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Abstract.
The real plane with its set of orientations or angles in [0, π) is the simplest non trivial example of

a (projective) Hilbert space and provides nice illustrations of quantum formalism. We present some of
them, namely covariant integral quantization, linear polarisation of light as a quantum measurement,
interpretation of entanglement leading to the violation of Bell inequalities, and spin one-half coherent
states viewed as two entangled angles.
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1. Introduction
The formulation of quantum mechanics in a real
Hilbert space has been analyzed by Stueckelberg in
1960 [1] in order to show that the need for a com-
plex Hilbert space is connected to the uncertainty
principle. Later, Solèr [2] showed that the lattice of
elementary propositions is isomorphic to the lattice
of closed subspaces of a separable Hilbert space (over
the reals, the complex numbers or the quaternions).
In other words, the lattice structure of propositions in
quantum physics does not suggest the Hilbert space
to be complex. More recently, Moretti and Oppio [3]
gave stronger motivation for the Hilbert space to be
complex which rests on the symmetries of elementary
relativistic systems.

In this contribution, we do not address the ques-
tion of the physical validity of the real Hilbert space
formulation of quantum mechanics but limit ourselves
to use the real 2-dimensional case, i.e. the Euclidean
plane, as a toy model for illustrating some aspects
of the quantum formalism, as quantization, entangle-
ment and quantum measurement. The latter is nicely
represented by the linear polarization of light. This
real 2-dimensional case relies on the manipulation of
the two real Pauli matrices

σ1 =
(

0 1
1 0

)
, σ3 =

(
1 0
0 −1

)
, (1)

and their tensor products, with no mention of the

third, complex matrix σ2 =
(

0 −i
i 0

)
. As a matter

of fact, many examples aimed to illustrate tools and
concepts of quantum information, quantum measure-
ment, quantum foundations, ... (e.g., Peres [4]) are
illustrated with manipulations of these matrices.

In [5], it was shown that the set of pure states in
the plane is represented by half of the unit circle and
the set of mixed states by half the unit disk, and also

that rotations in the plane rule time evolution through
Majorana-like equations, all of this using only real
quantities for both closed and open systems.

This paper is a direct extension of our previous
paper [6], and for this reason we start the discussion
by recalling some key elements of the mathematical
formalism.

2. Background
2.1. Definition of POVMs
We start with the definition of a normalized Positive-
Operator Valued measure (POVM) [7]. It is defined
as a map F : B(Ω) → L+

s (H) from the Borel σ-algebra
of a topological space Ω to the space of linear positive
self-adjoint operators on a Hilbert space H such that

F

( ∞⋃
n=1

∆n

)
=

∞∑
n=1

F (∆n) F (Ω) = 1 . (2)

In this definition, {∆n} is a countable family of dis-
joint sets in B(Ω) and the series converges in the weak
operator topology. If Ω = R, we have a real POVM. If
F (∆) is a projection operator for every ∆ ∈ B(Ω), we
recover the usual projection-valued measure (PVM).

A quantum state is defined as a non-negative,
bounded self-adjoint operator with trace 1. The space
of states is a convex space and is denoted by S(H).
A quantum measurement corresponds to an affine map
S(H) 7→ M+(Ω) from quantum states to probability
measures, ρ 7→ µρ. There is [8] a one-to-one correspon-
dence between POVMs F : B(Ω) → L+

s (H) and affine
maps S(H) 7→ M+(Ω) given by µρ(∆) = Tr(ρF (∆)),
∆ ∈ B(Ω).

2.2. Integral quantization
Quantum mechanics is usually taught in terms of pro-
jection operators and PVM, but measurements usually
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give a statistical distribution around a mean value,
incompatible with the theory. We recall here a gen-
eralization of a quantization procedure, the integral
quantization, based on POVMs instead of PVM. The
basic requirements of this programme are the follow-
ing: the quantization of a classical function defined
on a set X must respect
(1.) Linearity. Quantization is a linear map f 7→ Af :

Q : C(X) 7→ A(H) , Q(f) = Af , (3)

where
• C(X) is a vector space of complex or real-valued

functions f(x) on a set X, i.e. a “classical” math-
ematical model,

• A(H) is a vector space of linear operators in some
real or complex Hilbert space H, i.e., a “quantum”
mathematical model, notwithstanding the ques-
tion of common domains in the case of unbounded
operators.

