
1 Introduction

The most widely studied quantum mechanical potentials
are formulated as one-dimensional problems. These include
potentials defined on a finite domain (e.g. the infinite square
well) or on the full x axis (e.g. the Pöschl-Teller potential). Po-
tentials defined on the positive semi-axis also occur as radial
problems obtained after the separation of the angular vari-
ables in centrally symmetric potentials. Potentials in higher
dimensions are less frequently discussed, and mainly in cases
when they can be reduced to one-dimensional problems by
the separation of the variables in some coordinates (Carte-
sian, polar, etc.). These potentials differ from the one-dimen-
sional ones in several respects: their spectrum can be richer
due to the more degrees of freedom, and this can be mani-
fested in the occurrence of degeneracies, for example.

An interesting recent development in quantum mechanics
was the introduction of �� symmetry [1]. Quantum systems
with this symmetry are invariant under the simultaneous ac-
tion of the � space and � time inversion operations, where
the latter is represented by complex conjugation. It has been
found that although these ��-symmetric problems are mani-
festly non-Hermitian, as they possess an imaginary potential
component too, they have several features in common with
traditional self-adjoint systems. The most striking of these is
the presence of real energy eigenvalues in the spectrum, but
the orthogonality of the energy eigenstates and the time-in-
dependence of their norm is also non-typical for complex
potentials. There are, however, important differences too,
with respect to conventional problems. The energy spectrum
can turn into complex conjugate pairs as the non-Hermiticity
increases, and this can be interpreted as the spontaneous
breakdown of �� symmetry in that the energy eigenstates
cease to be eigenstates of the �� operator then. Also,
the pseudo-norm defined by the modified inner product

� � � �
��

�� turned out to have indefinite sign. �� sym-
metry was later identified as the special case of pseudo-
-Hermiticity, and this explained much of the unusual results.
The proceedings volumes of recent workshops [2], [3] give a
comprehensive account of the status of ��-symmetric quan-
tum mechanics and related fields.

With only a few exceptions the study of ��-symmetric
systems has been restricted to the bound states of one-dimen-
sional non-relativistic problems, where �� symmetry amounts
to the requirement V x V x*( ) ( )� � . Here we extend the scope
of these investigations by considering ��-symmetric prob-
lems in higher spatial dimensions. In particular, we employ a
simple method of generating solvable non-central potentials
by the separation of the variables and combine it with the
requirements of �� symmetry [4].

2 Non-central potentials in polar
coordinates
Let us consider the Schrödinger equation with constant
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where the potential V(r) is a general function of the position r.
Although in this section we implicitly assume that V(r) is real,
so the Hamiltonian describing the quantum system is self-
-adjoint, the procedure we follow here can be applied to
complex potentials too. In what follows we choose the units as
2 1m � �� . Specifying (1) for d � 3 dimensions and using po-
lar coordinates we obtain
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Assuming that the separation of the variables is possible,
we search for the solution as

� � � � � � 	 �( , , ) ( ) ( ) ( )r r r� �1 , (3)

where � r � �0, , � �� 
� 0, and � �� 
� 02, . Then (2) turns into
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where prime denotes the derivative with respect to the appro-
priate variable.

Next we assume that � �( ) and 	 �( ) satisfy the second-order
differential equations

� �� � � � �� � � � �cot( ) ( )Q q , (5)

� �� � �	 � 	K k( ) . (6)

It is seen that (6) can be considered a one-dimensional
Schrödinger equation defined in the finite domain � �0 2, 


with periodic boundary conditions 	 	 
( ) ( )0 2� and
� � �	 	 
( ) ( )0 2 . Note that in the case of one-dimensional po-

tentials defined within a finite domain the wavefunction is
usually required to vanish at the boundaries, however, consid-
ering periodic boundary conditions, this is not a necessary
requirement: it can also be finite there.

Equation (5) is solvable for the choice
Q( ) sin ( )� � �� �2 2 , q � �� �( )1 , (7)

when the solutions are given by the associated Legendre func-
tions � P�

� �cos( ) [5]. Normalizability requires � and � to be

non-negative integers such that � � l, � � �m l. Then
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Substituting (6), (5) and (7) in (4) the angular part can be
separated, and a radial Schrödinger equation is obtained
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where the central potential V r0( ) is related to V r( , , )� � as

� V r V r
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In its most general form, (10) is a non-central potential
that depends on the states through k and m. In order to
eliminate the state-dependence one can apply the prescrip-
tion k m a� �2 , where a is a constant. Since m has to be an in-
teger, this prescription represents a restriction on the solu-
tions of equation (6). A special case occurs for K a( )� � , i.e. for
the free motion on a circle (or an infinite square well with peri-
odic boundary conditions), which reduces (10) to a central po-
tential, and takes the angular wavefunctions � � 	 �( ) ( ) into
spherical harmonics Ylm( , )� � [5].

Exact solutions of the radial Schrödinger equation (9) are
known for the harmonic oscillator, Coulomb and square well

potentials for arbitrary value of l, while for l � 0 (i.e. for s
waves), it is solvable for many more potentials. Some solutions
can also be obtained for arbitrary l for quasi-exactly solvable
(QES) potentials [6] in the sense that the first few solutions
(up to a given principal quantum number) can be determined
exactly then.

