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Abstract. Stone masonry bridges are difficult to analyse with commercial finite element (FE)
packages for their specific heterogeneous composition. The stone arch is best modelled as a thick shell
where there are predestined directions of tension failure, normal to the bed joints. A dedicated, very
simple, Mindlin shell finite element is developed with five translational degrees of freedom per node.
It features compatibility with linear isoparametric or constant strain elements for the backfill. Most
bridges can be analysed with a sufficient accuracy assuming plain strain conditions. The element then
simplifies to a Timoshenko beam element with three translational degrees of freedom per node. An
application of the latter one to the bridge at Poniklá is presented.
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1. Introduction
Masonry arch bridges still constitute a considerable
part of the bridge stock of the transport infrastructure
in Czechia. Many of them are valueable monuments
of the technical expertise and craftsmenship of the
past generations as well. Design standards for this
sort of bridges do not exist worlwide, guides and
manuals for load rating are provided instead, like [1]
or [2]. They usually contain conservative approximate
methods for a routine assessment and some guidance
and recommendations for more complicated individual
assessments based on advanced structural analysis
methods.

A structural analysis of masonry arch bridges is
specific in that the ultimate limit state forces and
stresses cannot be solved for assuming homogeneous
isotropic linear elastic material. In contrast to that,
design standards for reinforced concrete and steel
structures admit such solutions. EN 1996-1-1 codifies
in clause 6.1.1(2) that plane sections remain plane and
the tensile strength of masonry perpendicular to bed
joints is zero in the ultimate limit state. The standard
is not compulsory for bridges but its conditions should
be perceived as the minimum for them. Cracks in
the bed joints of the masonry arches affect the stress
distribution in a way that does not admit a linear
solution.

The simplest material model that can be accepted
is the no-tension linear material where the no-tension
condition applies to the normal stress in the planes
parallel to the bed joints. This specific behaviour
is difficult to simulate by material models available
in general purpose program packages, [3]. Commer-
cial packages do not include such material models.
There were attempts to achieve the specific proper-
ties of the masonry arches with a trivial model of
a heterogeneous material – individual meshing of vous-
soirs and joints by standard continuum finite elements

with homogeneous material models. It is possible in
academic works but not acceptable in design prac-
tice for demands on the labour, software and input
data on materials properties. This experience testi-
fies that shell/beam elements using the rigid normals
assumption (Timoshenko, Mindlin, Bernoulli-Navier
and other assumptions) are indispensable for the solu-
tion of the masonry arch bridges.

Several dedicated codes have been written around
1990 for the analysis of masonry arches based on the
Castigliano principle, CTAP [4], [5], rigid block as-
sumption RING , [6], mechanism based ARCHIE, [7]
and others. All of them assume plane strain condi-
tions. These models simulate very well the observed
behaviour of masonry arches in situ and in large scale
model tests. They have been applied worldwide in
practice despite their common drawback that they
underestimate the interaction of the barrel, backfill
and pavement.

Two simple finite elements for thick shells are de-
veloped based on the Timoshenko/Mindlin kinematic
assumptions, one for plane stress/plane strain condi-
tions, the other for 3D shells. In order to facilitate
a seamless interaction with the backfill continuum,
only translational degrees of freedom (DOFs) are em-
ployed. The no-tension linear elastic constitutive equa-
tions are integrated in a closed form for the normal
stress in planes parallel to the bed joints. The shape
functions of the elements are 2D and 3D variants of
the same concept. The simpler 2D variant is presented
first with an application to a bridge, a triangle thick
shell element follows.

2. The TT element, Timoshenko
beam with translational DOFs

The displacement shape functions are sketched in Fig-
ure 1 for the axial displacement ui,t of node i, for the
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Figure 1. Shape functions, DOFs and conjugate
nodal forces of the TT element

lateral displacement vj of node j and for the axial
displacement ui,b. Axial and lateral directions denote
the element local x and y directions, indices t and b
denote the top and bottom faces later also extrados
and intrados of the arch. The local x axis goes from
node i to node j. The deflection line is parabolic and
symmetric. It’s single free parameter is determined
so that the shear strain energy is minimum for any
imposed node displacements. Analogous shape func-
tions are valid for all four axial DOFs ui/j,t/b and the
same applies to the two lateral DOFs vi/j .