(2.) Unity. The map (3) is such that the function
f = 1 is mapped to the identity operator 1 on H.

(3.) Reality. A real function f is mapped to a self-
adjoint or normal operator Af in H or, at least,
a symmetric operator (in the infinite-dimensional
case).

(4.) Covariance. Defining the action of a symmetry
group G on X by (g, x) ∈ G×X such as (g, x) 7→ g ·
x ∈ X, there is a unitary representation U of G such
that AT (g)f = U(g)Af U(g−1), with (T (g)f)(x) =
f
(
g−1 · x

)
.

Performing the integral quantization [9] of a func-
tion f(x) on a measure space (X, ν) boils down to the
linear map:

f 7→ Af =
∫

X

M(x) f(x) dν(x) , (4)

where we introduce a family of operators M(x) solving
the identity. More precisely, we have

X ∋ x 7→ M(x) ,

∫
X

M(x) dν(x) = 1 . (5)

If the M(x) are non-negative, they provide a POVM.
Indeed, the quantization of the characteristic function
on the Borel set ∆, A(χ∆),

F (∆) := A(χ∆) =
∫

∆
M(x) dν(x) . (6)

is a POVM which provides a quantization procedure

f 7→ Af =
∫

X

f(x) dF (x).

3. Euclidean plane as Hilbert
space of quantum states

3.1. Mixed states as density matrices
Density matrices act as a family of operators which
can be used to perform covariant integral quantization.

-
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ı̂ = |0⟩ ≡
(

1
0

)

|ϕ⟩ =
(

cos ϕ
sin ϕ

)
↔ Eϕ = |ϕ⟩⟨ϕ|
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∣∣π
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Figure 1. The Euclidean plane and its unit vectors
viewed as pure quantum states in Dirac ket nota-
tions.

In the context of the Euclidean plane and its rotational
symmetry, one associates the polar angle ϕ ∈ [0, 2π)
with the unit vector ûϕ to define the pure state |ϕ⟩ :=
|ûϕ⟩.

As shown in Figure 1, two orthogonal pure states
ı̂ = |0⟩ and ȷ̂ =

∣∣∣π2〉 are readily identified with the unit
vectors spanning the plane. In this configuration, the
pure state |ϕ⟩ is defined by an anticlockwise rotation of
angle ϕ of the pure state |0⟩. Denoting the orthogonal
projectors on ı̂ and ȷ̂ by |0⟩⟨0| and

∣∣π
2
〉 〈

π
2
∣∣ respectively,

we visualize the resolution of the identity as follows

1 = |0⟩⟨0| +
∣∣∣π2〉〈π

2

∣∣∣
⇕(

1 0
0 1

)
=
(

1 0
0 0

)
+
(

0 0
0 1

)
.

(7)

Recalling that a pure state in the plane, equivalently
an orientation, can be decomposed as |ϕ⟩ = cos ϕ |0⟩ +
sin ϕ

∣∣π
2
〉
, with ⟨0|ϕ⟩ = cos ϕ and

〈
π
2
∣∣ϕ〉 = sin ϕ, it

is straightforward to find the orthogonal projector
corresponding to the pure state |ϕ⟩,

Eϕ =
(

cos2 ϕ cos ϕ sin ϕ
cos ϕ sin ϕ sin2 ϕ

)
, (8)

from which we can construct the density matrix cor-
responding to all the mixed states

ρ =
(

1 + r

2

)
Eϕ +

(
1 − r

2

)
Eϕ+π/2 , 0 ≤ r ≤ 1 .

(9)

In this expression, the parameter r represents the
degree of mixing. Hence the upper half-disk (r, ϕ),
0 ≤ r ≤ 1, 0 ≤ ϕ < π is in one-to-one correspondence
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with the set of density matrices ρ ≡ ρr,ϕ written as

ρr,ϕ = 1
21 + r

2R(ϕ)σ3R(−ϕ)

=
( 1

2 + r
2 cos 2ϕ r

2 sin 2ϕ
r
2 sin 2ϕ 1

2 − r
2 cos 2ϕ

)
= 1

2 (1 + rσ2ϕ) ,

(10)

where R(ϕ) =
(

cos ϕ − sin ϕ
sin ϕ cos ϕ

)
is a rotation matrix

in the plane, and

σϕ := cos ϕ σ3 + sin ϕ σ1

≡ −→σ · ûϕ =
(

cos ϕ sin ϕ
sin ϕ − cos ϕ

)
= R(ϕ) σ3 . (11)

The observable σϕ has eigenvalues {±1} and eigenvec-
tors

∣∣∣ϕ
2

〉
and

∣∣∣ϕ+π
2

〉
respectively. It plays a crucial

rôle since, as we show right after, it is at the core
of both the non-commutative character and the en-
tanglement of two quantum states of the real space.
It is a typical observable used to illustrate quantum
formalism [4].

