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ABSTRACT.

In this paper, we theoretically analyze the massless Dirac fermion dynamics in two-

dimensional monolayers of boron allotropes, 8B and 2BH — pmmn borophene, interacting with external
electric and magnetic fields. We study the effect of the Dirac cone tilt in these materials, which is
known as valley index, through the time evolution of probability density of coherent electron states as
well as their phase-space representation obtained via the Wigner function. Our results show that the
time evolution of the coherent electron states in these materials is valley dependent, which is reinforced

in the presence of external electric fields.

KEYWORDS: Tilted Dirac cones, anisotropic Dirac materials, borophene, coherent states, Wigner

function.

1. INTRODUCTION

Coherent states (CSs) are minimal uncertainty
states [II, 2], so that they are considered the most
classical states in quantum mechanics. For this rea-
son, they arise in multiple branches of physics, mainly
in quantum optics [2] and information processes [3] [4].
Although the wave function provides interesting fea-
tures about any state, its experimental realization
in several quantum systems [3] requires a different
approach. In this sense, the Wigner function (WF)
constitutes one of the most important theoretical tools
for describing quantum systems in the phase-space
representation. The WF for a bidimensional system
is a quasi-probability distribution defined as [5HT]

Wi(r,p) = (2711_)2/_00 Py (r— %) a (r—l— g) dq,

(1)
where ¥(r) is the wave function, r = (x,y) and
p = (pz, py) are two-dimensional vectors representing
the classical position and momentum values in phase
space, respectively; and q = (g1, ¢2) is a position vec-
tor needed in the integration process. In contrast
with the probability density of any quantum state,
the WF can take negative values, which indicates the
nonclassicality of a state and it is a sign of quantum-
ness [3,[8,19). Despite this, it has been implemented in
quantum optics [3] [4 [9HI3], and recently also applied
in condensed matter for studying electron dynamics
in two-dimensional materials, particularly in graphene
under the presence of electromagnetic fields [3| T4+
20] as well as in strained honeycomb lattices with
dispersive pseudo-Landau-levels [27].

Following this trend, and since the number of two-
dimensional materials has been increasing recently,
our aim is to provide an adequate description in
phase space of the physics of certain quantum macro-
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scopic phenomena, and their semi-classical represen-
tation, that occurs in condensed matter systems in
the context of valleytronics [28430]. In this emerg-
ing research area, two-dimensional materials such as
8 — pmmn borophene [3TH35], strained graphene [36],
Weyl semimetals [37H40], and the organic compound
a-(BEDT-TTF ).l [41H44], characterize due to the
presence of anisotropy and tilted Dirac cones at their
low-energy band structure [31) [32, 40, 43, 45H53].
The anisotropy and tilt can be intrinsic, as occurs
in borophene [31H34] and phosphorene [54], (5], or
induced by strain-engineering and external electric
fields, as observed in graphene [20] 36}, G6HT2].

In this work, we will focus on two-dimensional mono-
layers of boron allotropes, 8B and 2BH — pmmn
borophene [73], which have recently attracted at-
tention due to the boron capacity of flexible bond-
ing [47, [74], [75]. The geometry of two-dimensional
boron-based Dirac cone materials is much more com-
plicated than that of the pristine honeycomb structure
of graphene and, as a consequence, their electronic
and transport properties are valley dependent due
to the tilting of Dirac cones. These features moti-
vate the research of unusual effects by the intrinsic
Dirac cone tilt under the presence of external elec-
tric and magnetic fields. For instance, the study of
8 — pmmn borophene conductivity in the presence
of crossed electric and magnetic fields exhibits a clear
valley-dependence in magnetotransport properties and
polarization currents [33], B34]. It exists the possibility
of the realization of coherent electron states in the
laboratory and the development of electron quantum
optics [15], [76], [77] due to the recent advances in the
experimental reconstruction of the WF of electronic
systems in quantum tomography experiments.
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Thus, this paper is organized as follows. In Sec-
tion [2] we describe the Dirac Hamiltonian of mono-
layers of boron allotropes at low-energy regime in the
presence of external electric and magnetic fields, and
obtain the corresponding Landau states and energy
spectra. In Section [3] we discuss the construction of
the matrix ladder operators associated to the physical
system and also construct the corresponding coher-
ent electron states as eigenstates of the annihilation
operator. We also study the time evolution of the
probability density and the corresponding phase-space
representation. In Section El, we present our conclu-
sions.