The cross-sections remain straight but not normal
to the deflected beam axis. In an isoparametric beam
element (linear variation of the cross-section rotations
and shear deformation, axial strain and lateral de-
flections along the beam axis), there would be no
deflections for the ui/j,t DOFs. The element is known
to lock for small depths of the beam owing to excessive
work of the shear deformation. The present element
features a constant shear deformation since the anti-
symmetric (with respect to the element centre) part
of the cross-section rotations is assigned to a constant
curvature of the deflection line. The element DOFs
are ordered in the {u} matrix,

{u} =
{

{u}i

{u}j

}
, {u}n =

 un,t

vn

un,b

 , n = i, j

Linear normal and constant shear element strains
are specified by top and bottom face normal strains
εt, εb and shear strain γ, ordered in the matrix of
internal strains ε = {εt, εb, γ}T . Shear strain γ and
conjugate shear stress τ have opposite signs than usual
in elasticity, γ = −(∂ux/∂y+∂uy/∂x)/2. The element
geometric matrix [B] reads:

[B] = 1
l

[ −1 0 0 1 0 0
0 0 −1 0 0 1

l/2/d −1 −l/2/d l/2/d 1 −l/2/d

]

Conjugate to node displacements {u} are the nodal
forces {X}, conjugate to {ε} is the matrix of inter-
nal forces {S}. The nodal forces in terms of nodal
displacements read

{X} = [B]T {S}({ε}) = [B]T {S}([B]{u}) (1)

Constitutive equations for the cross-section are devel-
oped separately for the bending, the first two members
of {ε} and {S}int.
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Figure 2. Stress/strain diagram, strain shape func-
tions and normal stress diagrams of the TT element

2.1. Constitutive equations for bending
No-tension linear elastic material is assumed, see the
stress-strain diagram in Figure 2. The no-tension
condition is applied to the normal stress in cross-
sections and bed joints of the arch. Though simple, it
makes possible the most frequent type of failure of the
stone masonry arch bridges. The normal strain ε is
determined by the top and bottom face strains εt, εb

through the shape functions shown in the centre of
Figure 2.

ε = zt(ζ)εt + zb(ζ)εb

Constitutive equations of the cross-sections are de-
fined in terms of dimensionless functions st() and sb()
of dimensionless arguments:

st(εt, εb) =
∫ 1

0
zt(ζ)s(εtzt(ζ) + εb,xzb(ζ))dζ

sb(εt, εb) =
∫ 1

0
zb(ζ)s(εtzt(ζ) + εbzb(ζ))dζ, (2)

The cross-section forces are St/b = Ebdst/b = EAst/b

(valid for both t and b subscripts, where E is the
Young modulus, b the cross-section width, d the cross-
section depth and A its area. Functions st/b() and
their derivatives with respect to εt, εb have to be
developed separately for four possible strain states:
Algorithm start
When εt > 0 and εb > 0 then all internal forces
are 0, the cross-section is totally disintegrated. All
stresses and internal forces vanish in the element.
When εt > 0 and εb < 0,
then (see the left strain diagram in Figure 2):

ξ = εb

εb − εt

st = εbξ
2/6, sb = (0.5 − ξ/6)ξεb

∂st

∂εt
= ξ3/3, ∂st

∂εb
=

(
1 − 2ξ εt

εb

)
ξ2

6

∂sb

∂εt
= (0.5−ξ/3)ξ2,

∂sb

∂εb
= (0.5− ξ

6)ξ−(0.5− ξ

3)ξ2 εt

εb

When εt < 0 and εb > 0,
then (see the right strain diagram in Figure 2):

ξ = εt

εt − εb
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Figure 3. Element internal forces {S} and nodal
forces {X}

st = (0.5 − ξ

6)ξεt, sb = εtξ
2/6

∂st

∂εt
= (0.5− ξ

6)ξ−(0.5− ξ

3)ξ2 εb

εt
,
∂st

∂εb
= (0.5−ξ/3)ξ2

∂sb

∂εt
=

(
1 − 2ξ εb

εt

)
ξ2

6 ,
∂sb

∂εb
= ξ3/3

When εt < 0 and εb < 0,
then the cross-section is linear elastic and dimension-
less generalised forces are

st/b = (2εt/b + εb/t)/6

The cross-section stiffness matrix:

∂{sbend}
∂{εbend}

= 1
6

[
2 1
1 2

]
(3)

Algorithm end
The bending stiffness tangent matrix of the cross-
section is denoted for a later reference

[Dbend] = ∂{sbend}
∂{εbend}

= Ebd

[
∂st

∂εt

∂st

∂εb
∂sb

∂εt

∂sb

∂εb

]
(4)

2.2. Full cross-section stiffness matrix
The shear force V is computed from the shear defor-
mation γ in the Timoshenko beam. Linear elastic
behaviour

V = Gebdγ

is assumed in the model, independent on the normal
stress in the cross-sections. This assumption is mostly
sufficient for cross-sections of the stone masonry arch
bridges. The full cross-section stiffness matrix is then

[Dcs] =
[

[Dbend] {0}
{0}T Gebd

]
The matrix has to be adapted when more involved
cross-section constitutive equations are necessary, for
instance, shear failure of bed joints. The nodal forces
{X} = {Xi,t, Yi, Xi,b, Xj,t, Yj , Xj,b}T of the element
can be obtained in terms of the internal forces {S}
either by expansion of [B]T {S} or by the equilib-
rium conditions of the element in Figure 3: The di-
mensionless cross-section stiffness matrix for bending
[Dbend] = ∂{Sbend/∂{εbend} is not symmetric when
the neutral axis lies inside the cross-section so that the
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Figure 4. Equilibrium of node i

element and structure matrices will not be symmetric,
too. The element stiffness matrix is

[K]straight = Ebdl[B]T [Dcs][B]

It is ready for application in straight beams, but for
arches and other curved beams, it must be modified.

