated as one-dimensional problems. These include
potentials defined on a finite domain (e.g. the infinite square
well) or on the full x axis (e.g. the Péschl-Teller potential). Po-
tentials defined on the positive semi-axis also occur as radial
problems obtained after the separation of the angular vari-
ables in centrally symmetric potentials. Potentials in higher
dimensions are less frequently discussed, and mainly in cases
when they can be reduced to one-dimensional problems by
the separation of the variables in some coordinates (Carte-
sian, polar, etc.). These potentials differ from the one-dimen-
sional ones in several respects: their spectrum can be richer
due to the more degrees of freedom, and this can be mani-

fested in the occurrence of degeneracies, for example.

An interesting recent development in quantum mechanics
was the introduction of P7 symmetry [1]. Quantum systems
with this symmetry are invariant under the simultaneous ac-
tion of the P space and 7 time inversion operations, where
the latter is represented by complex conjugation. It has been
tound that although these P7-symmetric problems are mani-
festly non-Hermitian, as they possess an imaginary potential
component too, they have several features in common with
traditional self-adjoint systems. The most striking of these is
the presence of real energy eigenvalues in the spectrum, but
the orthogonality of the energy eigenstates and the time-in-
dependence of their norm is also non-typical for complex
potentials. There are, however, important differences too,
with respect to conventional problems. The energy spectrum
can turn into complex conjugate pairs as the non-Hermiticity
increases, and this can be interpreted as the spontaneous
breakdown of P7 symmetry in that the energy eigenstates
cease to be eigenstates of the PT operator then. Also,

the pseudo-norm defined by the modified inner product
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<1/1\¢>W = <1/)\73¢> turned out to have indefinite sign. P7 sym-
metry was later identified as the special case of pseudo-
-Hermiticity, and this explained much of the unusual results.
The proceedings volumes of recent workshops [2], [3] give a
comprehensive account of the status of PZ-symmetric quan-
tum mechanics and related fields.

With only a few exceptions the study of P7-symmetric
systems has been restricted to the bound states of one-dimen-
sional non-relativistic problems, where P7 symmetry amounts
to the requirement V*(—x) =1/(x). Here we extend the scope
of these investigations by considering P7-symmetric prob-
lems in higher spatial dimensions. In particular, we employ a
simple method of generating solvable non-central potentials
by the separation of the variables and combine it with the

requirements of P7 symmetry [4].

2 Non-central potentials in polar
coordinates

Let us consider the Schrodinger equation with constant
mass

2 2
[p+ V(l‘)}ﬂ(l‘) =LA¢(Y) +V(r)y(r), (1)
2m 2m

where the potential I/(r) is a general function of the position r.

Although in this section we implicitly assume that V(r) is real,

so the Hamiltonian describing the quantum system is self-

-adjoint, the procedure we follow here can be applied to

complex potentials too. In what follows we choose the units as

2m =h =1. Specifying (1) for d =3 dimensions and using po-
lar coordinates we obtain

2
%2;7(72 %j + %22715 + r%cot(@) %
1 Py
72 sin” 6 J

@)
V(r,0,p)y + Eyp =0.
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Assuming that the separation of the variables is possible,
we search for the solution as

Y(r,0,0) =17 $(r) 1(0) (), 3)
wherer €[0,20),0 €[0,,r]and ¢ €[027]. Then (2) turns into
O LT+ (1" + couO))pr

r )

1 "
+5—5 AT —(V(r,0,p) ~E)p x 7 =0,
r°sin” 0

where prime denotes the derivative with respect to the appro-
priate variable.

Next we assume that y(6) and 7(¢) satisfy the second-order
differential equations

1" +cot(0)x' =(Q0) —q)x (5)

" =(K(p) —k)r. (6)

It is seen that (6) can be considered a one-dimensional
Schrodinger equation defined in the finite domain [0, 2:1]
7(0) =7(27) and
7'(0) =7'(27). Note that in the case of one-dimensional po-

with  periodic boundary conditions
tentials defined within a finite domain the wavefunction is
usually required to vanish at the boundaries, however, consid-
ering periodic boundary conditions, this is not a necessary
requirement: it can also be finite there.

Equation (5) is solvable for the choice
Q(0) =u*sin (), g=v(v +1), (7)
when the solutions are given by the associated Legendre func-
tions B}*(cos(6)) [5]. Normalizability requires 4 and v to be

non-negative integers such thatv =/, 4 =m </. Then
1

Kiml0) = Kz + %) (=m) ’}2 B (cos(®). (8)

(L+m)!

Substituting (6), (5) and (7) in (4) the angular part can be
separated, and a radial Schrédinger equation is obtained

9+ [Vo(r) A }p ~Ep =0, ©)

where the central potential V(r) is related to V (7,0, ¢) as

_ 1 9
V(r,60,p) =Vo(r) +m([<(<p) —k+m ) (10)

In its most general form, (10) is a non-central potential
that depends on the states through & and m. In order to
eliminate the state-dependence one can apply the prescrip-

24 a, where a is a constant. Since m has to be an in-

tion k =m
teger, this prescription represents a restriction on the solu-
tions of equation (6). A special case occurs for K(¢) =a, i.e. for
the free motion on a circle (or an infinite square well with peri-
odic boundary conditions), which reduces (10) to a central po-
tential, and takes the angular wavefunctions y(6)z(¢) into
spherical harmonics 17,,(0, @) [5].