2. ELECTRON DYNAMICS IN
MONOLAYERS OF BORON
ALLOTROPES

8 — pmmn borophene [31H34] and other two-
dimensional monolayers of boron allotropes, such as
8B and 2BH — pmmn borophene [73], present tilted
Dirac cones at their low electronic band structure, so
that their electronic properties are described by the
continuous Dirac Hamiltonian

H = v (v100py + 0302D2 + yoypy), (2)

where the matrices 0, , are the Pauli matrices, while
09 is the identity matrix. The quantity v, known as
valley index, allows us to transit from valley K (v = 1)
to valley K’ (v = —1). The terms v, and v, are
the anisotropic Fermi velocities and vy is the velocity
that quantifies the tilting of the Dirac cone. These
velocities depend on the material. For instance, the
velocity values {vg, vy, v;} in multiples of the Fermi
velocity vp = 1 for three different allotropes of boron
are shown in Table[Il

Boron allotrope Vg Uy Vg
8 — pmmn 0.86  0.69 0.32
8B —pmmn 0.534 0.785 -0.345

2BH — pmmn 0.77 1.348 -0.386

TABLE 1. The velocities vz, vy and v; in units of the
Fermi velocity vp = 108 m/s, for three boron allotropes
in the low-energy single-particle effective model.

2.1. EFFECTIVE DIRAC-WEYL HAMILTONIAN

Now, let us consider massless Dirac fermions in a two-
dimensional boron monolayer under the presence of
an in-plane electric field E = £% and a perpendicular
magnetic field B = BZ. These fields are included in
the Hamiltonian in Eq. through the scalar and
vector potentials

U=-z& A =zxBj, (3)

to obtain the following eigenvalue equation in natural
units (e = —1 and h = 1) [35] 42] [43]:

H'U(r)
= (V [v20wpe + (vioo + vyoy ) (py + 2B)] + 2€00) U(r)
= EV(r). (4)

Taking advantage of the translational invariance along
the y-axis, so that U(r) = exp(ik,y)¥(z), the eigen-
value equation in Eq. (4) becomes:

E—x.& cwn + 2k
[ (wa) o+ Do W)U] ¥@) =0,
VR 2
_ _ (®)
where E = E —vuiky, £ = (E+vvB)\/vg /vy, wg =
2B, xc = T\/Vy [ Vs, Ky, = kyr/Vy [V, and v = | /0,0y

is an effective Fermi velocity. By introducing the
parameter 3, and the dimensionless quantity &,

& wg i _ Jws 2k,
ﬁu_U{;B_vy—i_Vvy’ &= 2 (xc—i_wg ’
(6)

with vq = £/B being the drift velocity, Eq. can
be rewritten as

[ (o - /26.¢) ao+z'\/?d%ax— ‘”;aay} w(E) =0,

(7)

where g = E/vp, + kB8, = (E + kyva) /v

2.1.1. ENERGY SPECTRUM

In order to find the solutions of the initial problem,
we proceed as follows [78] [79]. Multiplying by —io,
to the left of Eq. (7)), we get:

[\/ W?Bdigao -1 (60 - W;ﬂuf) 0200
+¢,/°‘;3§amay}xp(§) —=0. (8)

Differentiating the above expression with respect to
&, we obtain the following equation
() =0,

d? [ 2 t
l<d£2+( wseoﬁU§> £>UO+K
(9)

where K = i (0,8, + 0,0,) is a complex symmetric
matrix. The solutions of Eq. @D can be expressed
as ¥(§), = ¥,(&)xy, where x,, fulfills the eigenvalue
equation Ky, = nxy,, and 9,(£) is a scalar function
that satisfies the differential equation

(o (&) =0.

