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Abstract.
Proportional Integral Derivative (PID) controllers are frequently used control methods for mechan-

ical and electrical systems. Controller values are chosen either by calculation or by experimentation to
obtain a satisfactory response in the system and to optimise the response. Sometimes the controller
values do not quite capture the desired system response due to incorrect calculations or approximate
entered values. In this case, it is necessary to add features that can make a comparison with the existing
traditional system and add decision-making features to optimise the response of the system. In this
article, the decision-making unit created for these control systems to provide a better control response
and the PID system that contributes an extra control coefficient called ECCA-PID is presented. First,
the structure and design of the traditional PID control system and the ECCA-PID control system are
presented. After that, ECCA-PID and traditional PID methods’ step response of a quadratic system
are examined. The results obtained show the effectiveness of the proposed control method.
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1. Introduction
PID (proportional-integral-derivative) controller con-
trol loop method is a control mechanism that has a
wide range of uses, such as electronic devices, mechan-
ical devices and pneumatic systems [1–4]. The PID
compares the signal sent to the input via the feedback
path with the input signal and calculates the error
obtained. The PID control system compares the ref-
erence signal of input with sensing the output signal
of controlled plant via the feedback path. Then, the
controller system calculates the error of the obtained
signal. This error is sent to P, I, D and after the
controller units multiplies this error with a coefficient,
it sends new created signals to the input of the target
plant system [5, 6]. This process is repeated until the
error reaches a minimum value. While PID control
studies generally focus on linear systems, studies on
a good-performing PID controller are also presented
for some system groups with uncertainty [7, 8]. The
balancing of the first order time-delayed system us-
ing a PID controller with the previously given PID
values has been investigated [9, 10] While high or-
der time delay systems are controlled by PID [11–13].
In some studies, it relies on testing the negative feed-
back control system in continuous oscillation with
a step input to calculate the PID gain values. Ini-
tially, the integral and derivative terms are disabled
by making the gains of zero in the PID controller,
and the controller is operated with only a propor-
tional effect. A step input is applied to the input of
the system and the Kp gain is increased from zero

until a continuous and same amplitude oscillation is
obtained at the output of the system [12, 13]. The
gain Kp giving sustained oscillation is determined as
the sustained oscillation period in seconds. Forcing
this method to reach the constant oscillation region
may have undesirable results in some applications.
Against external factors, the process can easily pass
into the unstable region. Therefore, some physical
damage to the equipment may occur. It takes a lot
of experimentation to calculate its value. However,
in some systems, predetermined insufficient controller
values may be insufficient to provide the desired stabil-
isation times. In order to eliminate such situations, an
extra control coefficient additive (ECCA)-PID control
is recommended, which is based on all these princi-
ples, but which can activate the system faster and
stabilise the system by providing a shorter settling
time. The ideal reference signal is divided into reflec-
tion reference values of different magnitudes to form a
decision unit to be compared with the error and error
change rates. Therefore, extra controller coefficients
are produced by observing the error and error rate of
change and comparing it with the reflection reference
part values of different sizes. It is aimed to provide a
faster optimisation with a semi-linear control indepen-
dently of the controller coefficients entered into the
system before. First, the ECCA-PID design working
logic is given. Then, in the implementation phase,
Conventional PID and Proposed PID are applied to
the transfer function of a second-order system and
the step response is examined. The ideal response
parts expected with the proposed system are tested
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at the reflection reference values 0–0.5 and 0–1 and
the step responses are measured. Considering the
results obtained, the proposed method can reach the
ideal control point in a very short time, while the
traditional system is far from the desired response.

2. Design with PID controller
Although the PD control from three controllers brings
attenuation to the system, it does not affect the steady
state behaviour of the system. The PI controller, how-
ever, increases the relative stability as well as the
rise time, although it corrects the steady-state errors.
These results lead to the use of PID control, with the
use of a combination of PI and PD controllers. Kp,
Ki, Kd define the proportional, integral and deriva-
tive gain coefficients, respectively. A PID controller
consists of PI and PD parts connected in series. The
closed loop control scheme for a PID control is given
in Figure 1, with e being the error of the output signal,
r is the references value.

Figure 1. The closed loop control scheme for PID.

While the transfer function of PID controller is as
below:

u(t) = e(t) ∗ Kp + Ki
de(t)

dt
+ Ki

∫ t

0
e(t) dt (1)

e(t) = r(t) − y(t) (2)

Open-loop techniques rely on the results of a bump
or step test in which the output of the controller is
abruptly manually forced by cancelling the feedback.
The graphical slice of the trailing trajectory of the
process variable is given in Figure 2 in [10], the curve
known as the reaction curve. The sloping line drawn
tangent to the steepest point of the reaction curve
demonstrates how fast the process reacts to the step
change of the controller output. The inverse of the
slope of this line, T, which is the measure of the sever-
ity of the delay, is the time constant of the process.
The reaction curve is also: the dead time (d), which
shows how long it takes for the process to give the ini-
tial reaction of the process, and the process gain (K),
how much the process variable increases according to
the size of the step. Ziegler and Nichols determined,
by trial and error, that the best values of the tuning
parameters P, Ti, and Td can be calculated from the
T, d, and K values as follows [12, 13]. P is 1.2 T/Kd,
Ti is 2d, Td is 0.5d.