Exact solutions of the radial Schrédinger equation (9) are

known for the harmonic oscillator, Coulomb and square well
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potentials for arbitrary value of /, while for /=0 (i.e. for s
waves), it is solvable for many more potentials. Some solutions
can also be obtained for arbitrary { for quasi-exactly solvable
(QES) potentials [6] in the sense that the first few solutions
(up to a given principal quantum number) can be determined
exactly then.

Specifying (1) to d =2 dimensions the whole procedure
can essentially be repeated. The equivalents of equations (2)
and (3) are then

1o o 1 &

(pwj+2’fj—wp,¢>w+w=o (1)
pap\"ap)" p2ap

and

1
Y(p,p) =p 2¢(p) T(p) (12)

The separation of the angular variable ¢ is again possible
if (6) holds, and the solutions are required to satisfy periodic
boundary conditions. The radial Schrédinger equation is now

¢+ {VO(P) + (k - i)g}p _Ep=0, (1)
p
where

Vpop) =Volp) + pIQK«o). (14)

Equation (13) can be solved exactly for the same potentials
as in three dimensions.

3 Non-central P7-symmetric
potentials

Let us now specify the procedure outlined in the previous
section to P7-symmetric potentials. Since the kinetic term in
(1) is PZ-symmetric, we have to take care separately only of
the P7 symmetry of the potential term. The effect of the P
operation is P:r — —r, so the condition for the P7 symmetry
of a general potential ind =3 dimensions is

V(r,0,p) =V (r,m — 0,0 + 7). (15)

It is obvious that central potentials V(r) = V(\r\) =1/ (r) can
be P7-symmetric only if they are real: V() :V*(r), so the
angular variables play an essential role in introducing an
imaginary potential component.

Applying condition (15) to the general potential form
(10), the prescriptions

Vo(r)=Vo(r), K (p+m)=K(p), k" =k (16)

are obtained, i.e. V/y(p) is real, K(p) is PZ-symmetric and the

eigenvalue of equation (6) is real. Note that the reality of the
potential V(r) implies that (9) has the same form as the radial
Schrodinger equation of a centrally symmetric self-adjoint
quantum system, therefore the eigenvalues E also have to

come out real. This means that the spontaneous breakdown
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of P7T symmetry cannot be implemented in the present ap-
proach for non-central potentials in d =3 dimensions.

According to (15) the P operator can be factorized as

P=P Py P(p, (where, obviously, P, =1),

so the PT transformation properties of the functions ¢(r), x(6)
and 7(p) can also be studied. Due to the arguments concern-
ing (9) above, ¢(r) can be chosen real, and in this case it obvi-
ously satisfies P, 7 ¢(r) =¢(r). Introducing an extra phase
factor 7' in (8), it is possible to make x(0) the eigenfunction of
the Py7 operator with eigenvalue 1. A similar procedure also
has to be applied to the 7(p) functions and the P, operator,
but this can be done only in the exact knowledge of the K(p)
function. This guarantees that the full wavefunction y(r, 6, ¢)
(3) is also the eigenfunction of the PT operator with unit

eigenvalue.

These phase choices are also reflected in the sign of the
pseudo-norm of the eigenstates y(r, 0, ¢), since <1/}‘771/1> can
be determined by the inner products calculated with the con-
stituent functions ¢(r), x(0) and 7(p), using the appropriate P;
(t=7, 0, @) operators. Obviously, the contribution of the
radial component will be 1, while it can be shown that with the
phase convention described above, < x| Py X> =(=1)"*" holds.
Although the corresponding inner product for the 7(p) func-
tions can be evaluated only in the knowledge of K(p), similar
inner products are known to exhibit oscillatory behaviour
(—1)" with respect to the principal quantum number for wide
classes of P7Z-symmetric potentials with infinite number of
eigenstates [7], [8], [9]. (Note that for some potentials with
finite number of eigenstates this is not necessarily the case
[10].) The sign of the pseudo-norm is thus indefinite for
three-dimensional non-central P7-symmetric potentials too,
and it depends on the quantum numbers associated with the
angular component of the eigenfunctions.

Let us now discuss the conditions under which non-central
potentials can be PZ-symmetric in d =2 dimensions. The
equivalent of (15) is now

Vip.p) =V (p.gp + ), (17)
and from (14) the conditions
Vo(p) =Vo(p), K (p+ 1) =K(p) (18)

follow from the P7 symmetry of the V(p, ¢). The arguments
on the P7 symmetry of the wavefunction and the constituent
functions are the same as in the three-dimensional case, as are

those concerning the sign of the pseudo-norm.

A major difference with respect to the three-dimensional
case 1s that now £ can be complex too. Since £ is the eigenvalue
of (6), which itself can be considered a Schrédinger equation

with a PZ=symmetric potential (K(¢)), its complex eigenvalues
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occur in complex conjugate pairs. Substituting £ and k" into
the radial Schrédinger equation (13) one finds that the two
equations are each other’s complex conjugate, so their energy
eigenvalues will also appear as each other’s complex conju-
gates. This indicates that similarly to the one-dimensional
case, the spontaneous breakdown of P7 symmetry leads to

complex conjugate energy eigenvalues for d =2 too.

4 Summary

The most important results of this work are presented in
the table below.

d=2 d=3
State-independent 9
potential always k=m"+a
Central potential K(¢p) =const. K(p)=a
PT-symmetric Ko Vo (r) =Vo(7),
potential Volp)=Vo(p) k=k"

Ko+ =K0) g4 m)-k(p)

real or complex

. . real
conjugate pairs

Energy eigenvalues

Sign of

indefinite
pseudo-norm

indefinite
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