3.2. Describing non-commutativity and
finding Naimark extensions through
rotations

Let us apply integral quantization with the real density
matrices (10). With X = S1, the unit circle, equipped
with the measure dν(x) = dϕ

π , ϕ ∈ [0, 2π), we obtain
the resolution of the identity for an arbitrary ϕ0,∫ 2π

0
ρr,ϕ+ϕ0

dϕ

π
= 1 . (12)

Hence, quantizing a function (or distribution) f(ϕ) on
the circle is done through the map

f 7→ Af =
∫ 2π

0
f(ϕ)ρr,ϕ+ϕ0

dϕ

π

=
(

⟨f⟩ + r
2 Cc (Rϕ0f) r

2 Cs (Rϕ0f)
r
2 Cs (Rϕ0f) ⟨f⟩ − r

2 Cc (Rϕ0f)

)
= ⟨f⟩1 + r

2 [Cc (Rϕ0f) σ3 + Cs (Rϕ0f) σ1] , (13)

with ⟨f⟩ := 1
2π

∫ 2π

0 f(ϕ) dϕ the average of f on the
unit circle and Rϕ0(f)(ϕ) := f(ϕ − ϕ0). Here we
have defined cosine and sine doubled angle Fourier
coefficients of f

Cc
s
(f) =

∫ 2π

0
f(ϕ)

{
cos
sin 2ϕ

dϕ

π
. (14)

In [6], we drew three consequences from this result.
The first consequence is that, upon identification of R3

with the subspace V3 = Span
{

e0(ϕ) := 1√
2 , e1(ϕ) :=

cos 2ϕ, e2(ϕ) := sin 2ϕ
}

in L2(S1, dϕ/π), the inte-

gral quantization map with ρr,ϕ+ϕ0 yields a non-
commutative version of R3 :

Ae0 = 1√
2

,

Ae1 = r

2 [cos 2ϕ0 σ3 + sin 2ϕ0 σ1] ≡ r

2σ2ϕ0 ,

Ae2 = r

2 [− sin 2ϕ0 σ3 + cos 2ϕ0 σ1] ≡ r

2σ2ϕ0+π/2 .

Now, the commutation rule reads

[Ae1 , Ae2 ] = −r2

2 τ2 , τ2 :=
(

0 −1
1 0

)
= −iσ2 ,

which depends on the real version of the last Pauli
matrix and on the degree of mixing.

A second consequence, typical of quantum-
mechanical ensembles, is that all functions f(ϕ) in V3
yielding density matrices through this map imply that

ρs,θ =
∫ 2π

0

[
1
2 + s

r
cos 2ϕ

]
︸ ︷︷ ︸

f(ϕ)

ρr,ϕ+θ
dϕ

π
. (15)

If r ≥ 2s, this continuous superposition of mixed states
is convex. Therefore, a mixed state is composed of
an infinite number of other mixed states. This has
consequences in quantum cryptography, for example,
since the initial signal cannot be recovered from the
output.

The third and last consequence we mention here
concerns the Naimark extension of a function defined
on the circle. In particular, we focus on the Toeplitz
quantization of f(ϕ), which is a kind of integral quan-
tization. In [6], we used this framework to show there
exist orthogonal projectors from L2(S1, dϕ/π) to R2

such that for a function f(ϕ) the multiplication oper-
ator on L2(S1, dϕ/π), defined by

v 7→ Mf v = fv , (16)

maps Mf to Af . They are precisely Naimark’s ex-
tensions of POVMs represented by density matrices
(see [6] for details).

