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Abstract. This article discusses assessing the instability of a continuous linear homogeneous time-
invariant descriptor system. Some necessary conditions and sufficient conditions are derived to establish
the stability of a matrix pair by the fundamentals of qualitative ecological principles. The proposed
conditions are derived using only the qualitative (sign) information of the matrix pair elements. Based
on these conditions, the instability of a matrix pair can easily be determined, without any magnitude
information of the matrix pair elements and without numerical eigenvalues calculations. With the
proposed theory, Magnitude Dependent Stable, Magnitude Dependent Unstable, and Qualitative Sign
Stable matrix pairs can be distinguished. The consequences of the proposed conditions and some
illustrative examples are discussed.
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1. Introduction
The concept of stability of a matrix and a matrix pair
is very fundamental to the control theory, and it is
an important property to be analysed for all practical
control systems. A continuous homogeneous linear
time-invariant descriptor system, i.e. differential alge-
braic equations (DAEs) can be written as:

Eẋ(t) = Ax(t) , (1)

where x(t) ∈ Rn is the state vector and E, A ∈ Rn×n

are the constant matrices [1]. When E = I (identity
matrix), system (1) is well known as a state space
system. System (1) is called regular if det(λE − A)
is not identically zero as a polynomial of λ [2, 3]. A
regular system (1) is said to be stable if and only
if the matrix pair (E, A) is a stable matrix pair, i.e.
all of its eigenvalues have negative real parts. In or-
der to find the eigenvalues of the matrix pair (E, A),
we have to determine the roots of the characteristic
equation det(λE − A) = 0. It is remarkable that
when matrix E is singular, the number of eigenval-
ues of the matrix pair (E, A) is less than n. This
numerical eigenvalue calculation of a matrix pair of a
higher order is a computationally intensive effort. To
overcome this drawback, economists have introduced
the concept of ‘qualitative stability’ and ecologists
have derived some necessary and sufficient conditions
for the stability of a matrix using only the sign in-
formation of matrix elements. Nonetheless, in the
literature, this problem is addressed only for state
space systems, i.e. when E = I, where eigenvalues
of only matrix A are checked. This paper extends
these results for checking the eigenvalues of matrix
pair (E, A). In this paper, the word ‘quantitative’ is

used for both magnitude and sign information, and
the word ‘qualitative’ strictly for the sign information
with no magnitude information of matrix elements.
Matrix pairs which are stable, independent of their
magnitudes with only sign information are denoted
as Qualitative Sign Stable (QLSS) matrix pairs and
Qualitative Sign Unstable are denoted as ‘QLSU’ ma-
trix pairs. Matrix pairs, whose stability/instability
depend upon the magnitude information of the matrix
pair elements, are denoted as Magnitude Dependent
Stable/Unstable (MDS/U) matrix pairs. With the
knowledge of qualitative sign structure, we can now
discuss the stability of a matrix pair.

