
1 Introduction
The important role of symmetries in classical and quan-

tum physics is well known. We focus on so called discrete
quantum physics; this means that the corresponding Hilbert
space is finite dimensional [1, 2]. Well known are also 2×2
Pauli matrices. Besides spanning real Lie algebra su(2), they
form a fine grading of sl(2, C). The fine gradings of a given
Lie algebra are preferred bases which yield quantum obser-
vables with additive quantum numbers.

The generalized n×n Pauli matrices were described in
[3]. For n � 3 these 3×3 Pauli matrices form one of four
non-equivalent gradings of sl(3,C). Other fine gradings are
Cartan decomposition and the grading which corresponds to
Gell-Mann matrices [4, 5]. The symmetries of the fine grad-
ing of sl(n, C) associated with these generalized Pauli matrices
were studied only recently in [6]. This work pointed out the
importance of the finite group SL(2, Zn) as the group of sym-
metry of the Pauli gradings. The additive quantum numbers,
mentioned above, form in this case the finite associative addi-
tive ring Zn×Zn. The action of SL(2, Zn) on Zn×Zn then
represents the symmetry transformations of Pauli gradings of
sl(n, C). The orbits of this action form such points in Zn×Zn
which can be reached by symmetries.

For the purpose of so called graded contractions [7], it
became convenient to study the action of SL(2, Zn) on various
types of Cartesian products of Zn [8]. Note that the orbits of
SL(2, Zp) on Z p

2 , where p is a prime number were, considered

in [9] §16.3. The purpose of this paper is to generalize this
result to orbits of SL(m,Zn) on Zn

m where m, n are arbitrary
natural numbers.

2 Action of the group SL(m, Zn)
Throughout the paper we shall use the following notation:

N:�{1, 2, 3, …} denotes the set of all natural numbers and
P:�{2, 3, 5, …} denotes the set of all prime numbers. Let n be
a natural number, then the set {0, 1, …, n�1} forms, together
with operations �mod n , ×mod n, an associative commutative
ring with unity. We will denote this ring, as usual, by Zn. It is
well known that for n prime the ring Zn is a field.

Let us consider m, n to be arbitrary natural numbers. We
denote by

Z Z Z Zn
m

n n n
m

� � � ��
� ��� ���

the Cartesian product of m rings Zn. It is clear that Zn
m with

operations �mod n , ×mod n defined elementwise is an associa-
tive commutative ring with unity again. It contains divisors of
zero and we call its elements row vectors or points. Further-
more we call the zero element (0, …, 0) zero vector and
denote it simply by 0.

We denote by Zn
m m, the set of all m×m matrices with ele-

ments in the ring Zn. For k �N and A Z� n
m m, we will denote by

(A)mod k a matrix which arose from matrix A after application
of operation modulo k on its elements.

In the following we shall frequently use a product on the
set Zn

m m, defined as matrix multiplication together with oper-
ation modulo n, i.e.

A,B Z AB)� �n
m m

n
,

mod( . (2.1)

This product is, due to the associativity of matrix multipli-
cation, associative again and the set Zn

m m, equipped with this

product forms a semigroup. If we take matrices A,B Z� n
m m, ,

such that det(A) � det(B) � 1 (mod n), then det((AB)mod n) � 1
(mod n) holds. It follows that the subset of Zn

m m, formed by all
matrices with the determinant equal to unity modulo n is a
semigroup.
Definition 2.1: For m n, �N, n � 2 we define

SL m nn n
m m( , ): { |det (mod )},Z A Z A� � �1 .

Now we show that SL(m,Zn) with operation (2.1) forms a
group. Because SL(m, Zn) is a semigroup, it is sufficient to
show that there exists a unit element and a right inverse ele-
ment. Unit matrix is clearly the unit element. In order to find
a right inverse element consider the following equation

AA A)Iadj � det( . (2.2)

The symbol Aadj denotes the adjoint matrix defined by
(A A( , )adj) : ( ) det,i j

i j j i� � �1 , where A( , )j i is the matrix ob-

tained from matrix A by omitting the j-th row and the i-th
column. The equation (2.2) holds for an arbitrary matrix,
hence it holds for matrices from SL(m, Zn), and evidently
holds after application of operation modulo n on both sides.
Consequently, for A Z�SL m n( , ), we have

AA Iadj � (mod )n , i.e. (AA Iadj)mod n � .