2.3. Arch nodes equilibrium
The equilibrium of the nodal forces X⃗ibe = Xibex⃗e,
X⃗ibf = Xibf x⃗f of the adjacent elements e and f at
arch node i simplifies to Xibe + Xibf = 0 when the
element’s unit length direction vectors x⃗l,e and x⃗l,f

coincide, see the Figure 4. The node index i is omitted
for brevity as long as the the development concerns
just a single node i. Xbe and Xbf are the magnitudes
of the respective forces with positive senses in ele-
ment’s direction vectors. These forces are stored in
the third components of the element nodal forces ma-
trices and in case of parallel elements, the equilibrium
equation at a node is {X}e + {X}f = {0}, where
indices e and f indicate the left and right element,
respectively.

When the adjacent elements are not parallel, the
resultants of the two forces add up to force R⃗. The
force is decomposed into component R in the direction
r and force T in the t direction. The component R
can act anywhere on ray r since the arch is considered
rigid in the transverse direction. It is thus added
to forces acting at node i. Component T must vanish
to keep the null moment with respect to joint i.

T = (Xbex⃗e +Xbf x⃗f )·⃗t =

= (Xbex⃗e +Xbf x⃗f )·(x⃗e + x⃗f )/|x⃗e + x⃗f | = 0,

which implies
Xbe +Xbf = 0,

provided the two elements are not normal to each
other. Force R is

R = (Xbex⃗e −Xbf x⃗f )·r⃗
= (Xbex⃗e −Xbf x⃗f )·(x⃗e − x⃗f )/|x⃗e − x⃗f |

= (Xbe −Xbf )
√

(1 − x⃗e·x⃗f )/2

and its vector

R⃗ = Rr⃗ = 0.5(Xbe −Xbf )(x⃗e − x⃗f )
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The ray r of the force must connect points i and
Bi, the intersection of the X⃗be and X⃗bf forces rays,
otherwise node i would not be in equilibrium. Ray r
is approximately radial to the arch. Vector

g⃗ = 0.5(x⃗e − x⃗f ) (5)

is an important property of node i. The matrix ex-
pression for vector R⃗ is in terms of g⃗

R⃗ = {g⃗,−g⃗}
{
Xbe

Xbf

}
Recall that Xbe denotes the third element of the nodal
forces matrix of element e at node i and the analogue
holds for Xbf . Conjugate displacements to Xbe and
Xbf are ube and ubf , conjugate to R⃗ is the displace-
ment vector u⃗ of node i. The principle of virtual work
thus implies {

ube

ubf

}
=

{
g⃗

−g⃗

}
·u⃗

The same result can be obtained when the part of u⃗
in r⃗ direction, (u⃗·r⃗)r⃗, is projected on the x⃗e direction
to obtain ube:

ube = (u⃗·r⃗)r⃗·x⃗e = g⃗·u⃗.

Projection on x⃗e yields the same expression but for
a negative sign at g⃗.

Expression for εb becomes

εb =(ub,j + g⃗j ·u⃗j − ub,i + g⃗i·u⃗i)/li,j

=(ub,j + {gj}T

{
ut,j

vj

}
− ub,i

+ {gi}T

{
ut,i

vi

}
)/li,j (6)

where indices i and j denote the nodes of the element
with the element local x axis from i to j. In the wake
of it, the geometric matrix is modified to

[B] = 1
l

 −1 0 0 1 0 0
gi,x gi,y −1 gj,x gj,y 1
λ −1 −λ λ 1 −λ

 (7)

with λ = l/d/2 and subscripts x and y indicating
components of the vectors g⃗ in the global coordinate
system.