3.3. Linear polarization of light as a
quantum phenomenon

In this section, we recall that the polarization tensor
of light can be expressed as a density matrix, which
allows us to relate the polarization of light to quantum
phenomena such as the Malus Law and the incompat-
ibility between two sequential measurements [6].

First, remember that a complex-valued electric field
for a propagating quasi-monochromatic electromag-
netic wave along the z-axis reads as

−→
E (t) = −→

E0(t) eiωt = Ex ı̂ + Ey ȷ̂ = (Eα) , (17)

in which we have used the previous notations for the
unit vectors in the plane. The polarization is deter-
mined by −→

E0(t). It slowly varies with time, and can be

10
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measured through Nicol prisms, or other devices, by
measuring the intensity of the light yielded by mean
values ∝ EαEβ , EαE∗

β and conjugates. Due to rapidly
oscillating factors and a null temporal average ⟨·⟩t,
a partially polarized light is described by the 2 × 2
Hermitian matrix (Stokes parameters) [10–12]

1
J

(
⟨E0xE∗

0x⟩t

〈
E0xE∗

0y

〉
t

⟨E0yE∗
0x⟩t

〈
E0yE∗

0y

〉
t

)
≡ ρr,ϕ + A

2 σ2

= 1 + r

2 Eϕ + 1 − r

2 Eϕ+π/2 + iA2 τ2 .

Here, J describes the intensity of the wave. In the
second line, it is clear that the degree of mixing r
describes linear polarization, while the parameter A
(−1 ≤ A ≤ 1) is related to circular polarization. In
real space, we have A = 0, so we effectively describe
the linear polarization of light.

-
6
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We now wish to describe the interaction between
a polarizer and a partially linear polarized light as
a quantum measurement. We need to introduce two
planes and their tensor product: the first one is the
Hilbert space on which act the states ρM

s,θ of the po-
larizer viewed as an orientation pointer. Note that
the action of the generator of rotations τ2 = −iσ2 on
these states corresponds to a π/2 rotation :

τ2ρM
s,θτ−1

2 = −τ2ρM
s,θτ2 = ρM

s,θ+π/2 . (18)

The second plane is the Hilbert space on which act the
partially linearized polarization states ρL

r,ϕ of the plane
wave crossing the polarizer. Its spectral decomposition
corresponds to the incoherent superposition of two
completely linearly polarized waves

ρL
r,ϕ = 1 + r

2 Eϕ + 1 − r

2 Eϕ+π/2 . (19)

The pointer detects an orientation in the plane de-
termined by the angle ϕ. Through the interaction
pointer-system, we generate a measurement whose
time duration is the interval IM = (tM − η, tM + η)
centred at tM . The interaction is described by the
(pseudo-) Hamiltonian operator

H̃int(t) = gη
M (t)τ2 ⊗ ρL

r,ϕ , (20)

where gη
M is a Dirac sequence with support in IM , i.e.,

lim
η→0

∫ +∞

−∞
dt f(t) gη

M (t) = f(tM ) .

The interaction (20) is the tensor product of an an-
tisymmetric operator for the pointer with an operator

for the system which is symmetric (i.e., Hamiltonian).
The operator defined for t0 < tM − η as

U(t, t0) = exp
[∫ t

t0

dt′ gη
M (t′) τ2 ⊗ ρL

r,ϕ

]
= exp

[
Gη

M (t) τ2 ⊗ ρL
r,ϕ

]
, (21)

with Gη
M (t) =

∫ t

t0
dt′ gη

M (t′), is a unitary evolution
operator. From the formula involving an orthogonal
projector P ,

exp(θτ2 ⊗ P ) = R(θ) ⊗ P + 1 ⊗ (1 − P ) , (22)

we obtain

U(t, t0) =R
(

Gη
M (t) 1 + r

2

)
⊗ Eϕ

+ R
(

Gη
M (t) 1 − r

2

)
⊗ Eϕ+π/2 . (23)

For t0 < tM − η and t > tM + η, we finally obtain

U(t, t0) = R
(

1 + r

2

)
⊗ Eϕ + R

(
1 − r

2

)
⊗ Eϕ+π/2 .