Therefore Aadj is the right inverse element corresponding
to matrix A, and consequently SL(m, Zn) is a group.
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The group SL(m, Zn) is finite and its order was computed
by You Hong and Gao You in [10] (see also [11], p. 86). If
n n� �N, 2 is written in the form n pi

k
i

r
i�

�	 1
, where pi are

distinct primes, then according to [10], the order of SL(m, Zn)
is

SL m n
p

n
m

i
j

j

m

i

r

( , )Z � �



�

�
�



�

�
�

�

��
		

2 1

21

1
1 . (2.3)

Let G be a group and X � 0 a set. Recall that a mapping
�:G � �X X is called a right action of the group G on the set
X if the following conditions hold for all elements x �X:
1. � � �( , ) ( , ( , ))gh x g h x� for all h g G, � .
2. �( , )e x x� , where e is the unit element of G.

Let � be an action of a group G on a set X. A subset of G,
{ | ( , ) }g G g a a� �� is called a stability subgroup of the ele-
ment a �X. A subset of X,{ | , ( , )}b X g G b g a� � � � � is called
an orbit of the element a �X with respect to the action � of
group G.

Let us note that if � is an action of a group G on a set X
then relation ~ defined by formula
a b a b g G g a b, , ~ , ( , )� � � � �X � (2.4)

is an equivalence on the set X and the corresponding equiva-
lence classes are orbits.
Definition 2.2: For m n, �N, n � 2 we define a right action �

of the group SL(m, Zn) on the set Zn
m as right multiplication of

the row vector a n
m� Z by the matrix A Z�SL m n( , ) modulo n:

�( , ): ( )modA Aa a n� .

Henceforth we will omit the symbol mod n and write this
action simply as aA.

3 Orbits for n � p prime number
The purpose of this section is to describe orbits of the ring

Z p
m under the action of the group SL(m, Zp), where p is prime.

Trivially, for m � 1 is SL(1, Zp) � {(1)} and any orbit has the
form {a} for a p� Z . Consequently we will further consider
m � 2. It is clear that the zero element can be transformed
by the action of SL(m, Zp) to itself only, thus it forms a
one-point orbit and its stability subgroup is the whole
SL(m, Zp). Let us take a nonzero element, for instance
( , , , )0 0 1� � Z p

m, and find its orbit. An arbitrary matrix A from

SL(m, Zp) acts on this element as follows

( , , , )

, , ,

, , ,

,

0 0 1

1 1 1 2 1

1 1 1 2 1

1

�

�

� � � �

�

A A A

A A A
A A

m

m m m m

m

� � �

m m m

m m m m

A

A A A p
, ,

, , ,( , , ) (mod ).
2

1 2

�

�




�

�
�
�
��



�

�
�
�
��

�

�

Thus the orbit of element ( , , , )0 0 1� contains the last
row of any matrix from SL(m, Zp). It follows from det(A) � 1
that these rows cannot be zero and we show that they can
be equal to an arbitrary nonzero element from Z p

m. Let

( , , ), , ,A A Am m m m p
m

1 2 � � Z be a nonzero element, which means

� �j m{ , , , }1 2 � such that Amj � 0, then matrix A can be cho-
sen with the determinant equal to 1. Without loss of generality
consider j � 1:

A
B

�




�

�
�
�
��



�

�
�
�
��

0

0

1 2

�

�A A Am m m m, , ,

,

where � �B � � � �diag 1 1 1 1
1

1, , , ( ) ( ),� m
mA .

Here (Am,1)�1 denotes the inverse element to Am,1 in the
field Zp.

We conclude that in the case of n � p prime there are only
two orbits:
1. one-point orbit represented by the zero element

(0, …, 0, 0)
2. (pm�1)-point orbit Z p

m\{0} represented by the element

(0, …, 0, 1)

4 Orbits for n natural number
We consider an arbitrary natural number n of the form

n pi
k

i

r
i�

�
	

1

,

where pi are distinct primes and ki are natural numbers.
The action of the group SL(m, Zn) on the ring Zn

m

was established in definition 2.2 as a right multiplication
of a row vector from Zn

m by a matrix from SL(m, Zn) mod-
ulo n. We define an equivalence induced by this action on the
ring Zn

m according to (2.4). Elements a a a am� ( , , , )1 2 � ,

b b b bm n
m� �( , , , )1 2 � Z are equivalent a~b if and only if there

exists A Z�SL m n( , ) such that aA � b i.e.

a A b n i mj i j i
j

m

, (mod ), { , , , }� � �

�
�

1

1 2 � . (4.1)

Definition 4.1: Let ~ be the equivalence on Zn
m defined by

(4.1). For any divisor d of n, we will denote by Orm,n(d)
the class of equivalence (orbit) containing the point
(0, …, 0, (d)mod n), i.e.