Different element lengths have to be used in the geo-
metric Equation 7 and the volume integration implicit
in 8. The top face nodes distance l is used in the for-
mer case, the reduced length lred = lRax/Rt = lrratio

is used in the latter case. Rax denotes the radius
of the arch central axis, Rt is the radius of the top
face curve. The element stiffness matrix for an arch
element is

[K]e = Ebdlred[B]T [Dcs][B] (8)
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Figure 5. Bridge at Ponikla, compression stresses
[kPa] and depths of the cracks in the bed joints

3. Application to an arch bridge
Exclusive translational DOFs facilitate the combina-
tion of the TT element with simple 2D continuum
elements. A dedicated matlab/octave code has been
written to utilize this combination for the analysis
of masonry arch bridges. The code features the sim-
plest possible way how the interaction of the masonry
arch, backfill and pavement can be assessed parallel
with the principal pattern of failure of the masonry
arch. The arch and pavement are modelled by the TT
elements, the backfill by the classic constant strain
triangle (CST) elements. Meshing of the backfill pro-
vides the Persson and Strang mesh generator, [8]. The
no-tension cross-section model defined in Section 2.1
supports the cracking of the arch bed joints, which
is the dominant pattern of the masonry arch bridge
failure. The code includes a simple, purely vector
graphics output. It consists of 1150 octave command
lines, not including the mesh generator.

An application to the sandstone arch bridge at
Ponikla in north Bohemia illustrates the code output
in Figure 5. The span of the arch is 11.4 m. Two prin-
cipal quantities are shown in each arch element, the
maximum compression normal stress value inserted
at the arch face where it occurs and the depth of the
cracks in the bed joint. The load case is the design
dead load combined with the tandem axle live loads
with twice the design intensity level, i.e., 360 kN per
wheel in lane 1 according to EN 1991-2.

The TT element and the masonry arch FEM models
based on it claim to be the simplest models available
to assess the most frequent failure mode of the stone
masonry arches and the interaction of the arch with
backfill and pavement.

4. 3D Mindlin shell element TM
The 2D models are often not adequate for the solution
of masonry arches whose widths are mostly compa-
rable to spans which makes the transverse variation
of stresses and displacements nonuniform. A 3D ana-
logue to the 2D TT element is, therefore, derived. The
Mindlin assumptions, [9], and the simplest triangular
facet shape are adopted, see Figure 6. The element
local coordinate system features z axis normal to the
facet plane. There is always a preference direction in
the facet plane, the direction closest to the normals
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Figure 6. Geometry of the shell facet triangle ele-
ment, the element local coordinate system and the
DOFs at node i

to the bed joints planes of the masonry arch. It is
assumed forthwith that the arch is a cylindric segment
shell and the bed joints normals are tangents to the
directrix of the cylinder so that their directions lie in
a single plane. The global x axis is assumed to lie
in that plane, too. In terms of the bridge nomencla-
ture, the global x axis is in the direction of the arch
span. The element local x axis is chosen as the direc-
tion closest to the global x within the element plane.
The no-tension condition is applied to the σx (local x)
normal stress component . Other options are possible
and can be rather easily implemented in the code.
It may be necessary in case of other than cylindric
shells or more general failure modes and constitutive
equations. Local y axis completes the element local
right-handed cartesian coordinate system. All compo-
nents are in this system up to Section 4.4, where two
other systems are necessary.

Five translational DOFs per node are shown in
Figure 6 for node i. They are ordered in matrix {u}
at each node, with node index omitted:

{u}T = {ut,x, ut,y, w, ub,x, ub,y}

Deflection w and in-plane displacement vector u⃗
are approximated by linear independent functions of
natural triangular coordinates ξi.

w =
∑

i

wiξi, u⃗ =
∑

i

u⃗iξi

In literature, a common term for this kind of approxi-
mation is isoparametric element, not to be confused
with true isoparametric elements for 2D and 3D con-
tinua. Derivatives of ξi are constants in the element
area,

∂ξi

∂x
= bi

2A,
∂ξi

∂y
= ai

2A or ∂ξi

∂x⃗
= −n⃗i

li
2A,

where A is the element area (note that li/2A is the
slope of the ξi surface upon the element area) and

n⃗i = − 1
li

{
bi

ai

}
.
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Figure 7. Triangular coordinates and shear deforma-
tion owing to deflection alone

Chain differentiation yields then

γw,x = − 1
2A

∑
i

wiai, γw,y = 1
2A

∑
i

wibi (9)

The shear deformation γ⃗w owing to deflection alone is

γw,x = −∂w

∂y
, γw,y = ∂w

∂x
, (10)

note that positive sense is indicated in the figure for
each of the four rotations and γ⃗ is the rotation of the
normal to the element plane embedded in the material
before deformation towards the normal to the element
plane after deformation with standard sign convention
of its components. In particular, the motion (rotation)
shown in the section view right to left in Figure 7 goes
from the inclined dashed line to the horizontal and γx

is thus negative.
As in the TT element, the bending and shear defor-

mation, are treated separately.

4.1. Bending and in-plane deformation
Pseudocurvatures define the bending deformation.
They are the derivatives of rotations of the normals
to the element plane. The rotations of the normals in
their turn depend on the in-plane displacements u⃗ of
the top and bottom faces of the element.