(24)

Preparing the polarizer in the state ρM
s0,θ0

, we obtain
the evolution U(t, t0) ρM

s0,θ0
⊗ ρL

r0,ϕ0
U(t, t0)† of the

initial state for t > tM + η

ρM
s0,θ0+ 1+r

2
⊗ 1 + r0 cos 2(ϕ − ϕ0)

2 Eϕ

+ ρM
s0,θ0+ 1−r

2
⊗ 1 − r0 cos 2(ϕ − ϕ0)

2 Eϕ+π/2

+ 1
4 (R(r) + s0σ2θ0+1) ⊗ r0 sin 2(ϕ − ϕ0) Eϕτ2

− 1
4 (R(−r) + s0σ2θ0+1) ⊗ r0 sin 2(ϕ − ϕ0) τ2Eϕ .

(25)

Therefore, the probability for the pointer to rotate
by 1+r

2 , corresponding to the polarization along the
orientation ϕ is

Tr
[(

U(t, t0) ρM
s0,θ0

⊗ ρL
r0,ϕ0

U(t, t0)†) (1 ⊗ Eϕ)
]

= 1 + r0 cos 2(ϕ − ϕ0)
2 , (26)

that for the completely linear polarization of the light,
i.e. r0 = 1, becomes the familiar Malus law, cos2(ϕ −
ϕ0). Similarly, the second term gives the probability
for the perpendicular orientation ϕ + π/2 and the
pointer rotation by 1−r

2

Tr
[(

U(t, t0) ρM
s0,θ0

⊗ ρL
r0,ϕ0

U(t, t0)†) (
1 ⊗ Eϕ+π/2

)]
= 1 − r0 cos 2(ϕ − ϕ0)

2 , (27)

corresponding (in the case r0 = 1) to the Malus law
sin2(ϕ − ϕ0).

11
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4. Entanglement and isomorphisms
In this section, we develop our previous results fur-
ther by giving an interpretation in terms of quantum
entanglement. Previously, we described the interac-
tion between a polarizer and a light ray as the tensor
product (20), which is analogous to the quantum en-
tanglement of states, since it is a logical consequence
of the construction of tensor products of Hilbert spaces
for describing quantum states of composite system. In
the present case, we are in presence of a remarkable
sequence of vector space isomorphisms due to the fact
that 2 × 2 = 2 + 2 1 :

R2 ⊗ R2 ∼= R2 × R2 ∼= R2 ⊕ R2 ∼= C2 ∼= H , (28)

where H is the field of quaternions. Therefore, the
description of the entanglement in a real Hilbert space
is equivalent to the description of a single system (e.g.,
a spin 1/2) in the complex Hilbert space C2, or in H.
In Section 4.3 we develop such an observation.

4.1. Bell states and quantum
correlations

It is straightforward to transpose into the present set-
ting the 1964 analysis and result presented by Bell in
his discussion about the EPR paper [13] and about the
subsequent Bohm’s approaches based on the assump-
tion of hidden variables [14]. We only need to replace
the Bell spin one-half particles with the horizontal
(i.e., +1) and vertical (i.e., −1) quantum orientations
in the plane as the only possible issues of the observ-
able σϕ (11), supposing that there exists a pointer
device designed for measuring such orientations with
outcomes ±1 only.

In order to define Bell states and their quantum
correlations, let us first write the canonical, orthonor-
mal basis of the tensor product R2

A ⊗ R2
B, the first

factor being for system “A” and the other for system
“B”, as

|0⟩A ⊗ |0⟩B ,
∣∣∣π2〉A

⊗
∣∣∣π2〉B

,

|0⟩A ⊗
∣∣∣π2〉B

,
∣∣∣π2〉A

⊗ |0⟩B .
(29)

The states |0⟩ and
∣∣π

2
〉

pertain to A or B, and are
named “q-bit” or “qubit” in the standard language
of quantum information. Since they are pure states,
they can be associated to a pointer measuring the
horizontal (resp. vertical) direction or polarisation
described by the state |0⟩ (resp.

∣∣π
2
〉
).

There are four Bell pure states in R2
A ⊗R2

B , namely

|Φ±⟩ = 1√
2

(
|0⟩A ⊗ |0⟩B ±

∣∣∣π2〉A
⊗
∣∣∣π2〉B

)
, (30)

|Ψ±⟩ = 1√
2

(
±|0⟩A ⊗

∣∣∣π2〉B
+
∣∣∣π2〉A

⊗ |0⟩B

)
. (31)

1Remind that dim(V ⊗ W ) = dimV dimW while dim(V ×
W ) = dimV + dimW for 2 finite-dimensional vector spaces V
and W

We say that they represent maximally entangled quan-
tum states of two qubits. Consider for instance the
state |Φ+⟩. If the pointer associated to A measures
its qubit in the standard basis, the outcome would
be perfectly random, with either possibility having
a probability 1/2. But if the pointer associated to
B then measures its qubit instead, the outcome, al-
though random for it alone, is the same as the one A
gets. There is quantum correlation.