Or Zm n n
m

nd a a d, mod( ) { | ~ ( , , ( ) )}� � 0 � . (4.2)

Note that the orbit Orm,n(n) contains only the zero vector,
because the zero vector can be transformed by the action of
SL(m, Zn) only to itself. We shall see later that any orbit in Zn

m

has the form (4.2).
Definition 4.2: A greatest common divisor of the element
a a a am n

m� �( , , , )1 2 � Z and the number n �N is the greatest
common divisor of all components of the element a and the
number n in the ring of integers Z. We denote it by

gcd( , ): gcd( , , , , )a n a a a nm� 1 2 � . (4.3)

Lemma 4.3: The action of the group SL(m, Zn) on the ring Zn
m

preserves the greatest common divisor of an arbitrary ele-
ment a n

m� Z and the number n, i.e.
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gcd( , ) gcd( , ) , ( , )a n a n a SL mn
m

nA Z A Z� � � � � .

Proof: It follows from

a a A a Ai ii

m
i i mi

m
A � 


�
� 

�
�

� �� �, ,, ,11 1
� and

gcd( , )| ,a n a Ai i ji

m

�� 1
, � �j m{ , , , }1 2 � that

gcd( , )|gcd( , )a n a nA , i.e. the greatest common divisor cannot
decrease during this action. If we take an element aA and
a matrix A�1 we obtain
gcd( , )|gcd( , ) gcd( , )a n a n a nA AA 1� � and together with the
first condition we havegcd( , ) gcd( , )a n a nA � . QED
Corollary 4.4: For any divisor d of n the orbit Orm,n(d) is a
subset of { |gcd( , ) }a a n dn

m� �Z .

We will show that the orbit Orm,n(1) is equal to the
set { |gcd( , ) }a a nn

m� �Z 1 . From corollary 4.4 we know that

Orm,n(1) is the subset of { |gcd( , ) }a a nn
m� �Z 1 and we prove

that they have the same number of elements. At first we
determine the number of points in Orm,n(1). For this pur-
pose we determine the stability subgroup of the element
(0, …, 0, 1). It is obviously formed by matrices of the form

A �




�

�
�
�
�



�

� � �

A A A

A A A

m

m m m m

1 1 1 2 1

1 1 1 2 1

0 0 1

, , ,

, , ,

�

� � � �

�

�

�
�
�
�

�, det( ) (mod )A 1 n .

Expansion of this determinant gives
1 1� � � ��det( ) ( ) det ( , ) det ( , ) (mod )A A Am m m m m m n .

Therefore the stability subgroup of the point (0, …, 0, 1)
is:

S

A
A

SL m SL m

m

m
n: ( , )| ( ,

,

,� �




�

�
�
�
�



�

�
�
�
�

� � �A
B

Z B

1

2

0 0 1

1
�

�

Zn )

�

�
�
�

�
�
�

�

�
�
�

�
�
�

,

and its order is

S n pm m
i

j

j

m

i

r

� �� � �

�

�

�
		

2 1

2

1

1

1( ). (4.4)

According to the Lagrange theorem, the product of the
order and the index of an arbitrary subgroup of a given finite
group is equal to the order of this group. If we define on the
group SL(m, Zn) a left equivalence induced by the stability
subgroup S by formula

A,B Z A B AB� � � ��SL m Sn S( , ) 1 ,

then we obtain equivalence classes of the form
S SB AB A� �{ | }, B Z�SL m n( , ), i.e. right cosets from
SL(m, Zn)/S. The number of these cosets is, by definition,
the index of subgroup S. These cosets correspond one-to-
-one with the points of the orbit which includes the point
(0, …, 0, 1). Therefore the index of the stability subgroup S is
equal to the number of points in this orbit. A similar calcula-
tion can be done for an arbitrary point in an arbitrary orbit.
Thus we have the following proposition.
Proposition 4.5: The number of elements in an orbit is equal
to the order of the group SL(m, Zn) divided by the order of the
stability subgroup of an arbitrary element in this orbit.

Using (2.3) and (4.4) we obtain that the number of points
in the orbit Orm,n(1) is equal to

Or =m n
m

i
m

i

r

n p, ( ) ( )1 1
1

� �

�
	 . (4.5)

Now we will determine the number of all elements in Zn
m

that have the greatest common divisor with the number n
equal to unity. This number is equal to the Jordan function.