The element in-plane strains are specified in terms
of the top and bottom faces (extrados and intrados)
strain matrices {εt} and {εb} in analogy to the top and
bottom uniaxial strains εt and εb in the Timoshenko
2D beam element. The element triangle geometry
is defined in terms of distances ai = xk − xj , bi =
yj − yk, where indices i, j, k are subjected to cyclic
permutation and xi, yi specify node’s i positions in the
local system, see Figure 7. The geometric equations
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of the CST triangle applied to the top face read

{εt} =

 εt,x

εt,y

2εt/b,xy


= 1

2A
∑

i

 bi 0
0 ai

ai bi

 {
ui,t,x

ui,t,y

}
, (11)

substitute b for t subscript to get the bottom face strain
matrix. The in-plane strains vary linearly across the
element depth d,

{ε} = zt{εt} + zb{εb} (12)

where zt = (d + z)/d = 1 + ζ and zb = −z/d = −ζ
are linear shape functions of the element in terms
of the element local 0 > z > −d coordinate with
z = 0 at the top face of the element or of the relative
dimensionless 0 > ζ > −1 coordinate.

Plain stress conditions with σzz = 0 are assumed in
the shell, then, the material stiffness matrix is

[D] = E

1 − ν2

 1 ν 0
1 0

1−ν
2

 (13)

for a linear elastic isotropic material. When cracked
bed joints occur in planes normal to element’s x axis,
the conditions become vague. Adjacent to the cracked
joints an approximately uniaxial stress prevails. It
is thus assumed forthwith that the material stiffness
matrix in the cracked elements is

[D({ε})] = E

 s(εx) 0 0
1 0

1−ν
2

 (14)

where s() is the normalized bilinear stress/strain dia-
gram in the left sketch of Figure 2. It is obvious that
the element local x axis must approximately coincide
with the normals to the bed joints of the arch barrel.

The virtual work equation for cracked elements

δw =
∑

i

(δ{ui,t}T {gi,t} + δ{ui,b}T {gi,b})

=
∫

V

δ{ε}T [D({ε})]{ε}dV

= E

∫
V

(δεxs(εx) + δεyεy + (1 − ν)δεxyεxydV (15)

delivers the expressions for the nodal forces
{gi,t}, {gi,b} when strains are expanded in terms of
the virtual nodal displacements using Equation 11.

Functions st(εt,x, εb,x) and sb(), see 2 in Section 2.1,
return dimensionles top and bottom cross-section
forces conjugate to top and bottom strains (input
parameters) of a unit depth cross-section with E = 1
and no-tension stress-strain diagram. With the aid
of the functions, the integrals in the virtual work

expression can be expressed in a closed form:

δw = Ed

2 (δεt,xst + δεb,xsb + δεt,y(εt,y/3 + εb,y/6)

+ δεb,y(εt,y/6 + εb,y/3) + (δεt,xy(εt,xy/3 + εb,xy/6)
+ δεb,xy(εt,xy/6 + εb,xy/3))(1 − ν)) (16)

Substitution by 11 and selection of individual nonzero
virtual nodal displacements yields the expressions for
the element nodal forces:

gi,t,x = Ed
2 (bist + ai(εt,xy/3 + εb,xy/6)(1 − ν))

gi,t,y = Ed
2 (ai(εt,y/3 + εb,y/6)+

bi(εt,xy/3 + εb,xy/6)(1 − ν))
gi,b,x = Ed

2 (bisb + ai(εt,xy/6 + εb,xy/3)(1 − ν))
gi,b,y = Ed

2 (ai(εt,y/6 + εb,y/3)+
bi(εt,xy/6 + εb,xy/3)(1 − ν))

(17)
Derivatives of the nodal forces gi,t/b,x/y with respect to
the DOFs can be written in terms of the st/b functions,
for instance

∂gi,t,x

∂uj,t,x
=∂gi,t,x

∂εt,x

∂εt,x

∂uj,t,x
+ ∂gi,t,x

∂εt,xy

∂εt,xy

∂uj,t,x

=Ed

4A (bibj
∂st

∂εt,x
+ aiaj

1 − ν

2
1
3)

Functions st, sb depend on x components of εt, εb

only. The subscript x can thus be omitted in their
derivatives. Formulas for the derivatives are in Sec-
tion 2.1. When µ = 1−ν

2 is introduced and common
factor Ed

4A is omitted for brevity, submatrices [Kbend,i,j ]
of the element stiffness matrix associated with the in-
plane DOFs

