
1 Introduction
We have implemented the CE program, which can simu-

late the behavior of caches inside the SMP system a the
software basis. The user must have the source code of the
program in C language and modify it (explicitly include
memory operations for CE purposes).

The cache model for one CPU considered here corre-
sponds to the structure of L1 – L3 caches on most modern
memory architectures [1]. We consider a multilevel set-associa-
tive cache. The number of sets is denoted by h. If h is equal to 1
then the cache is called fully associative. One set consists of
s independent blocks (called lines in Intel terminology). If s
is equal to 1 then the cache is called direct mapped. The size
of the data part of a cache in bytes is denoted by DCS.
The cache block size in bytes is denoted by BS. We assume
write-back caches with the LRU block replacement strategy.
Obviously, DC s B hS S� � � .

In shared memory systems, each CPU (and each cache)
is connected by the shared bus to the shared memory. A co-

herence protocol is used to maintain memory coherence
according to the specified consistency model.

2 General assumptions of the CE
We make following assumptions during the implementa-

tion of the CE:
1. The CE is designed for SMP systems using bus snoopy

cache coherence protocols.
2. The whole cache size is used only for data. We omit bus

transactions for instruction reading.
3. The operand read does not cross the cache block

boundary.
4. We assume only write-back caches with the LRU replace-

ment strategy.
5. We assume that all caches in each level are the same;

caches have at most 3 levels.
6. We assume that all bus transactions are atomic.
7. We assume random bus arbitration.

3 An example of an application of the
CE
Application of the CE is very easy and straightforward.

© Czech Technical University Publishing House http://ctn.cvut.cz/ap/ 47

Czech Technical University in Prague Acta Polytechnica Vol. 46 No. 2/2006

A Simple Cache Emulator for Evaluating
Cache Behavior for SMP Systems

I. Šimeček

Every modern CPU uses a complex memory hierarchy, which consists of multiple cache memory levels. It is very difficult to predict the
behavior of this hierarchy for a given program (for details see [1, 2]). The situation is even worse for systems with a shared memory. The most
important example is the case of SMP (symmetric multiprocessing) systems [3]. The importance of these systems is growing due to the
multi-core feature of the newest CPUs.
The Cache Emulator (CE) can simulate the behavior of caches inside an SMP system and compute the number of cache misses during
a computation. All measurements are done in the “off-line” mode on a single CPU. The CE uses its own emulated cache memory for
an exact simulation. This means that no other CPU activity influences the behavior of the CE. This work extends the Cache Analyzer
introduced in [4].

Keywords: cache hierarchy, cache emulator, symmetric multiprocessing, MESI protocol.

Fig. 1: Overview of cache parameters

Fig. 2: Example of an SMP system

4 Comparison between CE and HW
CPU cache monitors

CE has many important advantages in comparison to HW
CPU cache monitors:

� The user can measure the behavior of the SMP system on
the uniprocessor system.

� CE is supported on any platform, because CE is imple-
mented as a GNU C library and can easily be included in
any program.

� The measurements are not influenced by other processes
due to the “off-line” mode of the measurement.

� External HW CPU cache monitors are very expensive and
platform-dependent. Modern CPUs also have internal
cache counters (for example, in the IA-32 architecture they
are called “performance counters”), but they are available
only for privileged users and are hard-to-use.

� CE can measure effects of memory functions not supported
by the CPU core (for example a “read once” operation)
and can serve for the development of more effective cache
hierarchies.

� The user can easily change the cache configuration or the
number of CPUs for the measurement by the #defines state-
ment. Parameters for real systems can easily be included
from predefined files.

� The user can measure the cache behavior only in an area of
interest.

� Conditional memory operations are supported.
� The “off-line mode” guarantees that small quantities of

cache misses can also be exactly measured.

CE also has potential drawbacks:
� Memory operations in CE are about 1000 times slower

than HW memory reads because in CE all read (or write)
operations are simulated by the software. The exact slow-
down ratio depends on the type of measured task and the
complexity of the simulated SMP system. This drawback is
reduced by the fact that the user can measure the cache be-
havior only in the area of interest.

� CE requires additional memory for its own emulated cache
memory.

� Only data caches are assumed, not TLB or other parts of
the memory architecture.

� Only the numbers of cache misses are measured, not effects
of these misses. Some memory latencies, conflicts or stalls
occurring during code execution can be overlapped by
other computation, so they do not result in performance
degradation.