4.2. Bell inequality and its violation
Let us consider a bipartite system in the state Ψ−.
In such a state, if a measurement of the component
σA

ϕa
:= −→σ A · ûϕa

(ûϕa
is an unit vector with polar

angle ϕa) yields the value +1 (polarization along the
direction ϕa/2), then a measurement of σB

ϕb
when

ϕb = ϕa must yield the value −1 (polarization along
the direction ϕa+π

2 ), and vice-versa. From a classi-
cal perspective, the explanation of such a correlation
needs a predetermination by means of the existence of
hidden parameters λ in some set Λ. Assuming the two
measurements to be separated by a space-like inter-
val, the result εA ∈ {−1, +1} (resp. εB ∈ {−1, +1})
of measuring σA

ϕa
(resp. σB

ϕb
) is then determined by

ϕa and λ only (locality assumption), not by ϕb, i.e.
εA = εA(ϕa, λ) (resp. εB = εB(ϕb, λ)). Given a prob-
ability distribution ρ(λ) on Λ, the classical expecta-
tion value of the product of the two components σA

ϕa

and σB
ϕb

is given by

P(ϕa, ϕb) =
∫

Λ
dλ ρ(λ) εA(ϕa, λ) εB(ϕb, λ) . (32)

Since ∫
Λ

dλ ρ(λ) = 1 and εA,B = ±1 , (33)

we have −1 ≤ P(ϕa, ϕb) ≤ 1. Equivalent predictions
within the quantum setting then imposes the
equality between the classical and quantum expecta-
tion values:

P(ϕa, ϕb) =
〈
Ψ−∣∣σA

ϕa
⊗ σB

ϕb

∣∣Ψ−〉
= −ûϕa

· ûϕb
= − cos(ϕa − ϕb) . (34)

In the above equation, the value −1 is reached at ϕa =
ϕb. This is possible for P(ϕa, ϕa) only if εA(ϕa, λ) =
−εB(ϕa, λ). Hence, we can write P(ϕa, ϕb) as

P(ϕa, ϕb) = −
∫

Λ
dλ ρ(λ) ε(ϕa, λ) ε(ϕb, λ) ,

ε(ϕ, λ) ≡ εA(ϕ, λ) = ±1 . (35)

Let us now introduce a third unit vector ûϕc
. Due

to ε2 = 1, we have

P(ϕa, ϕb) − P(ϕa, ϕc) =
∫

Λ
dλ ρ(λ) ε(ϕa, λ) ε(ϕb, λ)

× [ε(ϕb, λ) ε(ϕc, λ) − 1] . (36)

12
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From this results the (baby) Bell inequality:

|P(ϕa, ϕb) − P(ϕa, ϕc)|

≤
∫

Λ
dλ ρ(λ) [1 − ε(ϕb, λ) ε(ϕc, λ)] = 1 + P(ϕb, ϕc) .

Hence, the validity of the existence of hidden vari-
able(s) for justifying the quantum correlation in
the singlet state Ψ−, and which is encapsulated by
the above equation, has the following consequence on
the arbitrary triple (ϕa, ϕb, ϕc):

1 − cos(ϕb − ϕc) ≥ |cos(ϕb − ϕa) − cos(ϕc − ϕa)| .

Equivalently, in terms of the two independent angles
ζ and η,

ζ = ϕa − ϕb

2 , η = ϕb − ϕc

2 ,

we have ∣∣sin2 ζ − sin2(η + ζ)
∣∣ ≤ sin2 η . (37)

It is easy to find pairs (ζ, η) for which the inequality
(37) does not hold true. For instance with η = ζ ̸= 0,
i.e.,

ϕb = ϕa + ϕc

2 ,

we obtain

|4 sin2 η − 3| ≤ 1 , (38)

which does not hold true for all |η| < π/4, i.e., for
|ϕa − ϕb| = |ϕb − ϕc| < π/2. Actually, we did not
follow here the proof given by Bell, which is a lot
more elaborate. Also, Bell considered unit vectors in
3-space. Restricting his proof to vectors in the plane
does not make any difference, as it is actually the case
in many works devoted to the foundations of quantum
mechanics.