{uplane}T = {ui,t,x, ui,t,y, ui,b,x, ui,b,y}

are:

i, i :
[
bibj

∂st

∂εt
+ aiajµ/3 aibjµ/3

ajbiµ/3 bibjµ/3 + aiaj/3

]

i, j :
[
bibj

∂st

∂εb
+ aiajµ/6 aibjµ/6

ajbiµ/6 bibjµ/6 + aiaj/6

]

j, i :
[
bibj

∂sb

∂εb
+ aiajµ/6 aibjµ/6

ajbiµ/6 bibj/6µ+ aiaj/6

]

j, j :
[
bibj

∂sb

∂εb
+ aiajµ/3 aibjµ/3

ajbiµ/3 bibjµ/3 + aiaj/3

]
(18)

For a linear element (uncracked bed joints) [Ki,j ]T =
[Kj,i], which implies symmetry of the whole matrix
[K]. For cracked bed joints ht,b ̸= hb,t, the symmetry
is lost.
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4.2. Shear owing to the rotations of
normals

The rotation of normals φ⃗ induces shear deformation,
too. It would not induce any deflection in a consis-
tent isoparametric element and then φ⃗ would simply
be added to γ⃗ to obtain the total shear deformation.
Such displacement pattern is known to imply locking
in thin elements, like it does in the isoparametric vari-
ant of the TT element. In the TM element, φ⃗ induces
a quadratic field of deflection wφ, which must have
zero values at all joints. The deflection should be
compatible with the neighbouring elements along the
boundaries. The antisymmetric part of the normal
component of φ⃗ along an element’s side is assigned to
deflection, the symmetric part to shear deformation,
in analogue, to the TT element. Perfect compatibility
of deflections along boundaries with neighbouring ele-
ments is attained for elements lying in a plane. The
implementation of the outlined displacement pattern
is rather lengthy and it is skipped here. The resulting
constant transverse shear owing to normals rotation
is

γu =
∑

i

[ψi]({ui,t} − {ui,b})

[ψi] =
([

0 −1/3
1/3 0

]
− 1

12A

[
a2

k − a2
j bjaj − bkak

−bkak + bjaj b2
j − b2

k

])
1
d

(19)

The full transverse shear of the TM element is then

{γ} =
∑

i

(
[ψi],

1
2A

[
−ai

bi

]
,−[ψi]

)
{u}i (20)

where indices i, j, k are subject to cyclic replacement.
Formula 20 is necessary with thin shells where shear
locking can occur. Masonry arches and other burried
shells are mostly thick shells. Matrices [ψi] can be
simplified by omitting the second summand in such
applications. Experience with tests and applications
testifies that keeping the second summand improves
the element convergence.

4.3. TM flat slab element
Simple linear constitutive equations are assumed for
the transverse shear,

Vx = Gγx, Vy = Gγy. (21)

Vx is the standard shear force in element local y − z
plane when looking along x axis and Vy is the standard
shear force in element local x− z plane when looking
along y axis.

The contribution of the shear stiffness to the element
stiffness matrix is written down in terms of the 5x5
submatrices associated with the two top vertex, one
transverse and two bottom vertices translational DOFs
of each node. Column matrices [φi] = [−ai, bi]T /2A

and 2x2 symmetric matrices ψij = [ψi]T [ψj ] help to
write down the shear contribution to the submatrices:

[Kshear,i,j ] =

GAd2

 [ψij ] [ψi]T [φj ] −[ψij ]
[φi]T [ψj ] [φi]T [φj ] −[φi]T [ψj ]
−[ψij ] −[ψT

i [φj ] [ψij ]

 (22)

Complete 5×5 stiffness submatrices are the sums of
the bending stiffness submatrices 18 extended by an
empty third column and row inserted between the
2×2 subsubmatrices and submatrices 22:

[Ki,j ] = [Kbend,i,j ]extended + [Kshear,i,j ] (23)

The whole element stiffness matrix is the size 15×15
composition of submatrices [Ki,j ], but the submatrices
are assembled in the global stiffness matrix so that
the whole matrix is never set up.

Cracking in the bed joints followed by development
of virtual hinges in the arch have been considered
the dominant failure pattern of masonry bridges since
the early attempts [10], [11] to assess the load capacity.
Other failure modes like shear sliding of the bed joints
or transverse tension cracking of the arch require so-
phisticated material models and properties which are
almost impossible to obtain in the design practice.

This stiffness matrix can be used for the solution of
flat slabs loaded both in and out of plane but in shells,
the bottom face DOFs ub,x, ub,y require a special
treatment since they are not simply shared by the
elements attached to a node.

4.4. TM shell element
The DOFs at the bottom vertices of the elements
connecting to a node do not lie in the same plane
and are not independent of the DOFs at the top
vertices. The equilibrium of the nodal forces at the
top vertices is affected by the nodal forces at the
bottom vertices. These two conjugate deficiencies
must be removed.