Rt 2 2
@t (\/WB € — M) -+
(10)

In order to simplify the above equation, the variable
( is defined as

2 Y
C=E(1 - B+ %u_ﬂ;go)g/zp (11)
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FIGURE 1. Energy spectrum in Eq. with k, = 0 and B =1 as a function of the electric field £ for 8B — pmmn
borophene (a, b) and 2BH — pmmn (c, d) in each Dirac point (v = £1).

where 8, must fulfill the condition |3, | < 1 for keeping
real values of (. Hence, we obtain the Weber equation

d? 2 2¢ n
Llcz R gy R G ey

1/2] () =0,
(12)
On the other hand, the eigenvalues 7 of the matrix
K turn out to be o(K) = {n = (—1)*(1 — p2)/?}
with £ = 1,2, while the corresponding normalized
eigenvectors are given by

_1( V& _ 1 (v
Xm—\/i —iJT= ) Xn2_\/§ Non )
(13)

where Cy = 14+4/1 — 2. Substituting the eigenvalues

7, in Eq. 1} and taking v, (¢) = exp (—§2/2) fn(€),
one gets the following ODE:

26(2)/0)]3

fr(Q) =2¢ /() = <1—(—1ﬁ'—(1_5%3m

) f'ﬂ(()v

(14)
with & = 1,2. By solving the above ODE, the energy
spectrum turns out to be [80] (see Figure [1)):

En7ky = Sgn(n)v vwvy(l_ﬁZ)BM\/‘m_ky vq. (15)
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The Landau energy levels in Eq. depend on valleys
K and K’ [43] via the amount 8, in Eq. @, which
indicates whether the orbits are closed (|5, < 1) or
opened (|3,| > 1) [43, 80, [RI]. Also, the critical values
of v§ = & for which 8, = 1 depend on each tilted
anisotropic Dirac material (see again Figure. For
instance, in Table [2| we summarize the critical values
&. in valleys K and K’ for three monolayers of boron
allotropes.

Borophene monolayer &, (K) &, (K’)
8 — pmmn 0.37 1.01
8B — pmmn 1.13 0.44
2BH — pmmn 1.734 0.962

TABLE 2. The electric field critical value & = (vy —
vve ) B for three boron allotropes according to the valley

index v. The data for 8 — pmmn borophene were
obtained from [35].
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Finally, the average velocity in the y-direction is
given by [82] B3]

OE..,  [ExB
e =

that means the Dirac fermions move with an average
velocity vq in the negative y-direction.

2.1.2. EIGENSTATES

The eigenstates of the Hamiltonian in Eq. can be
written as

1-— 50n)X771wn71(37) + )\anl/in(l‘)]
2(1—60n)
= M®,, (), (17)

() =

where 6,,, denotes the Kronecker delta, the band
index A indicates the conduction (A =1) or (A = —1)
valence band, and

moya (e Ve )

_ (1 = 6on)¥n—1(x)
D, (z) = m M"wn( ) ) (18b)

The components of the pseudo-spinor ®,,(z) are given
by the wave functions [79]

(L= BYV® (wpo, \
vn! 27U,

where D,,(-) are the parabolic cylinder functions with
n a non-negative integer, and the quantity ¢, is given

by Eq. with €g = (En k, + kyva)/ /020y

3. COHERENT ELECTRON STATES

We start to obtain the CSs by first considering the
set of ladder operators A* given in [35] and acting on
the Hilbert basis ®,,(x) = M~1¥,,(z), namely,

(18a)