4.3. Entanglement of two angles
Quantum entanglement is usually described by the
complex two-dimensional Hilbert space C2. As a com-
plex vector space, C2, with canonical basis (e1, e2),
has a real structure, i.e., is isomorphic to a real vector
space which makes it isomorphic to R4, itself isomor-
phic to R2 ⊗ R2. A real structure is obtained by
considering the vector expansion

C2 ∈ v = z1e1 + z2e2

= x1e1 + y1 (ie1) + x2e2 + y2 (ie2) , (39)

which is equivalent to writing z1 = x1 + iy1, z2 =
x2 + iy2, and considering the set of vectors

{e1, e2, (ie1) , (ie2)} (40)

as forming a basis of R4. Forgetting about the sub-
scripts A and B in (29), we can map vectors in the
Euclidean plane R2 to the complex “plane” C by

|0⟩ 7→ 1 ,
∣∣∣π2〉 7→ i , (41)

which allows the correspondence between bases as

|0⟩ ⊗ |0⟩ = e1 ,
∣∣∣π2〉⊗

∣∣∣π2〉 = −e2 ,

|0⟩ ⊗
∣∣∣π2〉 = (ie1) ,

∣∣∣π2〉⊗ |0⟩ = (ie2) . (42)

Also, the spin of a particle in a real basis, given by
the “up” and “down” states, are defined by

e1 ≡ | ↑ ⟩ ≡
(

1
0

)
, e2 ≡ | ↓ ⟩ ≡

(
0
1

)
. (43)

Finally, we obtain an unitary map from the Bell
basis to the basis of real structure of C2(

|Φ+⟩ |Φ−⟩ |Ψ+⟩ |Ψ−⟩
)

=

(
e1 e2 (ie1) (ie2)

) 1√
2


1 1 0 0

−1 1 0 0
0 0 1 −1
0 0 1 1

 .

In terms of respective components of vectors in their
respective spaces, we have

x1
x2
y1
y2

 = 1√
2


1 1 0 0

−1 1 0 0
0 0 1 −1
0 0 1 1




x+

x−

y+

y−

 . (44)

In complex notations, with z± = x± + iy±, this is
equivalent to(

z+

z−

)
= 1√

2

(
1 −C
C 1

)(
z1
z2

)
≡ C@

(
z1
z2

)
, (45)

in which we have introduced the conjugation operator
Cz = z̄, i.e., the mirror symmetry with respect to the
real axis, −C being the mirror symmetry with respect
to the imaginary axis.

Let us now see what is the influence of having real
Bell states on Schrödinger cat states. The operator
“cat” C@ can be expressed as

C@ = 1√
2

(1 + F) , F := Cτ2 =
(

0 −C
C 0

)
. (46)

Therefore, with the above choice of isomorphisms,
Bell entanglement in R2 ⊗ R2 is not represented by
a simple linear superposition in C2. It involves also the
two mirror symmetries ±C. The operator F is a kind
of “flip” whereas the “cat” or “beam splitter” operator
C@ builds, using the up and down basic states, the
two elementary Schrödinger cats

F | ↑ ⟩ = | ↓ ⟩ , C@ | ↑ ⟩ = 1√
2

(| ↑ ⟩ + | ↓ ⟩) , (47)

F | ↓ ⟩ = −| ↑ ⟩ , C@ | ↓ ⟩ = 1√
2

(−| ↑ ⟩ + | ↓ ⟩) . (48)

The flip operator also appears in the construction
of the spin one-half coherent states |θ, ϕ⟩, defined in
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terms of spherical coordinates (θ, ϕ) as the quantum
counterpart of the classical state n̂(θ, ϕ) in the sphere
S2 by

|θ, ϕ⟩ =
(

cos θ

2 | ↑ ⟩ + eiϕ sin θ

2 | ↓ ⟩
)

≡(
cos θ

2
eiϕ sin θ

2

)
=
(

cos θ
2 − sin θ

2 e−iϕ

sin θ
2 eiϕ cos θ

2

)(
1
0

)
≡ D

1
2
(
ξ−1

n̂
)

| ↑ ⟩ .