The normal to the shell surface is needed for a con-
sistent formulation of the TM element. The normal
is rigid in the frame of the Timoshenko-Mindlin shell
theory, which implies that the displacements of all
points of the normal share the same lateral displace-
ment component. The exact definition of the normal
direction n⃗ would be through the shell surface mathe-
matical definition. For practical applications of the
TM element, it is sufficient to define the unit normal
n⃗i at a node i as the normalized sum of the normals
of all elements connecting to the node, each element
normal length proportional to the sine of the angle of
the two adjacent sides of the respective element. Posi-
tion vectors of nodes are denoted x⃗i and nodes of the
connecting elements i, j, k, ordered counterclockwise
when viewed from the top side of the shell. The sum
is

n⃗s,i =
∑

e

n⃗e sin(αe) =
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e

(x⃗j − x⃗i) × (x⃗k − x⃗i)/(|(x⃗j − x⃗i)||(x⃗k − x⃗i)|)e

n⃗i = n⃗s,i/|n⃗s,i|

Vector n⃗i’s positive direction is outwards from top
surface of the shell. The vector also defines the tan-
gential plane τi at node i, τi ⊥ n⃗i. The top vertices
of the connecting elements share the displacement
r⃗t,i of the top end of the rigid normal. The global
components of vector r⃗t,i constitute the first three
DOFs of the node i. The index of the node is omitted
forthwith since a single node is considered.

The compatibility of displacements at the bottom
facets of the connecting elements demands that the
projections on the τ plane of the bottom vertices
displacements of all connecting elements share the
same displacement vector r⃗b,τ ⊂ τ . A coordinate
system is established in the τ plane such that axis 1
direction vector n⃗1 lies in the intersection of the global
coordinates plane x−z and the τ plane, oriented as the
global x axis. Axis 2 direction vector is n⃗2 = n⃗× n⃗1
(vector product). The component expansion of vector
r⃗b,τ is defined this way. The two components in the τ
plane define the two complementary DOFs of the node.
Note that they are not the displacement components
in the global coordinate system x− y − z but in the
local ‘tangential’ plane instead.

The transformation matrix from global to these
tangential vector components is

[T ]τ =

 {n1}T

{n2}T

{n}T

 (24)

The whole bottom vertices displacement vector is

r⃗b = r⃗b,τ + n⃗(n⃗·r⃗t) = r⃗b,τ + n⃗⊗ n⃗r⃗t,

but just the two components of r⃗b,τ ⊂ τ constitute the
two complementary DOFs of the node. The out-of-τ -
plane component depends on the basic three DOFs r⃗t

of the node. Several coordinate systems (all cartesian)
are employed. The global one, common for all, the τ
system, common for a node and the local e systems
of individual elements. The convention is adopted for
component matrices that the matrix with components
in the global system has no subscript τ , in the τ system,
and subscripts e in the element systems. Furthermore,
the transformation matrix [T ]e from the global to the
element system has subscript e. The matrix form of
the expression for the element DOFs is{

{rt}e

{rb}e

}
=

[
[T ]e 0

[T ]e{n}{n}T [T ]e[T ]Tτ

] {
{rt}

{rb}τ

}
(25)

Recall that both the displacement component matrices
{rb}e and {rb}τ have zero third components so that
the third column and row of the transformation matrix
in 25 can be omitted.

The nodal forces conjugate to {rt}e and {rb}e are
denoted {gt}e and {gb}e. Rigid normals to the shell
surface imply that the equilibrium equations of the

top and bottom joints of a node are not independent.
Just a single equilibrium equation can be written in
the direction n⃗ and it is assigned to the top end of
the rigid normal – the top joint of the node. The two
remaining equations at the bottom joint of the node
include components acting in the τ plane. Component
decompositions of the element nodal forces in the
coordinate axes tripod n⃗1, n⃗2, n⃗ – the node local τ
system, are added in the matrix equilibrium equation
of the bottom joint of the node:

∑
e

{gb}τ,e =
∑

e

[T ]τ [T ]Te {gb}e =

 0
0

{n}{n}T {gb}e


The sum includes all elements connecting at the node.
The third (tranverse) components are added to forces
acting at the top vertex of the node to obtain the final
nodal forces of the element:{

{gt}
{gb}τ

}
=

∑
e

[
[T ]Te {n}{n}T [T ]Te

0 [T ]τ [T ]Te

] {
{gt}e

{gb}e

}
(26)

The transformation matrices of the nodal displace-
ments and forces are transpose of each other, which
testifies to their correctness.

Note that the last scalar equations in 25 and 26
can be omitted and so can be the last columns of the
tranformation matrices. The transformation matrices
are then 5×5 in size. They are specific for each node
of an element since the {n} and [T ]τ matrices are
different at each node. For an easy reference, they
are denoted [Ti] for node i forthwith. The submatrices
[Ki,j ] are transformed to the global coordinate system

[Ki,j ]g = [Ti]T [Ki,j ][Tj ] (27)

and assembled in the system matrix.