AJrq) =V 2(1=b0n) \/TL +1 (I)n+1(<n+1) (20&)
=V 2(1761" \/ﬁq)n—l(Cn—l)v (2Ob)
and whose commutation relation reads
1, n=0,
[A™,AT]®, (2) = c(n)®,(2), c(n)=<K3, n=1,
2, n>1
(21)

Now, we define the CSs as eigenstates of the anni-
hilation operator A™:
A0, (z) =2P,(x), z€C, (22)

with complex eigenvalue, where

x) = Z an Py (). (23)

Using Eq. (20a)), the explicit expression for the CSs
is given by

D () =N, <I>0(x)+z\/\i%n@n(x) . (24)

where N;? = 2exp (Jaf?) — 1 and o = z/V2 =
|a] exp (ip). Here, the physical meaning of || is
that it is the oscillation amplitude while the phase
angle ¢ is identical to the angular rotation in the
classical motion. It is worth to mention that the
procedure described allows to obtain the so-called
Barut-Girrardello CSs. However, this is not the only
way to build CSs. In [27], the displacement-operator
method has been implemented in order to construct
such states in other honeycomb lattices.

Finally, defining the matrix operators

B~ =MAM!, B =MATM™!, (25

) in Eq. .

whose actions on the Landau states ¥,,

reads as
B, (Gr) = V2000V £ T W (Gur), (26a)
= V200 /n W1 (Gar), (26b)
it is possible to verify that the states ¥, (z) = M ®,(x)

are eigenfunctions of the annihilation operator B~
with the same eigenvalue z. Therefore, the states
U, (r) = exp (ik,y) ¥, (z) are the coherent electron
states of the system. In addition, the commutation
relation in Eq. is also fulfilled writing B* and ¥,
instead of A* and ®,,, respectively.

3.1. OVERCOMPLETENESS AND RESOLUTION TO
THE IDENTITY

The CSs satisfy the following relation

2exp(a”a) —1
V(2exp(|af?) = 1)(2exp(|o’[?) — 1)
£ 6(a’ — ). (27)

(Tor [Wa)| =

Since the coherent electron states are not orthogonal
for a # o', we say the set of such states is overcom-
plete.

Besides, these CSs satisfy the following relation
that can be considered as an unusual resolution to the
identity:

[Wo) (ol
2

= L R NES D

where [ denotes the identity operator in the Hilbert
space for Landau states in the conduction band, and
dp(a) is a positive measure defined as

2 2) -1
exp (Jaf’) la|dlade.  (29)

(@) = 5 o ()
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FIGURE 2. Occupation number distribution Py (n)

in Eq. 1' for the coherent electron states W, for
different values of p = |a|?.

3.2. OCCUPATION NUMBER DISTRIBUTION
The CSs follow a Poisson-like distribution with mean
= |a|?, according to the occupation number distri-

bution

1 1, n=20
(30)
which gives the probability of a CS of being in an
Landau state ¥,, (see Figure [2

3.3. MEAN ENERGY VALUE
On the another hand, the expectation value of the
energy in the CS basis is given by

(HYo = N2 kyva (1 — 2exp (\a|2)) + 2,/0,0, WE
o0 2n
LS s | (a1)
n=1 !

The mean group velocity of the CSs is obtained as

(b = T = —va (32)

which agrees with Eq. (L6)).

3.4. TIME EVOLUTION OF THE WAVE PACKET

Now, let us consider the time-evolution operator
U(t) = exp(—iHt) applied on the expansion of CSs
in terms of Landau states ¥, (r). Hence, the time-
dependent coherent electron states are:

U (r,t) = Ny exp (ikyy) M ( @j\#zal (;th,)t) ) ’

(33)
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where

n—zEt

Vo (2,1) = Z — 1 (), (34a)

Ya,2(z,t) Z are ——— (). (34b)

The time-dependent probability density |¥, (r,)|?

