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Abstract. The paper deals with the derivation of the entropy production in the fluid flow performed
in a general curvilinear coordinate system. The derivation of the entropy production is based on the
thermodynamics laws as well as on the balances of mass, momentum, and energy. A brief description
of the differential geometry used in general curvilinear coordinates is presented here as well to define
the used notation.

The application of this approach is then shown in the evaluation of the entropy production along
the suction side of the blade, where the calculation was performed using available experimental data.
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1. Introduction

A general curvilinear description of a flow is useful
to describe the flow in highly curved channels, e.g.
turbine blade passages. It is better for understanding
the processes that occur in the flow field because the
researcher can make some predictions about the flow
without solving the equations at all. Meaning, that
it can be deduced from the form of equations whose
terms will affect the results mostly and, next, if the
geometry of the problem under investigation will be
varied, how this geometry variation can affect the
obtained data.

The derivation of the equations of a fluid flow in a
general curvilinear coordinate system was performed
several times. For the first time, it was performed
in [1], where curvilinear components of velocity vector
were introduced. A more detailed description can be
found in book [2]. The derivation of the momentum
equation in general curvilinear coordinates as well as
the description of differential geometry with appli-
cation to physics was introduced in [3]. There are,
of course, papers focused on the application of this
approach to the numerical simulations, see e.g. [4],
or [5]. These papers, however, are considering only an
incompressible fluid flow.

The aim of this paper is to go a little bit further
and derive not only the equations of the fluid flow
but unite the fluid mechanics and thermodynamics to
obtain the entropy production in the flowing fluid in
the general coordinate system. This result was not
published so far according to the author’s knowledge.
The entropy production in a flowing fluid was recently
derived in [6], however, this derivation was performed
in a vector form.

2. Basics of differential geometry
The definition of the tensor1 has to be mentioned in
the following paragraph. The tensor is a quantity that
exists independently whether there is some observer
present or not. Tensor is then given by its compo-
nents multiplied by basis vectors. The sum of these
multiplied components with basis vector has to be
invariant under basis transformation (Equation (1)),
i.e. that tensors of the first order (vector) obey the
transformation rule (Equation (2)):

v = vigi = v̂j ĝj , (1)
vi = Ai

j v̂
j , (2)

where v is the vector, vi are the components of the
vector in the new basis, gi are the transformed basis
vectors, ĝj are the original basis vectors, v̂j are the
components of the vector v in the original basis and
Ai

j is the transformation matrix.
The basis vectors gi can be defined as (see any

textbook about differential geometry, e.g. [3]):

gi = ∂x
∂ηi

, (3)

where ηi are the coordinates and x is the position
vector. Similarly, co-basis vectors can be defined as:

gj = ∂ηj

∂x . (4)

Covariant, contravariant metric coefficients and the
Kronecker symbol can obtained as:

1Here vectors and scalars are included in the definition of the
tensors as the tensors of the first and zeroth order, respectively.
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gij = gi · gj , (5)
gij = gi · gj , (6)

gi · gj = gilg
lj = δi

j . (7)

Now, derivatives of the tensors in general curvilin-
ear coordinates have to be determined. The gradient
of the vector function in the general curvilinear coor-
dinate has a form:

dv
dx = ∂ui

∂ηj
gigj + ui ∂gi

∂ηj
gj . (8)

Christoffel symbols of the second kind can be defined
based on this relationship as:

Γk
ij = ∂gi

∂ηj
gk = 1

2g
kl (gli,j + glj,i − gij,l) . (9)

Substituting this result into Equation (8) gives:

dv
dx = ∂ui

∂ηj
gigj + uiΓk

ijgkgj . (10)

Finally, the covariant and contravariant derivatives
of the vector and second order tensor, which will be
frequently used in the following text, are defined:

vi
;j = ∂ui

∂ηj
+ ukΓi

kj , (11)

vi;j = ∂ui

∂ηj
− ukΓk

ij , (12)

T ij
;k = T ij

,k + T ljΓi
lk + T ilΓj

lk, (13)

Tij,k = Tij,k − TljΓl
ik − TilΓl

jk, (14)
T i

j;k = T i
j,k + T l

jΓi
lk − T i

l Γl
jk, (15)

where partial derivatives are noted as:

vi
,j = ∂ui

∂xj
. (16)

All of the operations, such as divergence, gradient,
curl etc., can be obtained from these relationships, see
again e.g. [3].