The analysis of stability of matrices has evoked
various research directions. The way non-engineers,
such as ecologists and economists, have tackled this
problem without even having any magnitude informa-
tion is fascinating. In [4], the stability problem of a
matrix is studied in a purely qualitative environment
assuming that quantitative information is unavailable.
Article [5] provides some sufficient conditions for the
qualitative stability of an ecosystem by simply conclud-
ing the mutual qualitative effects on member species
via signed digraphs, whereas necessary conditions for
the qualitative stability are presented in [6]. In [7],
linear systems are studied based on the qualitative
theory. Some conditions concerning the structural
qualitative stability of a system are proposed in [8].
A graph-theoretic analysis based on sign patterns of
a real square matrix is used to conclude the stability
of a linear system in [9]. In [10], it has been shown
that in a complex ecological system, when species in-
teract as predator-prey, the system can still be stable.
In [11, 12], ecological-sign stability pricnciples of a
matrix are transformed into mathematical principles
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to encounter stability problems in engineering control
systems. The qualitative analysis of control systems is
explained in [13]. The stability of the continuous-time
linear state space system is explained in [14] and the
stability of discrete-time system is explained in [15].
The series of papers [16], [17], and [18] were attempts
to find the conditions for stability/instability of real
matrices using qualitative reasoning. In [16], few con-
ditions for qualitative sign instability of a matrix are
derived in terms of the nature of interactions and in-
terconnections, taken from ecological principles. The
stability analysis of a matrix using these conditions
requires only the qualitative (sign) information of the
matrix elements (no need for any quantitative infor-
mation). In [17], an alternative sufficient condition is
proposed by combining the concepts of both quantita-
tive (magnitude and sign) as well as the qualitative
(only sign) information of the matrix elements. This
condition possesses a convexity promotion property
with respect to stability. A new necessary and suffi-
cient condition is proposed in [18], for the stability
of any real matrix that does not need the informa-
tion of the characteristic polynomial, and it is based
on matrix entries’ sign information only. Article [19]
studies asymptotic stability criteria for time-delayed
systems. Remarkable works have been done in [20, 21]
on matrices with stable sign patterns. However, all
the existing research is focused on the stability of a
matrix confining its utility to only linear normal state
space systems, and improving on these papers, this
paper generalises some of these conditions for qualita-
tive stability/instability of a matrix pair that have a
relatively broader scope in the analysis of linear square
descriptor systems in control engineering. To the best
of our knowledge, this is the first work discussing the
qualitative sign stability for a matrix pair.

For a proper perspective, let us consider the follow-
ing matrix pairs (Ei, Ai), i = 1, 2:

E1 =


−3 −2 0.1 0.4
−1 0.9 −0.3 −8

−0.7 5 3 1
0.1 2 1.4 5

 ,

A1 =


2 −1 −3 0.5

0.3 −1 0.4 −2
−0.1 3 −0.5 4
−2 −0.2 1 0.7

 ,

E2 =


1 −0.2 0.8 −3.5 −4.1

1.9 −2.7 −3.3 4 −0.1
−1.2 −0.4 2 −0.5 −4.8
−0.3 −1.7 −4.3 −3.7 0.2
0.6 −2.5 0.9 −5.2 −2.3

 ,

A2 =


−1 0.2 −3 −0.7 5

−0.9 1.3 2.4 −1.2 −3.1
4.8 −1.1 −2 −0.4 4.3
2.7 1 −1.8 1.7 −0.7
−5 −3.2 0.3 −2.9 −1.5

 .

It is very much difficult to decide the stabil-
ity/instability of the above matrix pairs with the
numerical eigenvalue calculation. But with the neces-
sary and sufficient conditions presented in this paper,
we can conclude that the matrix pair (E1, A1) is a
Qualitative Sign Unstable (QLSU) matrix pair and
the matrix pair (E2, A2) is an MDS/U matrix pair.
This is concluded just by a simple visualisation of
the nature of interactions and interconnections of the
matrix pair. Note that, the matrix pairs of order 2
do not have any interconnection terms and thus are
trivial for our studies. Hence, we focus on matrix
pairs of order 3 and higher.

In the next section, the matrix pair elemental sign
structures are briefly reviewed and few basic ‘Qualita-
tive Sign Matrix Pair Indices’ are developed for for-
mulating the conditions for qualitative sign instability.
In Section 3, the necessary and sufficient conditions
for qualitative instability are proposed, which is the
main result of this paper. Section 4 discusses the
implications of these conditions and illustrates few
examples for a clear visualisation of the importance
of qualitative stability. In Section 5, we discuss the
conclusions drawn from this paper.

2. Qualitative Sign Matrix Pair
Indices

For assessing the stability, first, we have to visualise an
n×n matrix pair in the following structured way. Just
for a simplified view, let us illustrate the structure
using a 4 × 4 matrix pair:

E =


e11 e12 e13 e14
e21 e22 e23 e24
e31 e32 e33 e34
e41 e42 e43 e44

 and

A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 .

The entire Matrix Pair Sign Structure is completely
specified by the diagonal elements and the off-diagonal
link structures (Interactions and Interconnections).
This matrix pair consists of:

• Diagonal elements: eii and aii,
• Interactions of the form eijeji and aijaji,
• Interactions of the form eijaji,
• Interconnections of the form bijbjk . . . bmi, where

bij = eij or aij .