Definition 4.6: For m �N a mapping �m:N N� defined by

�m n
mn a a n( ) { |gcd( , ) }� � �Z 1 (4.6)

is called the Jordan function of the order m.

We present, without proof, some basic properties of the
Jordan function which can be found in [12].

Proposition 4.7: For the Jordan function �m of the order
m �N and for any n �N holds:

1. �m
m m

p n p

n n p( ) )
| ,

� � �

�
	(

P

1 (4.7)

2. �m
d n d

md n( )
| , �
� �

N

(4.8)

3. �m n
d

m

n
m

n
d

a a
n
d

a a n d



�
�


�
� � � � �

� � �

{ |gcd( , ) }

{ |gcd( , )

Z

Z

1

}.

(4.9)

The number of all elements in Zn
m, which are co-prime

with n, given by the first property of the Jordan function
�m(n) (4.7), is equal to the number of points in the orbit
Orm,n(1). Therefore the orbit Orm,n(1) is formed by all ele-
ments in Zn

m which are co-prime with n.

Proposition 4.8: For m n, �N, m � 2 holds

Or Zm n n
ma a n, ( ) { |gcd( , ) }1 1� � � .

4.1 Orbits for n � pk power of a prime
Let us now consider n of the form n � pk, where p is a prime

number and k �N, and determine orbits in this case.

Definition 4.1.1: For j j k� �N, , we define a mapping

F Z Zj
p
m

p
m

k k: � by the formula

F j j
p

a p a k( ) ( )
mod

�  for any a
p
m

k� Z .

Lemma 4.1.2: Let a and b be two equivalent elements from
Z

p
m

k and j k� . Then the elements F j a( ) and F j b( ) are equiva-

lent as well.

Proof: Let a b
p
m

k, Z� , a~b. It follows from the definition of

equivalence ~ that there exists a matrix A Z�SL m
p k( , ) such

that aA � b. Consequently F A Fj ja b( ) ( )� , where

F A A) ) A) F A
mod mod mod

j j
p

j
p p

ja p a p a ak k k( ) ( ( ( ( )� � � .
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Since we have F A Fj ja b( ) ( )� and therefore F Fj ja b( ) ~ ( ).
QED

Proposition 4.1.3: Any orbit in the ring Z
p
m

k has the form

Or Z
m p

j
p
m k j

k kp a a p p
,

( ) { |gcd( , ) }� � � , 0 � �j k,

and consists of Or
m p

j
m

k j
k p p

,
( ) ( )� �

� points.

Proof: From Lemma 4.1.2 it is clear that F j maps the orbit
Or

m p k,
( )1 into the orbit Or

m p
j

k p
,

( ) and from Corollary 4.4 we

have

F p p a a p pj
m p

j
m p

j
p
m k j

k k k( ( )) ( ) { |gcd( , ) }
, ,

Or Or Z! ! � � .

Conversely,
{ |gcd( , ) } { | ,gcd( , ) }a a p p p a a a p

p
m k j j

p
m k j

k k j� � � � ��
�Z Z 1

! � � �{( ) | ,gcd( , ) } ( ( )).
mod ,

p a a a pj
p p

m k j
m pk k kZ F Or1 1

Thus we have
F Or Or Zj

m p m p
j

p
m k j

k k kp a a p p( ( )) ( ) { |gcd( , ) }
, ,

1 � � � � .

QED

4.2 Orbits for n � pq, gcd(p,q) � 1
Let us now consider n of the form n � pq, where pq �N are

co-prime numbers. In this case it will be very useful to apply
the Chinese remainder theorem [13].
Theorem 4.2.1: (Chinese remainder theorem)

Let a a1 Z, 2 � . Let p p1 N, 2 � be co-prime numbers. Then
there exists x � Z, such that

x a p ii i� � �(mod ), ,1 2.
If x is a solution, then y is a solution if and only if

x y p p� (mod )1 2 .

Definition 4.2.2: For p q, �N, gcd(p, q) � 1 we define a map-

ping G Z Z Z: pq
m

p
m

q
m� � by the formula

� �G( ): ( ) ,( )mod moda a ap q� for any a pq
m� Z ,

and a mapping g Z Z Z: ( , ) ( , ) ( , )SL m SL m SL mpq p q� � by the
formula

� �g A A A( ): ( ) ,( )mod mod� p q for any A Z�SL m pq( , ).
It is clear from definition that G, g are homomorphisms

and the Chinese remainder theorem implies that G, g are
one-to-one correspondences. Thus we have the following
proposition.

Proposition 4.2.3: The mapping G is an isomorphism of
rings and the mapping g is an isomorphism of groups.