3. Laws of thermodynamics
Thermodynamics is a scientific discipline concerning
the transformation of thermal energy into its other
forms. It is based on three laws, that were obtained
thanks to a combination of theoretical and experimen-
tal research.

3.1. The first law of thermodynamics
The formulation of the first law was described in detail
by Kvasnica [7]. If the system is free of chemical
reactions, the first law can be written in the form:

dein = dq + dw , (17)

where ein is the internal energy, q is the heat and w
is the work. In other words, the heat given to the
system can be transformed into the system’s internal
energy and work performed by this system. Note
that the number of the particles in the system has
to be the same throughout the process. It must also
be noted that the heat, as well as the work, are not
total differentials, and therefore they are dependent
on the integral path between the starting point and
the ending state.

It is useful to write down another formulation of
the first law, where enthalpy is defined as:

dh = dein + pdv + vdp , (18)

where p is the thermodynamic pressure and v is the
volume.

3.2. The second law of thermodynamics
The formulation of the second law was motivated by
the research of R. Clausius, who followed the work of
Carnot and described the real processes in nature by
the quantity named entropy. This quantity is defined
as:

ds = dq
T
, (19)

where T is the thermodynamic temperature.
This definition is valid for reversible processes. En-

tropy is then a total differential, therefore, for the
reversible process between states 1 and 2, the follow-
ing equation holds:

s2 − s1 =
(2)∫

(1)

dq
T
. (20)

In the case of the reversible cycle, the integral on
the R.H.S. of this equation is equal to zero. Note
that at this moment, the integral constant has to be
determined. This can be done thanks to the Nernst
theorem:

lim
T −→0

∆s = 0 . (21)

The real processes are, however irreversible and there-
fore the Equations (19) and (20) are actually inequal-
ities:

ds ≥ dq
T
. (22)

Now, entropy increase can be easily obtained (e.g.
Bejan [8])

sgen = s2 − s1 −
(2)∫

(1)

dq
T
. (23)
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4. Balances laws
If some quantity has to be conserved in time, then
its time derivative has to be equal to zero2, see e.g.
Maršík [9]:

Dψ
dt = J (ψ) + P (ψ) = 0 , (24)

where J (ψ) is the flux of quantity ψ through a bound-
ary of the control volume and P (ψ) is its production
within the control volume.

4.1. Continuity equation
Creation or destruction of mass cannot occur in the
control volume, this means that the production term
in Equation (24) has to be equal to zero, therefore:

D
dt

∫
dm = D

dt

∫
V
ϱdV = 0 , (25)

where ϱ is the fluid density and V is the control vol-
ume. Changing the sequence of the derivatives and
integration (thanks to the Leibniz rule for integration),
the following equation is obtained:∫

V

Dϱ
dt dV = 0 . (26)

This relationship has to hold in any control volume
dV ̸= 0, therefore:

Dϱ
dt = ∂tϱ

+uiϱi
; + ϱui

;i = 0 , (27)

where ui are contravariant components of the velocity
vector.

4.2. Momentum conservation law
The momentum conservation law describes in New-
tonian mechanics that the time derivative of the mo-
mentum has to be equal to all of the forces acting on
the control volume:

DMi

dt = F i + Si , (28)

where F i are components of the volume forces and
Si are components of the surface forces, respectively,
that are defined as:

2Note about the notations of derivatives:
in literature, there usually is a difference in the notation of
derivative. In Lagrangian description material derivative of
quantity, ψ is dψ/dt = ∂ψ/∂t, in Euler description, the material
derivative is given as Dψ/Dt = ∂ψ/∂t+ uj∂ψ/∂xj . Here, the
material derivative in the sense of Euler description will be
noted as Dψ/dt to emphasise the fact that the derivations are
performed in general curvilinear coordinates, and therefore the
convective term in the material derivative is covariant derivative,
that contains Christoffel symbols of the second kind.

Mi =
∫

V
ϱuidV , (29)

F i =
∫

V
ϱaidV , (30)

Si =
∮

A
σijdAj , (31)

where ai are the components of the acceleration vector
and σij are the components of the stress tensor.

