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Abstract. The information extraction capability of the widely used signal processing tool, FFT for
diagnosing induction machines, is commonly used at a constant load or at different levels. The loading
level is a major influencing factor in the diagnostic process when the coupled load and the machine
come with natural mechanical imperfections, and at a low load, the mechanical faults harmonics are
strongly influenced. In this context, the main objective of this work is the detection of the mechanical
faults and the study of the effect of the loading level on the induction motor diagnostic process. We
have employed a diagnosis method based on discrete wavelet transform (DWT) for the multi-level
decomposition of stator current and extracting the fault’s energy stored over a wide frequency range.
The proposed approach has been experimentally tested on a faulty machine with dynamic eccentricity
and a shaft misalignment for three loading levels. The proposed method is experimentally tested and
the results are provided to verify the effectiveness of the fault detection and to point out the importance
of the coupled load.
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1. Introduction
Incorrect configuration of the electrical circuit and
mechanical faults in industrial induction machines
can lead to serious economic losses, as well as other
losses in less tangible terms. If the stator or rotor are
incorrectly diagnosed and interpreted as faulty (wrong
diagnostic decision), there will be important costs
added from the unnecessary maintenance operation,
disassembly of the motor, or from a false positive
decision which leads to a halt of the entire production
process. In addition, the credibility and the efficiency
of maintenance operations and technicians can be
seriously compromised. In the opposite case, if the
machine is identified as healthy (false negative), the
fault can aggravate and an accelerate the degradation
of the machine and the coupled load may occur. This
degraded operation can result in even higher economic
costs, the consequences of unplanned shutdowns of
production, risks to the safety of users and damage
to the company’s reputation. These consequences
resulting from an incorrect diagnosis of the state of
the machine are not at all negligible, at least when
using the techniques commonly used in the industry.

The most frequently used methods of diagnosis of
mechanical and electrical defects in the industry are
derived from the technique of Motor Current Signa-
ture Analysis (MCSA) when the defects are classi-
fied as electrical faults and can be easily detected by
analysing the electrical signature [1–4]. This tech-

nique is often used to analyse the stator current, vi-
bration, or torque acquired during operation using the
Fast Fourier Transform (FFT). The principle of this
method is based on the evaluation of the amplitudes
of a predefined frequency component linked to faults.
In general, induction machines have two ranges of
frequencies that can be affected by faults, the first
one is located in the low frequency band and the sec-
ond one in the high band. Therefore, the tracking of
these components without a constant load and mixed
faults makes the diagnostic process very difficult and
prone to errors. Otherwise, the diagnosis at the low
loading level is different from the higher loading level
because of the variation of fault harmonics with slip
and the amplitude of space harmonics. For a diagnosis
of mechanical faults, such as rotor asymmetries, load
oscillations, and misalignments using the lower side-
band harmonic (LSH) based approach, it is difficult
to decide whether the machine is in a fault condition
or not [5–7].

The presence of various phenomena in induction
motors, such as load torque oscillations and voltage
fluctuations, make the diagnostic process notably dif-
ficult [8–10]. Despite the prevalence of this circum-
stance, however, researchers have rarely probed the
correlation between the presence of these phenomena
and the defect in the machine. Mills, compressors,
and other machines that introduce torque oscillations
often use induction motors with a degree of eccentric-
ity or even with misalignment [8]. In these instances,
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the implementation of the classical FFT method im-
poses significant limits; the frequencies induced by
load torque fluctuations and level may be identical to
fault-related frequencies and magnitudes [11], result-
ing in a wrong diagnostic decision. The similarities
between the FFT spectra of a faulty motor and the
same motor in a healthy condition but operated un-
der high load and oscillating load torque can result
in such a wrong decision. The obvious similarity in
spectral analysis could lead to an inaccurate diagnosis.
Due to these disadvantages, alternate approaches to
diagnosis based on techniques, such as the Discrete
Wavelet Transform (DWT) for the analysis of the
stator current under wide frequency band, becomes
acceptable in this situation [12, 13]. A proposed works
in [14, 15], present an effective machine-learning-based
fault diagnosis method, developed for induction mo-
tors driven by variable frequency drives (VFDs). Two
identical induction motors under healthy, single, and
multi-fault conditions were tested in the lab. A Signal
processing technique, the discrete wavelet transform,
is chosen to extract features for machine learning. The
derived DWT diagnosis method is proposed to detect
and locate the insulated gate bipolar translator open-
circuit fault. The discrete wavelet transform is used
as a pre-treatment technique for three-phase output
currents. Euclidean distance between every two of
the energy vectors are calculated for measuring the
current similarity [16].