A closed-loop technique executes the controller in
an automatic mode but with integral and derivative

Figure 2. Open loop curve.

Figure 3. Curve for a closed-loop.

turned off. As seen in Figure 3, the gain for the con-
troller is boosted until the smallest error produces a
continuous oscillation in the process variable. The
gain of the smallest controller that causes an oscil-
lation is named the final gain, Pu. The period of
these oscillations is also named the final period, Tu.
Appropriate tuning parameters are calculated from
the following rules based on these two values [10].

As a results, P is 0.6 Pu, Ti is 0.5 Tu, Td is 0.125 Tu.
Despite all these separations and arrangements, the
gain Kp giving a sustained oscillation is determined
as the sustained oscillation period in seconds. Forcing
this method to reach the constant oscillation region
may have undesirable results in some applications.
The process can move to the unstable region very
easily against external factors. Thus, some physical
damage to the equipment may occur. So, the ECCA-
PID method offers a good alternative to avoid these
complex and inconvenient situations of traditional
methods. In order to provide a more optimum control,
the response expected from the system is divided
into partial sizes and compared again with the error
obtained, the error and error change rates produced
for the control are evaluated, and new coefficients are
created to be added to the controller coefficients of
the controllers, thus enabling the system to give a
better one. K ∈ Z+ → K = {K1, K2, K3, . . . , Kn},
In order to find the value that will provide the desired
control in Rr, the value is to be compared with the
error produced by the system; virtual part reference
value is Rr ∈ R+ → Rr = {Rr1, Rr2, . . . , Rrn}, The
K values to be produced can be found as follows.
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If e1 > Rr1 then K1

If K1 > 0 then Kp + K1 and Ki + K1 and Kd + K1

If e2 > Rr2 then K2

If K2 > 0 then Kp + K2 and Ki + K2 and Kd + K2

If en > Rrn then Kn

If Kn > 0 then Kp + Kn and Ki + Kn and Kd + Kn

Unlike other swarm optimization and traditional
PID control methods, the proposed method produces
linear movements to approach the desired value when-
ever it is far from the desired value, and in this case,
the desired control can be achieved more quickly. Ex-
tra control coefficient (ECCA)-PID control is given in
Figure 4a while Figure 4b shows the mesh depicting
the interaction of the reference and reflection refer-
ence values that will contribute to the extra coefficient.
The control gains predicted by the decision-making
unit can be expressed as the following equations.

u(t1) = e(t1) ∗ (Kp + K1) + (Kd + K1)de(t1)
dt

+ (Ki + K1)
∫ t1

0
e(t1) dt

(3)

u(t2) = e(t2) ∗ (Kp + K2) + (Kd + K2)de(t2)
dt

+ (Ki + K2)
∫ t2

0
e(t2) dt

(4)

u(tn) = e(tn) ∗ (Kp + Kn) + (Kd + Kn)de(tn)
dt

+ (Ki + Kn)
∫ tn

0
e(tn) dt

(5)

If there is too much overshoot and oscillation in
the system, the decision-making order of the proposed
method can be arranged as follows.

If e1 > Rr1 then K1

If K1 > 0 then Kp + K1 and Ki + K1 and Kd + K1

Else if e1 < Rr1 then K11

If K11 > 0 then Kp −K11 and Ki −K11 and Kd −K1

If e2 > Rr2 then K2

If K2 > 0 then Kp + K2 and Ki + K2 and Kd + K2

Else if e2 < Rr2 then K22

If K22 > 0 then Kp − K2 and Ki − K2 and Kd − K2

If en > Rrn then Kn

If Kn > 0 then Kp + Kn and Ki + Kn and Kd + Kn

Else if en < Rrnn then Knn

If Kn > 0 then Kp−Knn and Ki−Knn and Kd−Knn

e is error, de is error change, e ∈ R → e =
{e1, e2, . . . , en}, de ∈ R → de = {de1, de2, . . . , den},

e and de are expressed as below.