Now, we look at the signs of the entries and use the
following sign convention in the rest of this paper. We
use the letter ‘P’ for the ‘+’ (positive) sign, the letter
‘N’ for the ‘−’ (negative) sign, and ‘0’ for the zero
entry. We label the interactions of the matrix pair
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Notations
Np number of positive diagonal elements
Nz number of zero diagonal elements
Nng number of negative diagonal elements
Npz number of non-negative diagonal ele-

ments

Table 1. Notations for number of diagonal elements.

using this sign convention. The possible off-diagonal
links or interactions of a matrix pair are:
• Mutualism link: (PP) link,
• Competition link: (NN) link,
• Predation-Prey, Prey-Predation links: (PN) link

and (NP) link,
• Ammensalism link: (N0) link and (0N) link,
• Commensalism link: (P0) link and (0P) link,
• Null link: (00) link.

We further categorise these links in the following way.
All the Mutualism (PP) links and the Competition
(NN) links are collectively labeled as ‘Same Sign (SS)
links’. All the Predation-Prey (PN) links and the
Prey-Predation (NP) links are collectively labeled as
‘Opposite Sign (OS) links’. Similarly, all the Ammen-
salism (N0 and 0N) links and the Commensalism (P0
and 0P) links are collectively labeled as ‘Zero Sign
(ZS) links’. Finally, the Null (00) links are labeled as
‘Zero Zero’ (ZZ) links. For a ‘structural zero link’, we
label them as SZZ links and for Elemental Zero links,
we label them as EZZ links.
• Same Sign (SS) links: PP (++) links and NN (−−)

links,
• Opposite Sign (OS) links: PN (+−) links and NP

(−+) links,
• Zero Sign (ZS) links: N0 links, 0N links, P0 links,

and 0P links,
• Zero Zero (ZZ) links: 00 links.

Based on this sign convention, the matrix pair ele-
mental sign structure of an n × n matrix pair are
elaborated in the following ways:

2.1. Diagonal Elements eii and aii

The number of diagonal elements of different signs is
mentioned in Table 1. The total number of diagonal
elements of the matrix pair is 2n. The number of
non-negative diagonal elements can be written as:

Npz = Np + Nz .

Let us assume that Npz is not zero and define:

ηpz = Npz

2n
,

ηng = Nng

2n
.

Notations
Ntl total number of links of E and A
Nss total number of SS links of E and A
Nzs total number of ZS links of E and A
Nos total number of OS links of E and A
Nszz total number of SZZ links of E and A
Nezz total number of EZZ links of E and A
Nlc total number of active links of E and A
Ngood number of ‘Good’ links of E and A
Nbad number of ‘Bad’ links of E and A

Table 2. Notations for number of links of matrices
E and A.

∴ ηpz + ηng = 1 .
From an ecological perspective, the information

about how a species affects itself is provided by the
diagonal elements. The positive sign signifies that
the species helps to increase its own population, zero
signifies that the species has no effect on itself, and the
negative sign signifies that it is self-regulatory. That
is why Elemental + (positive) and 0 (zero) signs are
considered as ‘Bad’ signs and Elemental − (negative)
signs are considered as ‘Good’ signs in a row or column
of a matrix pair [11].

2.2. Interactions of the form eijeji and
aijaji

All the products of off-diagonal elements of the form
eijeji connecting only two distinct nodes (indices)
of matrix E are known as Interactions of matrix E.
Similarly, all the products of off-diagonal elements of
the form aijaji connecting only two distinct nodes
(indices) of matrix A are known as Interactions of
matrix A.