In this study, we present a technique for diagnos-
ing mechanical faults in induction machines. The
method is contrasted with the standard decomposi-
tion in multi-levels via DWT of the stator current in
a steady state, and additional steps are required to
determine the energy associated with each level of de-
composition [12, 13]. The proposed energy estimation
is used to analyse stator currents when the spectral
content is distributed over a wide frequency band. To
validate this method, several experiments, including
those with a healthy machine, an eccentric machine,
and shaft misalignment, are carried out to simulate
a variety of failure scenarios and operating settings.
The focus of this study is on selecting the appropriate
decomposition levels for information extraction cor-
responding to faults caused by stator currents. We
will try to show how the harmonic content caused by
mechanical faults is largely influenced by the loading
level. A dynamic eccentricity fault of 50 % and a shaft
misalignment fault will be discussed and validated
using this technique.

2. Wavelet decomposition and
energy extraction

The Wavelet Transform WT provides time tracking
of frequency harmonics of a continuous temporal sig-
nal, the main analysing functions are called wavelets.
These functions vary their time-scale coefficients to
their frequency to be very narrow at higher frequency
and broader at a lower frequency. WT is a powerful

means for analysing stationary and transient currents,
voltages, and vibration in order to detect the presence
of failure. DWT is the discrete version of WT and
the most common transform employed in electrical
engineering applications, particularly in monitoring
systems for detection, localisation, and classification of
the power system perturbations in time and frequency
domains [13, 17, 18].

The DWT has become an effective tool in digital
signal processing. It can be written in the same form
as the continuous version, which highlights the close
relationship between the continuous and the discrete
version of this transform. The DWT is based on a dis-
crete scale and localisation parameters that are power
of two (2). The values of dilation and translation
factors s and τ are: s = 2j, τ = k ∗ 2j and (j, k) ∈ Z,
respectively. These proprieties are achieved by using
a scaling function ϕ that is a wavelet aggregate at
scales larger than 1. When the functions ψ̂(ω) and
φ̂(ω) are the Fourier transforms of ψ(ω) and φ(ω),
respectively, it leads to high-frequency resolutions at
low frequencies and high-time resolutions at high fre-
quencies, and eliminating the redundant information.
The positive frequency, contains information in the
interval [0, π], and contains information in the interval
[π, 2π]. Therefore, the two functions have a complete
spectral content of the analysed signal without any
overlapping, redundancy, or loss. Two filters, h(n) and
g(n), are obtained by the inner product of (ϕ(t), φ(t))
allowing the decomposition of the entire signal into
[0, π]. The filters are given by [19–24]:

{ h(n) =
〈

2−lϕ(2−lt)ϕ(t− n)
〉

g(n) =
〈

2−jψ(2−jt)ψ(t− n)
〉 ., j = 0, 1, .... (1)

For the purpose of decomposing the signal across
the entire allowed frequency range, a mother wavelet
can be used. After the multi-level decomposition by
l times, we get 2l frequency bands with the same
bandwidth defined according to equation (2).

[ (i− l)fn

2 ,
ifn

n
], i = 1, 2, ......., 2l, (2)

where fn is the Nyquist frequency in the ith-frequency
band. The mother wavelet decomposes the signal via
low-pass filter h(n) and (2l − 1) band-pass filters g(n)
to provide, at each level j, the full information in two
frequency bands. Aj is the low-frequency approxima-
tion and Dj is the high-frequency detail signal [19]:

Figure 1. Wavelet tree decomposition.