is
(@ (r,6)2 = N2{ [0 (@, D + a2,
— 0B, R [ 1 (&, ) a 2 (2, 1)] } (35)

where R(z) denotes the real part of a complex number
z.
Figure 3| shows the time evolution of the probability
distribution of the CSs for 8B and 2BH — pmmn
borophene. We can see that in both cases, the density
probability in valley K evolves faster than that in
valley K’ This means that Dirac fermions take less
time to complete a loop around the equilibrium point.
The function | ¥, (r,)|? shows maximum values close
to the turning points in the z-axis. Besides, with the
values chosen for the parameters o = 41, ky, = 0 and
B =1, the probability density of the CSs with v = —1
for 8B — pmmmn borophene shows a different behavior
in time in comparison to the other cases. This is
related to the fact for the electric field considered
(£ = 0.25), the corresponding energy spectrum is
near to collapse, indicating the classical orbits that
the charge carriers in valley K’ follow are more open
compared with those in K for 8B — pmmn borophene,
and even for those ones in 2BH — pmmn borophene.

3.5. OBTAINING OF THE TIME-DEPENDENT
WIGNER FUNCTION FOR COHERENT
ELECTRON STATES

To calculate the Wigner matrix (WM) [84] for the

coherent states in Eq. (33]) in valleys K and K’, we
substitute them into the integral matrix representation

in Eq. (1) to get [35]:

W (I‘, p) = MW, (I‘, p)MT (36)

Thus, the trace of this matrix provides us an expres-
sion of the time-dependent WF of the coherent states:

Te{Wa (r, p,6)] = N20 (b, = ky) { Wi (. )
+ Waz(x, t) — 2AB,R[Wia(x, t)]}a (37)
where the components Wy, Was and Wis are the cor-

responding Wigner functions of the terms in Eq.
and their product, and that in general involve sums
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FIGURE 3. Time evolution of the probability density |¥, (r,t)? in Eq. with ky, =0, B=1, a =44, £ =0.25
and A =1 for 8B — pmmn borophene (a, b) and 2BH — pmmn borophene (c, d) in each Dirac point (v = +1).

of functions of the form (see [35] for more details)

1 1 .
Wu,v(Xn,m) = ; exp <_2|Xn,m|2 + Z(Cn - (m)s>

(=) 4xa Ly ([xnml?) 5
(=1)U/ B L (Ixngm?) s i w >,
(38)

if u<w,

with L7(-) denoting the associated Laguerre polyno-
mials, and

Cn+Cm | .
nm:7+z\/§s7
Xn, \/5

- 2
§ = (1 - 53) e w]:;cy Dz-

Xn = Xnmn,  (392)

(39b)

The time evolution of the WM trace for the CSs is
shown in Figures [4 and [f] for 8B and 2BH — pmmn
borophene, respectively. In both cases, we observe
that the WF in valley K propagates faster than in
valley K. As the state evolves in time, the trace of the
WM takes negative values, which is an indication of
the increasing of the CS quantumness and also of the
uncertainty relations, as is discussed in [35]. For larger
times, the WM traces become identical to that of the
Landau state with n equal to the integer part of |a|?,

in agreement to the number occupation distribution

in Eq. .

3.5.1. PERIOD OF MOTION

Now, in order to provide an approximate period 7
for the CSs, we proceed as follows [85]. First, we
calculate the mean energy (H), for the CSs W, (r).
Then, setting the eigenvalue z, we compute the energy
interval in which (H), lies, namely, E;, < (H)a <
Eji1,k,. Thus, the approximate period is determined

as:
2 2T

7_ = —— —7
AE  Ejiik, — Ejg,

(40)
that will be different for each valley since the energy
spectrum depends on the tilting parameter v. For
instance, for the CSs with o = 47 and the same values
used in Figures and we have F15 < (H)q < Ei6.
Note that (H),, is bounded by the Landau level with
n = |a|?> = 16. Thus, the respective periods are
reported in Table [3]