Table 2 includes information on the number of dif-
ferent links of matrices E and A. The total number
of links (interactions) of this form is:

Ntl = [1 + 2 + 3 + . . . + (n − 1)] × 2
= n(n − 1)

and it can be expressed as:

Ntl = Nss + Nzs + Nos + Nszz + Nezz . (2)

We now take out the structural zero links from any
further discussion [16] and denote the total number
of ‘active links’ as Nlc. Thus:

Nlc = Nss + Nzs + Nos + Nezz . (3)

From an ecological viewpoint, it is noted that Same
Sign (SS) links (i.e. PP and NN links) of this form are
highly detrimental to stability whereas, Opposite Sign
(OS) links (i.e. PN and NP links) of this form are
conducive to stability [10, 22]. So, from the stability
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Notations

N
′

tl total number of links of (E, A)
N

′

ss total number of SS links of (E, A)
N

′

zs total number of ZS links of (E, A)
N

′

os total number of OS links of (E, A)
N

′

szz total number of SZZ links of (E, A)
N

′

ezz total number of EZZ links of (E, A)
N

′

lc total number of active links of (E, A)
N

′

good number of ‘Good’ links of (E, A)
N

′

bad number of ‘Bad’ links of (E, A)

Table 3. Notations for number of links of matrix pair
(E, A).

point of view, SS links, ZS links, and ZZ links of this
form are considered as ‘Bad’ links, and OS links of
this form are considered as ‘Good’ links. Hence:

Ngood = Nos , (4)

Nbad = Nss + Nzs + Nezz . (5)

Let us define:

ηbad = Nbad

Nlc

ηgood = Ngood

Nlc

∴ ηbad + ηgood = 1 .

Remark 1. The above indices are already defined
for matrices. Now we are, for the first time, going
to define another form of interaction and chain for
matrix pairs.

2.3. Interactions of the form eijaji

All the products of off-diagonal elements of the form
eijaji connecting one node of matrix E and the corre-
sponding node of matrix A are known as Interactions
of the matrix pair (E, A).

Table 3 lists the number of different links of matrix
pair (E, A). The total number of links (interactions)
of this form is:

N
′

tl = n(n − 1)

and it can be expressed as:

N
′

tl = N
′

ss + N
′

zs + N
′

os + N
′

szz + N
′

ezz . (6)

We now take out the structural zero links from any
further discussion and denote the total number of
‘active links’ as N

′

lc. Thus:

N
′

lc = N
′

ss + N
′

zs + N
′

os + N
′

ezz . (7)

In ecological literature, it is realised that Same Sign
(SS) links (i.e. PP and NN links) of this form are con-
ducive to stability whereas Opposite Sign (OS) links
(i.e. PN and NP links) of this form are detrimental
to stability. So, SS links and ZS links of this form are
considered as ‘Good’ links, and OS links of this form
are considered as ‘Bad’ links. Hence:

N
′

good = N
′

ss + N
′

zs + N
′

ezz , (8)

N
′

bad = N
′

os . (9)

Let us define:

η
′

bad = N
′

bad

N
′
lc

η
′

good =
N

′

good

N
′
lc

∴ η
′

bad + η
′

good = 1 .
Let us define ζbad as Potentially Destabilising Sign

Matrix Pair Index and ζgood as the Potentially Stabil-
ising Sign Matrix Pair Index. So:

ζgood = ηng + ηgood + η
′

good , (10)

ζbad = ηpz + ηbad + η
′

bad . (11)

Also define ζnet as the Net Matrix Pair Stabilisation
Index given by

ζnet = ζgood − ζbad . (12)

Let us define the index, known as ‘Chain’. The
elemental structure of the form eijejiaijaji is called a
‘Chain’. The chain containing at least three ‘+’ sign is
known as ‘+ chain’ and the chain containing at least
three ‘−’ sign is known as ‘− chain’.

Using these ‘Qualitative Sign Matrix Pair Indices’,
we discuss the qualitative stability of a matrix pair
and derive few conditions for the qualitative sign in-
stability.