(49)

Here, ξn̂ corresponds, through the homomorphism
SO(3) 7→ SU(2), to the specific rotation Rn̂ mapping
the unit vector pointing to the north pole, k̂ = (0, 0, 1),
to n̂. The operator D

1
2
(
ξ−1

n̂
)

represents the element
ξ−1

n̂ of SU(2) in its complex two-dimensional unitary
irreducible representation. As we can see in matrix
(49), the second column of D

1
2
(
ξ−1

n̂
)

is precisely the
flip of the first one,

D
1
2
(
ξ−1

n̂
)

=
(
|θ, ϕ⟩ F|θ, ϕ⟩

)
. (50)

Actually, we can learn more about the isomorphisms
C2 ∼= H ∼= R+ × SU(2) through the flip and matrix
representations of quaternions. In quaternionic alge-
bra, we have the property ı̂ = ȷ̂k̂ + even permutations,
and a quaternion q is represented by

H ∋ q = q0 + q1ı̂ + q2ȷ̂ + q3k̂

= q0 + q3k̂ + ȷ̂
(

q1k̂ + q2

)
≡
(

q0 + iq3
q2 + iq1

)
≡ Zq ∈ C2 , (51)

after identifying k̂ ≡ i as both are roots of −1. Then
the flip appears naturally in the final identification
H ∼= R+ × SU(2) as

q ≡
(

q0 + iq3 −q2 + iq1
q2 + iq1 q0 − iq3

)
=
(
Zq FZq

)
. (52)

Let us close this article with a final remark on spin-
1/2 coherent states as vectors in R2

A ⊗ R2
B . The “cat

states” in C2 given by (49) and equivalently viewed
as 4-vectors in H ∼ R4 as

|θ, ϕ⟩ 7→


cos θ

2
− sin θ

2 cos ϕ
sin θ

2 sin ϕ
0

 , (53)

are represented as entangled states in R2
A ⊗ R2

B by

|θ, ϕ⟩ = cos θ

2 |0⟩A ⊗ |0⟩B − sin θ

2 cos ϕ
∣∣∣π2〉A

⊗
∣∣∣π2〉B

+ sin θ

2 sin ϕ|0⟩A ⊗
∣∣∣π2〉B

+ 0
∣∣∣π2〉A

⊗ |0⟩B .

Therefore, we can say that two entangled angles in the
plane can be viewed as a point in the upper half-sphere
S2/Z2 in R3 shown in Figure 2.

Figure 2. Each point in the upper half-sphere is in
one-to-one correspondence with two entangled angles
in the plane.

5. Conclusions
Integral quantization is a quantization scheme con-
structed on Positive Operator-Value Measures. When
applied to a two-dimensional real space, it allows for
a description of quantum states as pointers in the
real unit half-plane. We recalled in this paper that in
this case, a family of density matrices is sufficient to
perform this kind of quantization as it describes all
the mixed states in this space. Furthermore, a density
matrix in a two-dimensional real space depends on

the usual observable σϕ =
(

cos ϕ sin ϕ
sin ϕ − cos ϕ

)
, which

captures the essence of non-commutativity in real
space. As a consequence, commutation relations are
expressed in terms of the real matrix τ2, which serves
as the basis to the description of quantum measure-
ment.

We provide an illustration considering linearly-
polarized light passing through a polarizer. The
pointer, associated with τ2, can rotate by an angle
(1±r)/2 with r the degree of mixing of the density ma-
trix, with a probability given by the usual Malus’ laws
(26) and (27). We extended the analysis by showing
that the interaction between a polarizer and a light
ray is equivalent to the quantum entanglement of two
Hilbert spaces. Orientations in the plane have only
two outcomes (±1), which are the possible issues of
σϕ. We showed that for a general bipartite system,
the classical and quantum measurement of σϕ deny
the existence of local hidden variables, resulting in the
well-known violation of Bell inequalities, here given by
(37). Finally, we demonstrated that the isomorphism
C2 ≃ R4 allows to write Bell states in real space,
with the introduction of the “flip” operator (46). This
operator is necessary for constructing spin one-half
coherent states, that we can fully describe by a set of
orientations in R3, as shown in (53).
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