If the control volume bonded by the surface A is free
of discontinuity or singular points, then integral (28)
can be transformed by the Gauss divergence theorem
into: ∮

A
σijdAj =

∫
V
σij

;j dV . (32)

Substituting Equations (29) – (32) into Equation (28),
the balance of momentum is given by:

D
dt

∫
V
ϱuidV =

∫
V
ϱaidV +

∫
V
σij

;j dV . (33)

Another change in the sequence of derivation and
integration transforms this relationship into the form:∫

V

[
ϱai + σij

;j −
D

(
ϱui

)
dt

]
dV . (34)

This again has to be true in any control volume dV ̸= 0,
therefore:

D
(
ϱui

)
dt = ϱ

(
∂tu

i + ujui
;j

)
= ϱai + σij

;j , (35)

no special assumptions about fluid flow were made to
this point.

The stress tensor can be decomposed into two parts:

σij = −gijp+ τ ij , (36)

where p is the thermodynamic pressure, gij is the
inverse of the metric tensor, and τ ij are the compo-
nents of the viscous tensor. The negative sign in the
thermodynamic pressure means that the force caused
by this pressure acts in the opposite direction of the
outer normal. If the fluid is at rest, a viscous tensor is
zero and the thermodynamics pressure is equal to the
hydrostatic pressure. At last, the momentum balance
can be written in the form of:

ϱ
(
∂tu

i + ujui
;j

)
= ϱai − gijp;j + τ ij

;j . (37)

4.3. Energy conservation law
Energy cannot be created nor destroyed by any known
mechanism, the law of balance of energy tells us, that
the energy is transforming between its different forms.
The change of total energy of the flowing fluid is given
by:
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D
dt

∫
V
ϱetotdV = D

dt

∫
V
ϱ (ein + ekin)dV = (38)

= −
∮

a

gjlqldAj +
∮

a

gilu
lσijdAj +

∫
V
ϱgiju

iajdV ,

where total energy etot is a sum of internal energy ein
and kinetic energy ekin. Next, ql is the covector of the
heat flux and gil is the metric tensor. On the L.H.S.
of the Equation (38), the sequence of the derivation
and integration will be switched and on the R.H.S. of
the Equation (38), the Gauss divergence theorem will
be used to convert the surface integrals into volume
integrals, resulting into:

∫
V

D
dt [ϱ (ein + ekin)]dV = (39)

=
∫

V

[
−

(
gilql

)
;i +

(
gjlu

lσij
)

;i + ϱgiju
iaj

]
dV .

Again, this has to hold in any control volume, there-
fore:

D
dt [ϱ (ein + ekin)] =

−
(
gilql

)
;i +

(
gjlu

lσij
)

;i + ϱgiju
iaj .

(40)

4.4. Entropy balance
Entropy balance can be written in the form of the
balance Equation (24) as:

Ds
dt = J (s) + P(s) = 0 , (41)

from where entropy production can be obtained as:

P(s) = Ds
dt − J (s) ≥ 0 . (42)

Entropy contained in the control volume can be cal-
culated as:

S =
∫

V
ϱsdV , (43)

where s is the specific entropy. Using Clausius-Duhem
inequality and by performing the time derivative of
Equation (43), the integral value of the entropy pro-
duction in the control volume can be obtained as:

P =
∫

V
pdV =

∫
V
ϱ

Ds
dt dV +

∮
A

gijqj

T
dAi =

=
∫

V

[
ϱ

Ds
dt + gijqj;i

T

]
dV , (44)

where the flux through the boundary is given by cov-
ector of the flux of heat qj . Equation (44) has to be
true in any control volume, therefore:

p = ϱ
Ds
dt + gijqj,i

T
, (45)

where the continuity equation was taken into account.

5. Entropy production in flowing
fluid

Relationships from Section 3 are used for the deter-
mination of the entropy production in the flowing
fluid. By applying the time derivative on Equations
(17)–(19), the following relationships are obtained:

Dein

dt = Dq
dt − p

ϱ2
Dϱ
dt , (46)

Dh
dt = Dein

dt + 1
ϱ

Dp
dt − p

ϱ2
Dϱ
dt , (47)

Ds
dt = 1

T

Dq
dt (48)

where, for the work, the following relationship holds:

dw = pd
(

1
ϱ

)
. (49)

Time change of entropy can be obtained after some
elementary manipulations as:

ϱT
Ds
dt = ϱ

Dh
dt − Dp

dt . (50)