3. Conditions for Qualitative Sign
Stability and Instability

In this section, the main results are presented. Here
we focus on the case of matrix pairs with diagonal
elements containing only a mixture of positive and neg-
ative elements, i.e. with Npz = Np. Also, we assume
that Nbad = Nss and N

′

good = N
′

ss. A series of neces-
sary and sufficient conditions for stability/instability
of a matrix pair are presented here.
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3.1. Necessary Conditions for
Qualitative Stability of Matrix Pair

For qualitative reasoning, we need to know the num-
ber and nature of the above-defined interactions and
interconnections. But it is not possible to find the
number and nature of all the interconnection terms
of a matrix pair. So, for the qualitative sign stability,
all the interconnection terms of a matrix pair need to
be zero. Furthermore, any matrix pair (E, A) with
det(A) = 0 has always at least one zero eigenvalue,
that makes the matrix pair unstable. Hence, the non-
singularity of matrix A is also necessarily required for
QLSS matrix pair.

Let us consider a matrix pair (E, A) with entries
eij and aij , respectively. Based on the above discus-
sion, we are enlisting the two important ‘necessary’
conditions for ‘qualitative sign stability’:

• C1: bijbjk . . . bqrbri = 0, where bij = eij or aij

for any sequences of three or more distinct indices
i, j, k, . . . , q, r.

• C2: det(A) ̸= 0.

Here, C1 is the necessarily required condition for
Qualitative Sign Stability, i.e. the condition which
makes the matrix pair stable, independent of magni-
tudes, and C2 is the necessarily required condition for
the stability of the matrix pair (E, A), independent
of any qualitative or quantitative information of the
matrix pair elements. More details about the concept
of Qualitative Sign Stability is discussed in [11, 14].

The Net Matrix Pair Stabilisation Index ζnet serves
as an index to indicate the likelihood of matrix pair
being stable or unstable in a Qualitative way. Negative
values indicate that the matrix pair is more likely to
be unstable, and positive values indicate that the
matrix pair is more likely to be stable. The higher
the value, the higher the probability, see [16]. The
qualitative sign stability of a matrix pair depends
upon the stabilising strength of the matrix pair. When
the matrix pair is more potentially stabilised, then
ζnet is non-negative, and when it is more potentially
destabilised, then ζnet is negative. So, the qualitative
stability is connected with the value of ζnet.

With this observation, we have the following condi-
tions:

• ζnet varies in an interval given by −3 ≤ ζnet ≤ 3.
• ζnet < 0 specifies that the matrix pair is MDU,

that means for these MDU matrix pairs, there al-
ways exist magnitudes that make this matrix pair
unstable.

• ζnet ≥ 0 specifies that the matrix pair is MDS, that
means for these MDS matrix pairs, there always
exist magnitudes that make this matrix pair stable.

• A given (non-QLSS) matrix pair is QLSU only if
−3 ≤ ζnet < 0 (Necessary condition for QLSU).

A matrix pair, which is not Qualitative Sign Stable
(QLSS), is said to be a non-QLSS matrix pair.

3.2. A Necessary Condition for
Instability of a Matrix

In a matrix pair (E, A), if we substitute E by the
Identity matrix I, then the above necessary condition
for QLSU will be the same as that of the matrix
A. With the fundamentals of ecological principles,
the matrix pair (I, A) is visualised in the following
structured way. Let us illustrate the structure by
using a 4 × 4 matrix pair.

I =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44


According to the qualitative stability concept of matrix
pair:

ηpz = n + Npz(A)
2n

= 1
2 + Npz(A)

2n

ηng = Nng(A)
2n

ηbad = Nlc(I) + Nbad(A)
Nlc

= 1
2 + Nbad(A)

Nlc

ηgood = Ngood(A)
Nlc

η
′

bad = 0

η
′

good = 1

∴ ζnet = ζgood − ζbad

= 1
2 [Nng(A)

n
+ Ngood(A)

Nlc(A) − Npz(A)
n

− Nbad(A)
Nlc(A) ]

= 1
2 [ζgood(A) − ζbad(A)]

= 1
2ζnet(A) .

Since the matrix pair (I, A) is QLSU only if ζnet < 0,
therefore, the matrix A is QLSU only if ζnet(A) < 0. This
is the necessary condition for a matrix to be QLSU, which
is a particular case of a matrix pair. The necessary and
sufficient conditions of a matrix to be QLSU are discussed
extensively in [16]. In this paper, we generalise the Identity
matrix I to any matrix E and propose few necessary and
sufficient conditions for the qualitative sign instability for
a matrix pair.