2



vol. 63 no. 1/2023 Induction motor mechanical defects diagnosis

{
Aj(n) =

∑
k

h(k − 2n)Aj−1

Dj(n) =
∑
k

g(k − 2n)Aj−1
., n = 0, 1, 2, 3, ..., (3)

where A0(k) is the initial signal. After the multi-level
decomposition, the approximation Aj and detail Dj

signals will be generated for each node j.
The multi-level decomposition of the stator current

was then achieved using the Daubechies db8 wavelet.
When rotor eccentricity and load misalignment appear
in the motor, the information about the fault in the
stator current will be included in each frequency band
generated by the DWT decomposition process.

The calculation of the vector energy for the ap-
proximations in each node allows the construction of
a vector data which contain the necessary information
about faults over a wide frequency band.

The approximations energy can be computed using
the Euclidean norm (or 2-energy) of Ai(n) that has
N elements and is defined by:

∥EAi∥ = 1
N

√√√√ N∑
k=1

|Ai(k)|2 , i = 1, 2, . . . ..Nls (4)

Figure 2 shows the estimation of the approxima-
tion’s energy vector for each node and the correspond-
ing frequency band.

Figure 2. Approximations energy estimation steps.

The overall stator current analysis diagram is pre-
sented in Figure 3. The different steps are presented,
from the stator current acquisition to the estimation
of the energy for each level of decomposition.

3. Faults description
In electrical machines, eccentricities are generally gen-
erated by the non-constant air-gap distribution. They
are the most common faults in induction motors. Ac-
cording to recent studies, mechanical faults represent
50–60 % of the faults in electric motors. About 60 %
of mechanical defects are linked to rotor eccentricities.

Figure 3. Stator current analysis steps.

Indeed, the rotor eccentricity is often generated from
other defect such as bearing failures or load misalign-
ments. The impact of this fault can be serious; this
could even result in a breakdown of the motor due to
rotor-to-stator friction [25–27].

Dynamic eccentricity (DE) take place when the ro-
tor axle is not matching the rotation axle and the
narrow side of the air-gap rotates at the same speed
as the rotor (Figure 4). There are multiple causes
of dynamic eccentricity and the most common are
manufacturing tolerances, bearing wear, and incorrect
manufacture of the machine components. Another
source of dynamic eccentricity is the rotation of the
rotors at a speed close to the critical speed; it is an
important consideration in larger and flexible-shaft
machines. In an induction machine, a dynamic eccen-
tricity can be identified by examining the frequency
components defined as follows [27–29]:

fde = (1 ± (1 − s)
p

)fs, (5)

where
fde : the characteristic frequency of the DE
s : the Slip
fs : the supply frequency

Figure 4. Dynamic eccentricity mechanism.

A non-constant air-gap generates a rotating radial
force and an Unbalanced Magnetic Pull (UMP) on the
rotor and stator due to the interaction of the space
harmonic field components with pole pair numbers
differing by one and rotating in the same direction.
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The dynamic eccentricity may generate vibrations at
the supply frequency and at the rotor frequency (fr),
these are given by 2fr, 2fs ± fr [30]. where fs is the
supply frequency. A misalignment of the coupling is
a condition in which the shaft of the drive machine
and the driven machine are not on the same centre
line (Figure 5). The misalignment can be parallel,
angular or both (combined: parallel and angular). It
is very difficult to obtain a perfect alignment between
two shafts in industrial applications [28, 31].

Figure 5. Shafts misalignment.

Even if a precise alignment is ensured, it cannot
be maintained for a long time due to many external
effects such as a disturbance of the base foundation.
A shaft misalignment is a commonly encountered prob-
lem observed in the large rotor bearing machines and
produces significant vibrations. Flexible couplings are
commonly employed in industrial production chains
to transmit mechanical power between the machine
and the driven load. Most couplings transmit electro-
magnetic torque via an elastomer or a metal spring in
order to reduce the vibration within an accepted level
of misalignment. Electrical machines manufacturers
suggest using the flexible couplings based on ther-
moplastics as active transmission elements for load
aligning by using laser equipment or alignment clocks.
The misaligned flexible couplings can transmit torque,
producing high vibration levels and may cause damage
to the shaft and bearings.