The kinetic energy of the flowing fluid can be ob-
tained by taking the dot product between the momen-
tum equation and velocity in the form:

ϱgilu
l Dui

dt = ϱ
Dekin

dt = gilu
lσij

;j + ϱgilu
lai . (51)

Extracting Equation (51) from Equation (40), the
internal energy is obtained:

ϱ
Dein

dt = −
(
gijqj

)
;i +

(
gjlu

lσij
)

;i − gjlu
lσij

;i =

= gjlu
l
;iσ

ij −
(
gijqj

)
;i . (52)

Substituting Equation (52) into Equation (47) and
subsequently substituting this into Equation (50), the
following relation for the time change of entropy is
obtained:

ϱT
Ds
dt = gjlu

l
;iσ

ij −
(
gijqj

)
;i . (53)

The continuity equation was used as well during the
manipulations. Comparing the relationships Equa-
tion (45) and Equation (53), the local entropy produc-
tion can be obtained as:

p = gjlu
l
;iσ

ij . (54)

This means, that irreversible processes in the fluid
flow are connected with the stress tensor.
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6. Newtonian fluid
No special assumption was made to this point about
the stress tensor σij except that if the fluid is at rest,
the stress tensor is equal to the thermodynamic pres-
sure and if this fluid is in the external force field that is
acting on that fluid, the thermodynamic pressure has
to be equal to the hydrostatic pressure. This trans-
forms the problem of establishing the stress tensor to
the problem of determination of the viscous tensor
τ ij . Let’s suppose, that this viscous tensor is a linear
combination of the strain rate tensor elm = gklem

k ,
where the mixed type of tensor is given by his defini-
tion through the covariant derivatives of the velocity
field, then in general, the relationship between these
two tensors can be written as:

τ ij = agijgkle
kl + b

(
gi

kg
j
l + gi

lg
j
k

)
ekl+

+ c
(
gi

kg
j
l + gi

lg
j
k

)
ek

me
ml , (55)

where the non-linear third term on the R.H.S. of
this equation will be neglected in the following text,
therefore:

τ ij = agijgkle
kl + b

(
gi

kg
j
l + gi

lg
j
k

)
ekl . (56)

This relationship, however, tells nothing about the
properties of the tensor τ ij , meaning mainly about
its symmetry. The coefficients are then functions of
the invariants of the tensor of deformation, see e.g. [2].
If the fluid is homogeneous and isotropic, and if the
viscous tensor is a continuous function of the stress
tensor, then:

τ ij = agij + λgijek
k + 2µeij . (57)

This tensor has to be symmetric due to the law of
conservation of moment of momentum. Now strain
rate can be substituted into the Equation (57):

ek
k = uk

;k , (58)

eij = 1
2

(
gjkui

;k + giluj
;l

)
. (59)

The stress tensor can be written in the form:

σij = −gijp+ λgijuk
;k + µgjkui

;k + µgiluj
;l , (60)

where λ is the second viscosity and µ is the dynamic
viscosity. Substituting Equation (60) into (37), Navier-
Stokes equation is obtained:

ϱ
(
∂tu

i + ujui
;j

)
= −gijp;j+

+
(
λgijuk

;k + µgjkui
;k + µgiluj

;l

)
;j

+ ϱai . (61)

Coefficients of viscosity are, in general, functions of
temperature and pressure, however, in most of the
cases, their variations in the flowing fluid are minimal
(see e.g. [10]), therefore, they can be considered con-
stant. Finally, the Navier-Stokes equation is obtained
in a general curvilinear coordinate system in the form:

ϱ
(
∂tu

i +ujui
;j

)
= −gijp;j+

+ (λ+ µ) gijuk
;kj + µgjkui

;kj + ϱai . (62)

6.1. Entropy production in Newtonian
fluid

Entropy production in Newtonian fluid can be easily
obtained by substituting the stress tensor into the
Equation (54). Prior this step, however, the vector of
the heat flux will be obtained from the constitutive
relation:

qi = kgijT;j . (63)

Substituting Equations (63) and (60) into (54) gives:

ϱT
Ds
dt = −kgijT;ji + gilu

l
;j

(
−gijp;j + λgijuk

;k +

+ µ
[
gjlui

;l + gimuj
;m

]
) . (64)