3.3. A Necessary Condition for a Matrix
Pair to be QLSU

We know that ζnet is a real function and it takes on
discrete values. So there may be a situation that not all
the diagonal elements have to be positive and not all the
links have to be ‘Bad’ links to make the matrix pair QLSU.
That means, for a matrix pair to be QLSU, the number
of positive diagonal elements can be less than 2n and the
number of Bad links in the matrix pair can be less than
Nlc, not necessarily equal to Nlc. Now, we calculate the
minimum number of Bad links needed to make a matrix
pair unstable and denote it as N∗

u . For a matrix pair with
Np ̸= 0, let us define N∗

u as follows:

175



M. Chand, M. Paitandi, M. K. Gupta Acta Polytechnica

N∗
u =the closest higher upper integer of (ηng + 1

2) times
Nlc, including when that is itself an integer.

Let us state a theorem.

Theorem. A matrix pair is QLSU only if the total number
of bad links in it is ≥ N∗

u i.e. Nbad + N
′
bad ≥ N∗

u .

Proof. For a QLSU matrix pair,
ζnet < 0

=⇒ ηng + ηgood + η
′
good < ηpz + ηbad + η

′
bad

=⇒ ηng + 1 − ηbad + 1 − η
′
bad < 1 − ηng + ηbad + η

′
bad

=⇒ ηng + 1
2 < ηbad + η

′
bad

=⇒ ηng + 1
2 <

Nbad + N
′
bad

Nlc

=⇒ [ηng + 1
2 ] × Nlc < Nbad + N

′
bad .

Thus, the total number of Bad links needed to make a
matrix pair QLSU is greater than or equal to N∗

u . This is
a necessary condition for a matrix pair to be QLSU.

3.4. Sufficiency Guidelines For QLSU
Matrix Pair

While observing the expression for the determinant of a
matrix pair, we find that a diagonal element is always mul-
tiplied by the link elements surrounded by it. That means
the row and column elements associated with a diagonal
element play a vital role to assess the stability/instability.
These observations provide us with some ‘guidelines’ for
sufficiency for QLSU [16].

• Guideline 1: A matrix pair with ζnet < 0, is likely QLSU
if a positive diagonal element eii or aii is surrounded
by + chains.
(The above guideline is the result of the idea that pos-
itive diagonal elements along with + chains promote
instability.)

• Guideline 2: A matrix pair with ζnet < 0, is likely QLSU
if a negative diagonal element eii or aii is surrounded
by − chains.
(The above guideline is the result of the idea that neg-
ative diagonal elements along with − chains promote
instability.)

4. Illustrative examples for
instability of a matrix pair

By now, we have few necessary conditions for QLSU and
few guidelines for sufficiency for QLSU. Once the necessary
condition ζnet < 0 is satisfied, we can make a QLSU matrix
pair, with the appropriate placement of the ‘Bad’ and
‘Good’ links in it. Let us consider some examples.

Example 1. Consider a 4 × 4 matrix pair with diagonal
elements as shown below:

E =

− ∗ ∗ ∗
∗ + ∗ ∗
∗ ∗ + ∗
∗ ∗ ∗ +

 and A =

+ ∗ ∗ ∗
∗ − ∗ ∗
∗ ∗ − ∗
∗ ∗ ∗ +


Suppose there is no ZZ link in the matrix pair. For the
given matrix pair (E, A),

ηng =3
8 , ηpz = 5

8
Nlc =12
N∗

u =11

Thus, Nbad + N
′
bad ≥ 11.

Any matrix pair with the given diagonal element struc-
ture and satisfying the above condition have ζnet < 0, and
thus the matrix pair is an MDU matrix pair.

Example 2. Let us consider a matrix pair with the con-
ditions given in Example 1:

E =

− − + +
− + − −
− + + +
+ + + +

 and A =

+ − − +
+ − + −
− + − +
− − + +


Here

Nbad = 7 , Ngood = 5
N

′
bad = 5 , N

′
good = 7

∴ Nbad + N
′
bad = 7 + 5 = 12 > 11 = N∗

u .
Hence, the necessary condition is satisfied, and now we

check the sufficiency guidelines required for QLSU. Here,
all the negative diagonal elements are surrounded by −
chains. Therefore, this is a QLSU matrix pair.