� Some cache misses cannot be measured because it is diffi-
cult to expressed these memory operations on the source
code level (for example, those caused by stack operations in
calling subroutines � CALL-RET sequences).

� For caches which can hold both data and instructions, the
effect of loading instructions into the cache is omitted. This
drawback is not usually significant, because the code-sizes
of the inner loops are much smaller than the data-sizes
used by these loops.

� The current version supports only the MESI protocol,
write-back caches with the LRU replacement strategy. A
version that also supports different coherence protocols or
cache configurations is under development.

5 Solution of coherency misses
The number of coherency cache misses is strongly influ-

enced by the exact times of the memory requests execution
and the type of bus arbitration. Since no SW cache emulator is
able to predict these times exactly among the whole SMP sys-
tem, the memory request ordering is solved on a statistical ba-
sis. We assume that the whole CPU enters the section of global
memory operation in approximately the same time and that
there are no preferences for memory requests. For each exe-
cution of this global memory operation inside the loop, a ran-
dom ordering of CPU memory requests is generated, because
we assume random bus arbitration. Under this ordering, the
memory operations get serialized.

6 Validation of CE
In order to validate CE, we ran following subroutines from

the linear algebra package:
� sparse matrix-vector multiplication,
� Cholesky factorization,
� matrix-matrix multiplication.

48 © Czech Technical University Publishing House http://ctn.cvut.cz/ap/

Acta Polytechnica Vol. 46 No. 2/2006 Czech Technical University in Prague

The example code The example code with CE calls

s � 0.0; s � 0.0;

Cache_init();

for i � 1 to n do for i � 1 to n do

CPU no. 1: s� � A[i] * B[i]; s� � A[i]; * B[i];

Cache_read(1,A� i);

Cache_read(1,B� i);

CPU no. j: c[j] � s; Cache_write(j,c� j);

Cache_print();

Table 1: Example of an application of the CE

All routines run in 2 forms:
1. The original code was measured by the Performance Ana-

lyzer HW cache monitor on this SMP system:
SunFire V880, 8 UltraSPARC III Cu processors, each
CPU has a 64 KB L1 cache and an 8 MB L2 cache, run-
ning OS Solaris 10.

2. The modified code was emulated by CE. All cache param-
eters were equal to the real SMP system configuration (see
above) on this HW configuration:
An Intel Celeron 2,4 MHz, 512 MB RAM, a 128 KB L2
cache, an 8 KB L1 cache running OS Windows XP with
Intel C compiler version 7.01.

The results from these tests are very similar. Of course,
they are not exactly the same, because the real measurement
and the emulation are inexact in different ways, as discussed
above. For simplicity, we can say that the differences between
these results were smaller than 20 %.

7 Conclusions
We have implemented a cache emulator to study quantita-

tive parameters of the cache behavior in the SMP systems
during different types of computation. We have also discussed
the advantages and drawbacks of this emulator. The main ad-
vantage of this emulator is that a user can simulate the cache
behavior of any SMP system on the uniprocessor system. The
emulator has been verified on different types of usual tasks.
The results were similar to those obtained from the HW cache
monitor. The errors in the estimations are due to minor
simplifying assumptions in the CE.

Acknowledgment
This work was supported by MŠMT under research pro-

gram MSM6840770014.

References
[1] Wadleigh, K. R., Crawford, I. L.: Software optimization for

high performance computing. Hewlett-Packard professional
books, 2000.

[2] Kennedy, K., Allen, J. R.: Optimizing compilers for modern
architectures: a dependence-based approach. Morgan Kauf-
mann Publishers Inc., 2002.

[3] Bik, A., Girkar, M., Grey, P., Tian, X.: “Efficient Ex-
ploitation of Parallelism on Pentium III and Pentium 4
Processor-Based Systems.” Intel Technology Journal,
2001, No. 5.

[4] Tvrdík, P., Šimeček, I.: “Software Cache Analyzer.” Pro-
ceedings of CTU Workshop, 2005, p. 180–181.

Ing. Ivan Šimeček
phone: +420 224 357 268
e-mail: xsimecek@fel.cvut.cz

Department of Computer Science

Czech Technical University
Faculty of Electrical Engineering
Technická 2
166 27 Prague 6, Czech Republic

© Czech Technical University Publishing House http://ctn.cvut.cz/ap/ 49

Czech Technical University in Prague Acta Polytechnica Vol. 46 No. 2/2006