Specifying (1) to d � 2 dimensions the whole procedure
can essentially be repeated. The equivalents of equations (2)
and (3) are then
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The separation of the angular variable � is again possible
if (6) holds, and the solutions are required to satisfy periodic
boundary conditions. The radial Schrödinger equation is now
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where

V V K( , ) ( ) ( ) � 


�� �0 2
1 . (14)

Equation (13) can be solved exactly for the same potentials
as in three dimensions.

3 Non-central ��-symmetric
potentials
Let us now specify the procedure outlined in the previous

section to ��-symmetric potentials. Since the kinetic term in
(1) is ��-symmetric, we have to take care separately only of
the �� symmetry of the potential term. The effect of the �

operation is � :r r� � , so the condition for the �� symmetry
of a general potential in d � 3 dimensions is

V r V r( , , ) ( , , )*� � 
 � � 
� � � . (15)

It is obvious that central potentialsV V V r( ) ( ) ( )r r� � can
be ��-symmetric only if they are real: V r V r( ) ( )*� , so the
angular variables play an essential role in introducing an
imaginary potential component.

Applying condition (15) to the general potential form
(10), the prescriptions

V r V r0 0
*( ) ( )� , K K*( ) ( )� 
 �� � , k k* � (16)

are obtained, i.e. V0( ) is real, K ( )� is ��-symmetric and the

eigenvalue of equation (6) is real. Note that the reality of the
potentialV r0( ) implies that (9) has the same form as the radial
Schrödinger equation of a centrally symmetric self-adjoint
quantum system, therefore the eigenvalues E also have to
come out real. This means that the spontaneous breakdown
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of �� symmetry cannot be implemented in the present ap-
proach for non-central potentials in d � 3 dimensions.

According to (15) the � operator can be factorized as
� � � �� r � �, (where, obviously, �r �1),

so the �� transformation properties of the functions �(r), �(�)
and 	(�) can also be studied. Due to the arguments concern-
ing (9) above, �(r) can be chosen real, and in this case it obvi-
ously satisfies � �r r r� �( ) ( )� . Introducing an extra phase
factor il in (8), it is possible to make �(�) the eigenfunction of

the ��� operator with eigenvalue 1. A similar procedure also

has to be applied to the 	(�) functions and the �� operator,
but this can be done only in the exact knowledge of the K(�)
function. This guarantees that the full wavefunction �(r, �, �)

(3) is also the eigenfunction of the �� operator with unit
eigenvalue.

These phase choices are also reflected in the sign of the
pseudo-norm of the eigenstates �(r, �, �), since � �� can
be determined by the inner products calculated with the con-
stituent functions �(r), �(�) and 	(�), using the appropriate �i

(i r� , �, �) operators. Obviously, the contribution of the
radial component will be 1, while it can be shown that with the
phase convention described above, � ��� � � �( )1 l m holds.
Although the corresponding inner product for the 	(�) func-
tions can be evaluated only in the knowledge of K(�), similar
inner products are known to exhibit oscillatory behaviour
(�1)n with respect to the principal quantum number for wide
classes of ��-symmetric potentials with infinite number of
eigenstates [7], [8], [9]. (Note that for some potentials with
finite number of eigenstates this is not necessarily the case
[10].) The sign of the pseudo-norm is thus indefinite for
three-dimensional non-central ��-symmetric potentials too,
and it depends on the quantum numbers associated with the
angular component of the eigenfunctions.

Let us now discuss the conditions under which non-central
potentials can be ��-symmetric in d � 2 dimensions. The
equivalent of (15) is now

V V( , ) ( , )* �  � 
� � , (17)

and from (14) the conditions

V V0 0
*( ) ( ) � , K K*( ) ( )� 
 �� � (18)

follow from the �� symmetry of the V(, �). The arguments

on the �� symmetry of the wavefunction and the constituent
functions are the same as in the three-dimensional case, as are
those concerning the sign of the pseudo-norm.

A major difference with respect to the three-dimensional
case is that now k can be complex too. Since k is the eigenvalue
of (6), which itself can be considered a Schrödinger equation
with a ��-symmetric potential (K(�)), its complex eigenvalues

occur in complex conjugate pairs. Substituting k and k* into
the radial Schrödinger equation (13) one finds that the two
equations are each other’s complex conjugate, so their energy
eigenvalues will also appear as each other’s complex conju-
gates. This indicates that similarly to the one-dimensional
case, the spontaneous breakdown of �� symmetry leads to
complex conjugate energy eigenvalues for d � 2 too.

4 Summary
The most important results of this work are presented in

the table below.

d � 2 d � 3

State-independent
potential always k m a� �2

Central potential K const( ) .� � K a( )� �

��-symmetric
potential

V V0 0
*( ) ( ) �

K K*( ) ( )� 
 �� �

V r V r0 0
*( ) ( ),�

k k� *

K K*( ) ( )� 
 �� �

Energy eigenvalues real or complex
conjugate pairs real

Sign of
pseudo-norm indefinite indefinite
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