It is noted that once there is at least one positive diago-
nal element, we can assess the Qualitative Sign Instability
by computing the relative distribution of the Bad links
together with the Good links.

Example 3. Let us discuss the stability of the matrix
pair given below:

E =


− − − + −
− + + + +
+ + + + −
− − + + +
+ + + − −

 and

A =


− + + − +
+ + + + +
+ − + + +
− + − + −
+ + + − −


For the given matrix pair (E, A),

ηpz = 6
10 , ηng = 4

10

ηbad = 3
5 , ηgood = 2

5

η
′
bad = 1

2 , η
′
good = 1

2

∴ ζnet = −2
5 < 0 .

Here all the positive diagonal elements are surrounded
by + chains. Hence, as per the sufficiency guidelines for
QLSU, the given matrix pair is QLSU. Thus, this particular
quantitative matrix pair is unstable without any need of
eigenvalue calculations.
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Example 4. Consider the sign pattern of the matrix pair
given below:

E =

[− + −
− + +
+ − +

]
and A =

[+ + −
− + +
+ − −

]
This matrix pair (E, A) has

ηpz = 4
6 , ηng = 2

6
ηbad = 0 , ηgood = 1
η

′
bad = 1 , η

′
good = 0

making ζnet = −1
3 < 0. Since, ζnet < 0, the necessary

condition is satisfied. But the sufficient conditions are not
satisfied. Hence, it is an MDU (not a QLSU) matrix pair.

It should be noted that we are not stating that the
matrix pair with this Elemental Sign Structure is always
unstable. We are simply stating that the elemental sign
structure of the above matrix pair guarantees that there
exist magnitudes which would definitely make this matrix
unstable.

For example, the following matrix pair (E1, A1) with
the above sign structure is unstable,

E1 =

[−1.6132 2.0118 −1.6806
−0.0021 0.5791 0.2139
0.2017 −2.1852 1.7419

]
,

A1 =

[ 0.2462 1.8614 −0.7201
−1.8764 1.4531 1.9056
3.4318 −0.1567 −1.7543

]
,

while the following matrix pair (E2, A2) having the same
sign structure is stable.

E2 =

[−1.0132 0.0118 −1.0006
−1.0021 0.4001 0.2110
0.0213 −0.0411 0.2015

]
,

A2 =

[ 1.8112 21.5624 −1.0207
−0.9016 1.0172 1.0061
9.6512 −0.0600 −5.0234

]
.

Example 5. Consider the matrix pair (E, A) with a sign
structure given by:

E =


+ − + − −
+ − − + −
− − + − −
− − − − +
+ − + − −

 and

A =


− + − − +
− + + − −
+ − − − +
+ + − + −
− − + − −


This matrix pair (E, A) has

ηpz = 2
5 , ηng = 3

5

ηbad = 2
5 , ηgood = 3

5

η
′
bad = 1

5 , η
′
good = 4

5
∴ ζnet = 1 > 0 .

Here, ζnet > 0, but the necessary condition for Qual-
itative Sign Stability C1 is not satisfied. Hence, it is an
MDS/U matrix pair and is a non-QLSS matrix pair.

5. Conclusion
This paper addresses the issue of determining the stabil-
ity/instability of a matrix pair that arises in a continuous
linear homogeneous time-invariant system. The conditions
for a matrix to be QLSU have already been discussed in
the earlier works. In this research, we generalise the iden-
tity matrix I to any matrix E and propose few necessary
conditions and sufficient conditions for qualitative sign
instability of a matrix pair. The proposed conditions are
very simple and are based on the number and nature of
the diagonal elements and the number and nature of the
off-diagonal element pairs (links). This reflects that the
Elemental Sign Structure of a matrix pair is an important
contributor to the stability/instability. These conditions
are extremely helpful for engineers and ecologists, in solv-
ing stability-related problems.
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