The misalignment induces harmonics in the stator
current spectrum at frequencies, this makes it possible
to detect these phenomena. However, since similar
harmonics are produced by some mechanical faults,
their detection and localisation are still a delicate mat-
ter when using MCSA. To overcome this limitation,
it becomes necessary to identify misalignment faults
over a wide band of frequency [4].

The main goal of this paper is to use the DWT ap-
proach for the detection of dynamic eccentricity and
shaft misalignment in squirrel cage induction motors
under various loading conditions, since the frequency
components introduced by these faults depend on the
load. Their detection and decision can constitute
a powerful indicator for the diagnosis. In this work,
the obtained approximation signals generated by the
multilevel decomposition are used to build an energy

Parameter Value

Rated power 5.5 kW
Rated Voltage 400 V
Rated line current 10.5 A
Rated speed 1455 rpm
Rated power factor 0.88
DC motor MS1321
Rated speed 1450 rpm
Rated power 3.9 kW
Rated Voltage 260 V
Rated current 17.6 A

Table 1. Characteristics of the 5.5 kW IM and DC
load.

vector calculated for each decomposition node. The
method allows the detection based on the analysis of
the energy of the signals that are amplified by the
different faults. This method constitutes an important
advantage when compared to the classical methods by
analysing the stator current under a wide frequency
band and avoiding the tracking of harmonics in a lim-
ited band or at predefined frequency.

4. Experimental setup
An experimental analysis of the mechanical faults
described previously has been carried out. The ex-
perimental setup contains a three-phase squirrel cage
induction machine with 4 poles and a rated torque
of 36 Nm. The induction motor is coupled to a DC
motor to provide the necessary load. The used motors
are driven by a variable speed drive (Leroy Somer)
working in open loop. The DC motor is connected
to a resistor bank via a DC-DC buck converter for
controlling the armature current. The principal char-
acteristics of tested machines are given in Table 1.

The experimental setup is illustrated in Figure 6.
It consists mainly of an industrial induction motor
with its drive loaded by a DC motor. Two induction
motors with the same characteristics are tested. The
first one is healthy; it will be considered as a reference
for the comparison with the faulty one. The second
motor is faulty and has a dynamic eccentricity and mis-
alignment. The measurement card contains current
sensors LA-55P, voltage sensors LV-25P, tachymeter
and torque sensor. A maximum current and voltage
of 50 A and 480 V can be achieved respectively.

The acquisition card used is a PCI data card, 16-bit,
with a sampling frequency of 200 kHz, and it is in-
stalled in a computer and connected to the measuring
board via a serial cable. These motors are supplied
by the industrial drive and have been tested under
three loading level conditions. All the experiments are
carried out with the same sampling frequency 26,5 Hz
during 10 s recording time. To obtain 50 % of DE,
the original ball bearings are replaced by other ball
bearings of the same external diameter, but of greater
internal diameter. A 0.2 mm bore offset is introduced.
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Figure 6. Mechanical faults experimental setup.

After an aligned positioning of the eccentric rings on
the shaft (to guarantee a uniform direction of the
eccentricity), we insert the new ball bearings. The
introduced air-gap of the machine is considered to
be 0.4 mm; 50 % of DE of the rotor compared to the
stator (Figure 7).

Figure 7. Eccentric bearing assembling.

The tests carried out to analyse the DE have been
performed on two machines (a healthy machine and
another with 50 % of DE) with the principal charac-
teristics shown in Table 1. The sampling frequency of
the measured signals was chosen equal to 25.6 KHz.
The two machines were tested under three levels of
load: 4 Nm, 18 Nm and 29 Nm of the nominal torque.
The Figure 8 illustrates the wave form of the recorded
stator current for the machine with the dynamic ec-
centricity.