Using Relationship (7) and after some manipula-
tions, time change of entropy can be determined as:

ϱT
Ds
dt = −kgijT;ji − pui

;i + λui
;iu

j
;j + 2µui

;ju
j
;i . (65)

By a comparison of Equations (65) and (45), local
entropy production can be obtained as:

p = −pui
;i + λ

(
ui

;i
)2 + 2µui

;ju
j
;i . (66)

It can be seen that the entropy production in the
flowing fluid will be dependent only on the stress
tensor. Moreover, if the fluid will be incompressible,
the entropy production will depend only on the last
term on the R.H.S. of the Equation (66), as the other
terms will be zero due to the continuity equation,
where the divergence of the velocity vector will be
zero.

7. Application to linear blade
cascade

Application of the curvilinear coordinates for calcula-
tion of the entropy production is demonstrated on a
linear blade cascade, which was experimentally inves-
tigated by Perdichizzi & Dossena [11]. In this case,
the two-dimensional flow is considered to demonstrate
the usability of curvilinear coordinates. The blade
under investigation is depicted in Figure 1, where the
suction side is approximated by the fourth-order poly-
nomial function. The positions of the pressure taps
are highlighted by red points.
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Figure 1. Blade under investigation.

The coefficients in the polynomial function have values
a0 = 1.64, a1 = 1.16, a2 = 7.14 × 10−2, a3 = 1.56 ×
10−3 and a4 = 4.55×10−5. The curvilinear coordinate
system of the blade can be introduced if the blade
geometry is known. This system is shown in Figure 2.

Figure 2. Blade curvilinear coordinates.

The relations between the Cartesian and curvilinear
coordinates are given by:

x1 = ζ1 , (67)

x2 = ζ2 +
4∑

i=1
ai

(
ζ1)i

, (68)

ζ1 = x1 , (69)

ζ2 = x2 −
4∑

i=1
ai

(
x1)i

. (70)

By introducing substitution:

σ =
4∑

i=1
ai

(
x1)i

, (71)

the metric tensor as well as its inverse can be calcu-
lated as:

gij =
(

1 −σ
−σ 1 + σ2

)
, (72)

gij =
(

1 + σ2 σ
σ 1

)
. (73)

Christoffel symbols of the second kind can be then
calculated using Equation (8). At first, the deriva-
tives of the metric components, with respect to the
coordinate xi, are calculated as:

∂x1g11 = 2σβ , (74)
∂x1g12 = ∂x1g21 = β , (75)
∂x1g22 = 0 , (76)
∂x2g11 = 0 , (77)
∂x2g12 = ∂x2g21 = 0 , (78)
∂x2g22 = 0 , (79)

where:

β =
4∑

i=2
i (i− 1) ai

(
x1)(i−2)

. (80)

Then, all of the Christoffel symbols are equal to zero
except Γ2

11 = β.

Having all of these pieces of information, the cal-
culation of the entropy production can be directly
performed. This calculation was performed in the
region near the blade surface (out of the boundary
layer), where the gradients of the parameters along
the coordinate ζ2 were considered only (in other direc-
tions, their values can be neglected). The boundary
conditions were not specified in the paper [11], i.e.
both the stagnation temperature and the pressure,
however, based on the wind tunnel type, their values
can be estimated as T0 = 297.15 K and p0 = 98000 Pa.

The pressure distribution on the blade surface (de-
noted by coordinate S) can be calculated from the
Mach number distribution. The pressure, tempera-
ture, and velocity distributions are shown in Figure 3.

Distribution of the entropy production ϱDs/dt
along the blade surface is shown in Figure 4. Note,
that the bulk viscosity λ was obtained by the Stokes
hypothesis, that λ+ 2/3µ = 0. It is obvious that most
of the entropy production occurred in the leading edge
region, where the flow acceleration was the highest,
and therefore the velocity gradients were the largest.

Overall entropy production along the coordinate ζ2

was calculated as an integral along this curve and was
P = 0.0327 J·K−1·m−2·s−1.
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Figure 3. Distribution of the flow parameters along
the blade surface.
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Figure 4. Entropy production.