4.5. TM element code and test
The TM element has been implemented in a dedi-
cated Matlab/Octave code including a simple graphic
output. Just the shell reference surface is drawn to
keep the view readable. The maximum compression
stresses in the bed joints and the relative depth of
the cracks are inserted in each element. These values
are sufficient to decide on the arch load capacity in
the context of the present model. The graphic output
uses vector graphics so that pictures can be zoomed
in with a stable resolution. The mesh generator [8]
is used for the shell surface meshing. The code is
entirely self-contained, no input data file and pre- or
postprocessing is necessary. It contains just about
660 octave command lines, not including the mesh
generator.

The pinched cylinder with rigid end diaphragms
in Figure 8 is a popular benchmark to test shell ele-
ments. The shell is thin, d/R = 0.01 so that the test
is a severe one for a thick shell element. The bench-
mark solution by double Fourier series with 80 terms
in both directions was first presented in [12] based on
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Figure 9. Convergence of the FEM deflections, ratio
to the benchmark deflection

the work [13]. The Kirchhoff-Love kinematic assump-
tions are used in the benchmark so that a definite
deflection is obtained. Differences can be expected
between the present and benchmark solutions in the
vicinity of the pin force, in particular for fine meshes.
The Mindlin assumptions imply infinite deflection be-
neath the force in the continuum model, thus making
the discretized models mesh dependent and inherently
non-convergent. Owing to the three symmetry planes
just shaded, 1/8 of the cylinder can be considered.
Four mesh densities were considered with 8, 16, 32
and 48 elements along the directrix. The ratio of
the loaded node deflection of the TM finite element
solutions to the benchmark deflection 1.825 · 10−5 is
shown in Figure 9. In spite of the correction of the
transverse shear strain in Equation 20, the residual
shear locking still persisted and affected the results in
this thin shell, in particular, for low densiiy meshes. In
order to reduce it further, the material shear stiffness
in the transverse direction (element local x − z and
y− z planes) was selectively lowered eight times. This
has a negligible effect on the overall response of the
FEM model since the contribution of the transverse
shear compliance to it is small. At the denser mesh
side of the Figure 9, the curve already tends to adopt
to the infinite deflection of the continuum Mindlin
shell and break the Kirchhoff-Love benchmark limit.
The deformed mesh is shown in Figure 10. The ra-
dial component of the deflection along the directrix
from the benchmark solution [12] in Figure 11 com-
pares well to the deformed mesh in Figure 10, note
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Figure 10. Deformed mesh, 48 elements along the
directrix

Figure 11. Radial component of deflection along the
directrix, benchmark by the solid line, [12]

the shalow inward deflection in the lower part of the
front directrix. The precision and convergence of
the deflection beneath the pin force is, as expected,
worse than for elements based on the Kirchhoff-Love
assumptions.

A solution of the Ponikla bridge arch loaded by
characteristic arch selfweight and standard LM1 tan-
dem axle with wheel forces of 250 kN is provided for
the illustration of the code output in Figure 12. Dis-
placements are 2000 times scaled up. In comparison
to the 2D solution of the same bridge arch in Section 3,
the interaction and selfweight of the fill and pavement
are not accounted for, the tandem axle load and mesh
density are slightly different, too. The tandem axle
position in the transverse direction is the extreme
eccentric one within the bounds defined by the EN
1991-2. The differences between the loaded/unloaded
sides of the arch barrel are 1261/405 kPa in extreme
normal stresses in the bed joints and 0.41/0.25 in
relative crack depths. The backfill and pavement stiff-
ness and selfweight reduce the differences in the real
bridge, but the example testifies that the 2D models
need corrections. The 3D bridge model analogue to
the one in Section 3 is currently being worked on.

The absence of rotational DOFs improves the con-
vergence of the iterations. The no-tension, history
independent material model admits a single load in-
crement strategy. In the illustration example, the
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Figure 12. Bridge at Ponikla, 3D shell, compression
stresses [kPa] and relative depths of the cracks in the
bed joints

ratio 0.005 of the RMS norms of the imbalance and
load was reached in 3 iterations.

5. Conclusions
The simplest finite elements for 2D and 3D thick shells
have been developed for applications in masonry arch
bridges limit load analysis. They feature seamless com-
bination with 2D CST and 3D tetrahedron elements
for the bridge’s backfill. Exclusively translational
DOFs are used, which improves the convergence of
iterations. The no-tension condition is applied to the
normal stress in the bed joints planes. The output
minimum normal stresses and cracks depths in these
planes can be used to assess the ultimate limit loads
of a bridge. A sample analysis of an arch of the bridge
at Poniklá testifies that this material law and shell
elements develop a characteristic failure mode of the
stone masonry arch bridges, the gradual creation of
the virtual hinges.
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