In order to study a more realistic mechanical fault,
a small misalignment of the load shaft is introduced
under different loads (4 Nm, 18 Nm and 29 Nm). The
Figure 9 shows the measurement of the misalignment
degree.

For the misalignment faults, the same mechanical
setup and signal processing steps as above are used
for recording and analysing the stator current under
the same loading conditions

Figure 8. Recorded stator current with dynamic
eccentricity.

Figure 9. Misalignment degree measurement.

4.1. Stator current decomposition
The mother wavelets “db8” are used to decompose the
stator current for each machine. The decomposition
in multi-level requires some consideration in order to
obtain a good approximation and detail signals.

4.2. Stator current filtering
Among the methods used in this paper, the fundamen-
tal component of the stator current has been removed
before the signal goes through the multi-level decom-
position process by DWT. This procedure amplifies
the small harmonics induced by the faults.

4.3. Optimal level calculation
The required number of decompositions Nls is linked
to the acquisition conditions, such as the sampling
frequency f and the supply frequency. The necessary
level Nls is chosen to obtain a high-level signal (ap-
proximation) with a highest frequency along which
the faults harmonics are located. The minimum lev-
els of decomposition needs an approximation signal
(Anf ) with the upper limit of the frequency band be-
ing less than the fundamental frequency. This limit is
expressed by the following condition [19].

2−(Lls+1)fs < f (6)

From this requirement, the successive decomposi-
tion of the approximation signals can be limited to
level Nls that is given by:
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(a). Healthy motor. (b). Eccentric motor.

Figure 10. First 4 details signals for (A) symmetric motor and (B) eccentric motor.

(a). 4 Nm (b). 18 Nm

(c). 29 Nm (d). all cases

Figure 11. Estimated nodes energy for eccentricity fault under (A) load = 4 Nm, (B) load = 18 Nm, (C) load =
29 Nm and (D) all cases.

Nls = int
(

log(fs/f)
log(2)

)
. (7)

For this technique, an additional decomposition of
the stator current should be carried out so that the
frequency band [0–f ] is divided into several bands.
Generally, two extra levels of decomposition Nls + 2
will be suitable [19].

According to the suitable level, the different fre-
quency bands are given in Table 2.

The Figure 10 compares the details obtained from
DWT of a steady state stator current for a symmetric
machine and for the eccentric machine with 50 $ of
DE under a load 4 Nm. The purpose of this com-
parison is to demonstrate that when the harmonics

are introduced by the dynamic eccentricity, the DWT
analysis can distinguish clearly between the faults
when present.

5. Results and discussion
5.1. Dynamic eccentricity
For the dynamic eccentricity fault, the energy vector is
calculated for 11 levels with 3 loading levels. Figure 11
shows the plot of vector ∥EAi∥ for the three loading
levels.

The analysis of the three figures shows an increase
in energies for eccentric cases starting at level 3, which
corresponds to the frequency band [0–3312.5Hz]. We
also see that the deviation is important as a function
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(a). 4 Nm (b). 18 Nm

(c). 29 Nm (d). all cases

Figure 12. Estimated nodes energy for misalignment fault under (A) load = 4 Nm, (B) load = 18 Nm, (C) load =
29 Nm and (D) all cases.

Level Ai Band [Hz] Di Band [Hz]

J=1 A1 0-13250 D1 13250-26500
J=2 A2 0-6625 D2 6625-13250
J=3 A3 0-3312.5 D3 3312.5-6625
J=4 A4 0-1656.2 D4 1656.25-3312.5
J=5 A5 0-828.12 D5 828.12-1656.25
J=6 A6 0-414 D6 414-828.125
J=7 A7 0-207 D7 207-414
J=8 A8 0-103.5 D8 103.5-207
J=9 A9 0-51.75 D9 51.75-103.5
J=10 A10 0-25.87 D10 25.875-51.75
J=11 A11 0-12.94 D11 12.94-25.87

Table 2. Details and approximation bands for Nls.

of the loading, even at high frequencies. These results
show that eccentricity can be detected in the frequency
band [0–4000 Hz] with useful information on the faults
concentrated in the low frequencies and gradually
decreasing in the high frequencies.