8. Conclusion
A derivation of the entropy production in a flowing
fluid in a general curvilinear coordinate system was
performed in this paper. Basic relationships from the
differential geometry used during the derivation were
presented as well to clarify used notations. Curvilinear
coordinates were chosen to describe this phenomenon
in a more general case than is usually used in the
literature. The results obtained here were used to
describe the flow within the linear blade cascades
in a simplified manner and the distribution of the
entropy production along one coordinate near the
blade suction surface was obtained. The integral value
of the entropy production was then evaluated from
this distribution.

The aim of this paper was to prove that this ap-
proach is capable to evaluate some experimental data
along the suction side of the blade. This approach
can be used in close proximity to the blade. The
polynomial function will be changing with increasing
distance from the blade surface, as the opposite sur-
face of the blade will be given by a polynomial with
different coefficients. Future work will, therefore, be
dealing with the generalisation of this approach to
a more complicated situation, where the polynomial
coefficients ai will not be constants.

List of symbols
ai components of acceleration vector [m s−2]
e strain rate tensor [s−1]
F volume force [N]
gi, gi basis and co-basis vectors [1]
gij , gij components of metric tensor [1]
h specific enthalpy [J kg−1]
J (s) entropy flux [J kg−1 K−1 s−1]
m mass [kg]
M momentum [kg m s−1]
p thermodynamic pressure [Pa]
p(s) local entropy production [J m−2 s−1 K−1]
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P(s) integral entropy production [J m−2 s−1 K−1]
qi components of heat flux vector [Jm−2 s−1]
s specific entropy [J kg−1 K−1]
S blade surface coordinate [m]
t time [s]
T thermodynamic temperature [K]
ui components of velocity vector [m s−1]
V control volume [m3]
x, y, z = xi Cartesian coordinates [m]
Γ Christoffel symbols [1]
ζi curvilinear blade coordinates [m]
µ Dynamic viscosity [Pa s]
λ Bulk viscosity [Pa s]
ϱ density [kg m−3]

References
[1] C. Truesdell. The physical components of vectors and

tensors. Journal of Applied Mathematics and Mechanics
33(10–11):345–356, 1953.
https://doi.org/10.1002/zamm.19530331005

[2] R. Aris. Vectors, Tensors and the Basic Equations of
Fluid Mechanics. Dover Publications, 1989.

[3] V. Ivancevic, T. Ivancevic. Applied Differential
Geometry: A Modern Introduction. World Scientific,
2007. https://doi.org/10.1142/6420

[4] S. Surattana. Transformation of the Navier-Stokes
equations in curvilinear coordinate system with Mapel.
Global Journal of Pure and Applied Mathematics
12(4):3315–3325, 2016.

[5] L. Swungoho, S. Bharat. Governing equations of fluid
mechanics in physical curvilinear coordinate system. In
Third Mississippi State Conference on Difference
Equations and Computational Simulations, pp. 149–157.
1997.

[6] P. Asinari, E. Chiavazzo. Overview of the entropy
production of incompressible and compressible fluid
dynamics. Meccanica 51:1–10, 2015.
https://doi.org/10.1007/s11012-015-0284-z

[7] J. Kvasnica. Termodynamika. SNTL, 1965.
[8] A. Bejan. Entropy generation minimization. CRC

Press LCC, 2013.
[9] F. Maršík. Termodynamika kontinua. Academia, 1999.
[10] L. Landau, E. Lifschitz. Fluid Mechanics. Pergamon

Press, 1987.
[11] A. Perdichizzi, V. Dossena. Incidence angle and

pitch–chord effects on secondary flows downstream of a
turbine cascade. Journal of Turbomachinery-
transactions of The Asme 115(3):383–391, 1993.
https://doi.org/10.1115/1.2929265

110

https://doi.org/10.1002/zamm.19530331005
https://doi.org/10.1142/6420
https://doi.org/10.1007/s11012-015-0284-z
https://doi.org/10.1115/1.2929265

	Acta Polytechnica 63(2):29–36, 2023
	1 Introduction
	2 Basics of differential geometry
	3 Laws of thermodynamics
	3.1 The first law of thermodynamics
	3.2 The second law of thermodynamics

	4 Balances laws
	4.1 Continuity equation
	4.2 Momentum conservation law
	4.3 Energy conservation law
	4.4 Entropy balance

	5 Entropy production in flowing fluid
	6 Newtonian fluid
	6.1 Entropy production in Newtonian fluid

	7 Application to linear blade cascade
	8 Conclusion
	List of symbols
	References