The period 7 in Eq. increases as AFE — 0 close
to the electric field critical value &, since a Dirac
fermion takes a longer time to complete a loop an
opened orbit (see red and blue curves in Figure @
In contrast, the orbits are closed for more separated
energy levels resulting in a shorter period 7 (see green
curve in Figure @
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FIGURE 4. Time evolution of the trace of the Wigner matrix W (r, p) in Eq. for different values of ¢ in each
Dirac point (v = £1) of 8B — pmmn borophene. B = 1, ky, = 0, a = 44, {va, vy, v} = {0.534,0.785,—0.345},
£ =0.25, and A = 1. In the figure labels, Ip = 1/\/§
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a trochoid (red and blue curves). The drift velocity
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Borophene monolayer 74 (K) 77— (K’)
8 — pmmn 34.1657  14.5667
8B — pmmn 17.3887  32.6427
2BH — pmmn 11.0127  13.2007

TABLE 3. Valley-dependent period 7 for the CSs with
eigenvalue o = 44 = z/\/§ in three boron allotropes.
The data for 8 — pmmn borophene were obtained
from [35].

3.6. DISCUSSION

Anisotropic and tilted Dirac cone materials, such
as 8B and 2BH — pmmn borophene, possess valley-
dependent electronic properties under the interaction
with crossed electric and magnetic fields. The effective
Hamiltonian depends on two anisotropic velocities and
one tilt velocity (see Eq. (2)). In the case in which
these materials interact with external crossed electric
and magnetic fields (see Eq. ), it is possible to ob-
tain the solutions to the physical problem in a simple

algebraic way (see Eq. and )

We have constructed the CSs U, (r) as a linear
combination of the Landau eigenfunctions ¥(r) of the
Hamiltonian in Eq. , that also be eigenfunction of a
matrix ladder operator B~ with a complex eigenvalue
z. As the coherent electron states evolve in time, their
probability density clearly shows maximum values
only around the turning points in the z-axis, in which
momentarily the velocity of charge carriers reduces.
In turn, the emergence of negative values in the trace
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of the Wigner matrix for longer times is related to
the increasing uncertainties of the position and mo-
mentum, as is studied in [35], in agreement to the
probability distribution Eq. . Also, the increasing
of the electric field to a critical value can delay the
time-evolution of CSs in one of the valleys, allowing
us to distinguish the Dirac fermions of one valley from
those of another (see Figures and .

In Figure [6] we have showed the classical picture of
a (valley-independent) non-relativistic charge carrier
that follows a closed trajectory in the xy-plane in
presence of an external magnetic field B along the
z-direction. When an electric field E is applied along
the z-axis, the trajectory becomes into a trochoid with
velocity vq directed to the y-direction. In contrast, we
observe that in the quantum picture of our problem,
due to the Lorentz transformation into the reference
frame and the energy [43], as well as the valley in-
dex, there is a factor (1 — 32)3/4 that modifies the
spacing between two adjacent Landau levels, and as
a consequence also the period of motion in Eq. .

4. CONCLUSIONS

We studied the dynamics of massless Dirac fermions in
two bidimensional monolayers of boron allotropes un-
der the interaction with crossed external electric and
magnetic fields. We analyzed the effect of the Dirac
cone tilt in the time evolution of probability density of
coherent electron states as well as the corresponding
Wigner function. We conclude that the time evolu-
tion of the coherent electron states in these materials
is valley dependent, and the presence of an in-plane
external electric field reinforces such a dependency.

We consider that the findings here presented may
contribute to the understanding of the effects of the
tilting of the Dirac cones 8B and 2BH —pmmn
borophene on the charge carrier dynamics under
the interaction of electromagnetic fields, with which
these materials could be considered as viable val-
ley splitters in experimental applications. Besides,
the coherent state description developed through the
phase-space representation may provide a satisfac-
tory semi-classical description of similar quantum
valley-dependent phenomena that occur in other tilted
anisotropic Dirac materials interacting with external
electromagnetic fields.
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