5.2. Misalignment
For the misalignment fault, the energy vector is also
calculated for 11 levels with 3 loading levels. Figure 12
shows the plot of vector ∥EAi∥ for the three loading
levels.

Similarly to the an eccentricity fault results, the fig-
ure analysis shows an increase in energies for misalign-
ment cases beginning at level 3, which corresponds to
the frequency band [0–3312.5 Hz].These results show
that a misalignment fault can be detected in the fre-

quency band [0–4000 Hz] with useful information con-
centrated in low frequencies and gradually decreasing
in high frequencies. The curves obtained for mechan-
ical faults show that the load has an important role
in the detection process, and it is recommended to
carry out the diagnostic operation under full loading
conditions in order to increase the separation between
the healthy and the defective machine.

A comparison between energies for healthy and
defective machines under various loads is performed
in order to show the energy deviation as a function
of the load level. Table 3 displays numerical values
for the energy deviation for various machine loadings.
Figure 13 shows the graphical plot of this deviation
for both cases of eccentric and misaligned machines.

The plot of the difference in energies of the nodes
showed a large deviation when the load increases,
precise for the fault of the dynamic eccentricity and
less accurate for the fault of misalignment. This result
is critical to consider when performing any diagnostic
procedure. It is obvious that the diagnosis at high
load is more precise than that at low load.

6. Conclusion
In this work, a study was carried out to diagnose
electrical and mechanical faults under different load-
ing levels in a squirrel cage induction machine. The
main aim is to find an effective method to decide
whether the machine is faulty or not. The proposed
method is a multi-resolution analysis based on the Dis-
crete Wavelet Transform (DWT). Unlike traditional
methods based on the Fast Fourier Transform (FFT),
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(a). Eccentric case. (b). Misalignment case.

Figure 13. Energy deviation between healthy and faulty cases, (A) Eccentric case, (B) Misalignment case.

Eccentric case Misalignment case

4 Nm 18 Nm 29 Nm 4 Nm 18 Nm 29 Nm

Level 1 1.98E-05 -9.05E-06 -4.68E-06 6.09E-06 -2.99E-05 3.41E-06
Level 2 2.34E-05 -1.34E-05 -6.62E-06 4.49E-07 -1.81E-05 3.85E-06
Level 3 3.20E-05 -1.03E-05 -7.24E-06 4.20E-08 -1.66E-05 3.51E-06
Level 4 0.00578 0.00623 0.00464 -9.58E-04 0.00138 0.04011
Level 5 0.0021 0.03883 0.0294 0.00126 0.00416 0.01154
Level 6 0.00184 0.03904 0.0294 9.89E-04 0.00387 0.01162
Level 7 0.00189 0.04219 0.03235 0.00104 0.00421 0.01451
Level 8 0.0019 0.04299 0.03288 0.00105 0.00427 0.01469
Level 9 0.0019 0.04309 0.03295 0.00105 0.00427 0.01471
Level 10 0.00129 0.0444 0.03355 0.00137 0.00465 0.01553
Level 11 9.82E-04 0.04512 0.03386 1.55E-03 0.00487 0.01595

Table 3. Energy deviation between healthy and faulty machines.

the DWT method allows searching information for
related to faults over wide frequency bands and to
avoid tracking the fault indicators related to prede-
fined frequencies. The results obtained by applying
the proposed method on the different faults show the
efficiency and the precision of detection and separation
between healthy and defective machines. Moreover,
the results show that the load applied during the acqui-
sition process has an important role in the detection
of mechanical faults.

We have also shown in this work that the diagnosis
of faults at a high load is strongly recommended to
reveal the different harmonics related to the fault.
The proposed method in this paper also shows that
the spectral content caused by the mechanical defects
like eccentricity and misalignment is more important
at high frequencies than at low frequencies.
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