e(t1) = r(t) − y(t1) (6)
K1 = e(t1) − Rr1 (7)

e(t2) = r(t) − y(t2) (8)
K2 = e(t2) − Rr2 (9)
de1 = e(t2) − e(t1) (10)

e(tn−1) = r(t) − y(tn−1) (11)
Kn−1 = e(tn−1) − Rrn−1 (12)
den−1 = e(tn−1) − e(tn−2) (13)

e(tn−1) = r(t) − y(tn−1) (14)
Kn−1 = e(tn) − Rrn−1 (15)
e(tn) = r(t) − y(tn) (16)

Kn = e(tn) − Rrn (17)

Considering the error ec for a conventional PID control
and the effect of the proposed method on the error
of the conventional method ek, e(t) can be arranged
as follows.

e(t) = ec + ek (18)

The general equation for the PID can be arranged as
follows.

u(t1) = (ec1 + ek1)(t1) ∗ (Kp + K1)

+ (Ki + K1) (dec1 + dek1)(t1)
dt

+ (Ki + K1)
∫ t1

0
(ec1 + ek1)(t1) dt

(19)

u(t2) = (ec2 + ek2)(t2) ∗ (Kp + K2)

+ (Ki + K2) (dec2 + dek2)(t2)
dt

+ (Ki + K2)
∫ t2

0
(ec2 + ek2)(t2) dt

(20)

u(tn) = (ecn + ekn)(tn) ∗ (Kp + Kn)

+ (Ki + Kn) (decn + dekn)(tn)
dt

+ (Ki + Kn)
∫ tn

0
(ecn + ekn)(tn) dt

(21)

Depending on whether the error is positive or negative,
the control diagram of the system is as in Figure 5,
in line with the above explanation of the decision-
making unit. The equation of the second order and
PID system is given in Equation (22).

X(s)
F (s) = 1

0.5s2 + s + 1 (22)

The PID control is applied to the system to be tested
as in Equation (23).

X(s)
F (s) = Kd · s2 + Kp · s + Ki

(0.5 + Kd)s2 + Kp · s + Ki
(23)
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(a).

(b).

Figure 4. a) extra control coefficient (ECCA)-PID control, b) relation network between R and Rr.

Figure 5. The control diagram of the system, depending on whether the error is positive or negative.

Equation (24) and Equation (25) give the fixed value contributions to the controller systems as a result of the
comparison of the reflection reference values in the decision-making unit of the proposed system with the actual
controller coefficient values.

X(s)
F (s) = (Kd + K1) · s2(Kp + K1) · s + (Ki + K1)

(0.5 + (Kd + K1)) · s2 + (Kp + K1) · s + (Ki + K1) (24)

X(s)
F (s) = (Kd − K1) · s2(Kp − K1) · s + (Ki − K1)

(0.5 + (Kd − K1)) · s2 + (Kp − K1) · s + (Ki − K1) (25)

525



Erol Can Acta Polytechnica

Figure 6. The MATLAB Simulink model of the designed system.

3. (ECCA)-PID control
application

The proposed system is examined over the step re-
sponse of a second-order system such as [(1/(0.5s2 +
s + 1)]. The MATLAB Simulink model of the de-
signed system is given in Figure 6. In the second
order system, both traditional PID control method
and (ECCA)-PID Control are applied. Figure 7a
shows the step response values when two Rr values
such as 0–0.5 are given to the proposed system for
the step response of the system. While the extra gain
values produced by the controller decision unit are
given in Figure 7b, the controller output signal and
controller errors can be seen in Figure 8. Kp is 1, Ki

is 0.5, Kd is 0.02, e is error.
While the rise moment response of the system is

as short as 0.1 s for ECCA-PID and ECCA-P, the
rise moment response of the system for a traditional
PID control is 1.1 s. This means that the rise mo-
ment response of the proposed system corresponds
to 9 % of the take-off response of a traditional PID
controlled system. The settling time for ECCA-P
cannot occur in 10 s, but when I-D controllers are
added to the total control system, the settling time
takes place in 5 s for ECCA-PID. When the system is
controlled with a traditional PID, the system is not
capable of settling in 10 s. This shows that the desired
control can be achieved with the decision-making unit
of the proposed system, even if insufficient controller
coefficients are selected for the system. Rr values in
the range of 0–0.5 taken into consideration by the
decision-making unit are trying to reach the desired
control point. While the gain factor is increased be-
tween 0–1 s and 5.4–8.4 s for Rr 0, the gain factor is
increased between 0–1 s and 2–10.4 s for Rr 0.5. The
controller output signal becomes stable in 4 s. For
the proposed control system, the controller error ends
in 5 s, while for the ECCA-P and traditional PID
method, the error does not end for 10 s.