Further we determine orbits on the Cartesian product of
rings Z Zp

m
q
m� . For this purpose we define the action of the

Cartesian product of groups SL m SL mp q( , ) ( , )Z Z� on ring
Z Zp

m
q
m� by the formula

� �a a a a ap qA A A A A� �( , )( , ) ( ) , ( )mod mod1 2 1 2 1 1 2 2

for any a a a p
m

q
m� � �( , )1 2 Z Z and any

A A A Z Z� � �( , ) ( , ) ( , )1 2 SL m SL mp q .

It follows from the definition of this action that orbits in
Z Zp

m
q
m� are Cartesian products of orbits in Z p

m and Zq
m.

Proposition 4.2.4: Let p q, �N be co-prime numbers. Then
the mapping G provides one-to-one correspondence between
the orbits in Z pq

m and the Cartesian products of the orbits in

Z p
m and Zq

m. Moreover, if p p1| , q q1| and the orbits Orm,p(p1),

Orm,q(q1) are of the form

Or Z

Or Z

m p p
m

m q q
m

p a a p p

q a

,

,

( ) { |gcd( , ) },

( ) { |gcd

1 1

1

� � �

� � ( , ) },a q q� 1

then

� �Or G Or Or

Z

m pq m p m q

pq
m

p q p q

a a

, , ,( ) ( ) ( )

{ |gcd( ,

1 1
1

1 1� �

� �

�

pq p q) }.� 1 1

Proof: First, we prove that G and G�1 preserve equivalence,
i.e.

a b a b~ ( ) ~ ( )� G G for all a b pq
m, � Z .

From the definition of equivalence we have

a b SL m a b a bpq~ ( , ), ( ( )� � � � � �A Z A G A) G ,
where

� �
� �

G A) A) A)

) ) A) A)

mod mod

mod mod mod

( ( , (

( , ( ( , (

a a a

a a

p q

p q p

�

� � �mod

G )g A).
q

a

�

� ( (

Because G and g are one-to-one correspondences we
obtain
a b a b a b a b~ ( ( ( ) ( ( )� � � � �A G )g A) G G ) ~ G .

Since the mapping G is an isomorphism and G, G�1 pre-
serve equivalence, the orbits in the ring Z pq

m correspond

one-to-one with the orbits in the ring Z Zp
m

q
m� , and these are

Cartesian products of orbits on Z p
m and Zq

m.

Now remain to prove that the orbit Orm pq p q, ( )1 1 cor-
responds to the orbitOr Orm p m qp q, ,( ) ( )1 1� . It follows from the
Chinese remainder theorem that G maps the set
{ |gcd( , ) }a a pq p qpq

m� �Z 1 1 on the set

{( , ) |gcd( , ) ,gcd( , ) }a a a p p a q qp
m

q
m

1 2 1 1 2 1� � � �Z Z ,

which is equal to the orbitOr Orm p m qp q, ,( ) ( )1 1� . Therefore the
set { |gcd( , ) }a a pq p qpq

m� �Z 1 1 forms an orbit and from Corol-
lary 4.4 it follows that

Or Zm pq pq
mp q a a pq p q, ( ) { |gcd( , ) }1 1 1 1� � � . QED

As a corollary of Propositions 4.1.3 and 4.2.4 we obtain the
following theorem.
Theorem 4.9: Consider the decomposition of the ring Zn

m,
m � 2 into orbits with respect to the action of the group
SL(m, Zn). Then
i) any orbit is equal to the orbit Orm,n(d) for some divisor d of

n, i.e.

Z Orn
m

m n

d n

d� ,

|

( )� ;
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ii) Or Zm n n
md a a n d, ( ) { |gcd( , ) }� � � ;

iii)the number of points Orm n d, ( ) in d-orbit is given by the
Jordan function

Or
P

m n m

m
m

pd n p

d
n
d

n
d

p,
| ,

( ) ( )� 

�
�


�
� � 


�
�


�
� � �

�
	� 1 .

5 Conclusion
We have stepwise determined the orbits on the ring Zn

m

with respect to the action of the group SL(m, Zn). First, we
proceeded in the same way as Kirillov in [9] and we obtained
the orbits in the case of n prime number. In this case there are
only two orbits, the first is one-point orbit formed by the zero
element and the second is formed by all nonzero elements.
The next step was the case of n � pk power of prime. There
we found k�1 orbits characterized by the greatest common
divisor of their elements and number n. Finally the orbits
for an arbitrary natural number n were found. Our results
are summarized in Theorem 4.9.
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