Figure 9a shows the step response values when two
Rr values such as 0–1 are given to the proposed system
for the step response of the system. While the extra
gain values produced by the controller decision unit
are given in Figure 9b, the controller output signal
and controller errors can be seen in Figure 10. Kp

is 1, Ki is 0.5, Kd is 0.02.
While the rise moment response of the system for

Rr of 0–1 is as short as 0.1 s for ECCA-PID and
ECCA-P, the rise moment response of the system for
a traditional PID control is 1.1 s. This means that the
rise moment response of the proposed system corre-
sponds to 9 % of the take-off response of a traditional
PID controlled system. The settling time for ECCA-
P cannot occur in 10 s, but when I-D controllers are
added to the total control system, the settling time
takes place in 4 s for ECCA-PID. When the system is
controlled with a traditional PID, the system is not
capable of settling in 10 s. This shows that the desired
control can be achieved with the decision-making unit
of the proposed system, even if insufficient controller
coefficients are selected for the system. Rr values
in the range of 0–1 taken into consideration by the
decision-making unit are trying to reach the desired
control point. While the gain factor is increased be-
tween 0–1 s and 3.9–7 s for Rr of 0, the gain factor is
increased between 0–10 s for Rr of 1. While the con-
troller output signal becomes stable in 4 s, It deviates
from the ideal control reference value between 2 and
4 s. For the proposed control system, the controller er-
ror ends in 4 s, while for the ECCA-P and traditional
PID method, the error does not end for 10 s.

Figure 11 shows the step responses and the extra
gain values produced by the controller decision unit
for Rr 0–0.3. There are controller output signal and
controller errors for 0–0.3. The rise moment response
of the system for Rr of 0–0.3 is as short as 0.1 s for
ECCA-PID and ECCA-P, the rise moment response
of the system for a traditional PID control is 1.1 s.
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(a). (b).

Figure 7. For Rr of 0–0.5 > e: a) the step responses, b) the extra gain values produced by the controller decision
unit.

(a). (b).

Figure 8. a) The controller output signal, b) errors for controllers.

(a). (b).

Figure 9. For Rr of 0–1 > e: a) the step responses, b) the extra gain values produced by the controller decision unit.

The 0–0.3 Rr range in ECCA-P provides an earlier
rise as compared to the 0–1 range. The settling tim
for ECCA-P cannot occur in 10 s, but when I-D con-
trollers are added to the total control system, the
settling time takes place in 4 s for ECCA-PID. When
the system is controlled with a traditional PID, the
system is not capable of settling in 10 s. This shows
that the desired control can be achieved with the
decision-making unit of the proposed system, even if

insufficient controller coefficients are selected for the
system. Rr values in the range of 0–0.3 taken into
consideration by the decision-making unit are trying
to reach the desired control point. While the gain
factor is increased between 0–1 s and 5.5–8.7 s for Rr

of 0, the gain factor is increased between 0–1 s and
1.2–10 s for Rr of 0. After the maximum collapse
occurs in 2.2 s, the controller output signal becomes
stable in 4 s. For the proposed control system, the
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(a). (b).

Figure 10. a) the controller output signal, b) controller errors.

(a). (b).

Figure 11. For Rr of 0–0.3 > e: a) the step responses, b) the extra gain values produced by the controller decision
unit.

(a). (b).

Figure 12. a) the controller output signal for 0–0.3, b) controller errors.

controller error ends in 6 s, while for the ECCA-P
and traditional PID method, the error does not end
for 10 s.

Figure 13 shows the step response of the system
controlled with ECCA-PID and the controller errors
for different Rr values. Figure 14 shows the step
response of the system control with ECCA-P and the
controller errors for different Rr values.

ECCA-PID and ECCA-P are tested for control of a
quadratic system. Even if the previously determined
controller coefficient constants are insufficient or not

entered at all, the system controlled by ECCA-PID
produces values that will contribute to the controller
system by making comparisons with the actual error
of the system for different reflection Rr values in the
decision-making unit. Thus, unlike traditional PID
controllers with linear response, the error variation
affects the error variation in a semi-linear manner,
independent of the controller coefficients entered into
the system before, and brings the control of the system
to a satisfactory level.
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(a). (b).

Figure 13. With ECCA-PID: a) the step response of the system controlled, b) the controller errors for different
Rr values.

(a). (b).

Figure 14. With ECCA-P: a) the step response of the system controlled, b) the controller errors for different
Rr values.

4. Conclusions
In this article, a PID control with extra gain is devel-
oped. The structure and design of the traditional PID
control system and the ECCA-PID control system are
presented. Then, the step response of a second-order
system with the conventional method is examined.
In the control processes for Rr of 0–5 and Rr of 0–1
values, the proposed system responds in 0.1 s for the
moment of rise, while the traditional PID method
responds in 1.1 s. Again, while ECCA-PID provides
settling time at 4 s and 5 s, traditional PID cannot
provide settling at 10 s. This shows the effectiveness
of the proposed system and its contribution to the
control systems. Therefore, it seems to be an ideal
method for energy conversion systems and motor con-
trol units.
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