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Abstract. In this work, we construct a time-dependent step-like potential supporting a normalizable
state with energy embedded in the continuum. The potential is allowed to evolve until a stopping time
ti, where it becomes static. The normalizable state also evolves but remains localized at every fixed
time up to ti. After this time, the probability density of this state freezes becoming a Bound state In
the Continuum. Closed expressions for the potential, the freezable bound state in the continuum, and
scattering states are given.
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1. Introduction
The first discussion of Bound states In the Con-
tinuum (BICs) in quantum mechanics dates back
to von Neumann and Wigner [1] who constructed
normalizable states corresponding to an energy em-
bedded in the continuum in a periodic potential
V (r) = E + ∇2ψ/ψ from a modulated free-particle
wave function ψ(r) = (sin(r)/r)f(r), with twice the
period of the potential. The localization of this state
is interpreted as the result of its reflection in the Bragg
mirror generated by the wrinkles of V (r) as r → ∞.
The extended family of von-Neumann and Wigner
potentials have been discussed and extended for many
years [2–5] from different frameworks including the
Gelfan-Levitan equation [6] also known as inverse scat-
tering method [4, 7], Darboux transformations [8, 9]
and supersymmetry (SUSY) [10–13], among others.
Bound states In the Continuum are nowadays recog-
nized as a general wave phenomenon and has been
explored theoretically and experimentally in many
different setups, see [14] for a recent review.

Exact solutions to the time-dependent Schrödinger
equation are known only in a few cases, including
the potential wells with moving walls [15, 16], which
has been explored from several approaches (see, for
instance, Ref. [17] and references therein) including
the adiabatic approximation [18] and perturbation
theory [16] and through point transformations [19–
23], which combined with supersymmetry techniques
allow to extend from the infinite potential well with
a moving wall to the trigonometric Pöschl-Teller po-
tential [24].

In this article, we present the construction of a time-
dependent step-like potential. We depart from the
standard stationary step potential and apply a second-
order supersymmetric transformation to add a BIC.
Then, by means of a point transformation, the poten-
tial and the state become dynamic and we allow them
to evolve. After a certain time, we assume that all the
time-dependence of the potential is frozen, such that
the potential becomes stationary again and explore
the behavior of the normalizable state. Intriguingly,
it is seen that the freezable BIC is not an eigenso-
lution of the stationary Schrödinger equation in the
frozen potential, but rather solves an equation that
includes a vector potential that does not generate
a magnetic field whatsoever. Thus, by an appropri-
ate gauge transformation, we gauge away the vector
potential and observe the BIC that remains frozen as
an eigenstate of the stationary Hamiltonian after the
potential ceases to evolve in time.

In order to expose our results, we have organized
the remaining of this article as follows: In Section 2
we describe the preliminaries of SUSY and a point
transformation. Section 3 presents the construction
of the time-dependent step-like potential and give ex-
plicit expressions for the freezable BIC and scattering
states. Final remarks are presented in Section 4.

2. Supersymmetry and a point
transformation

Point transformation is a successful technique to de-
fine a time-dependent Schrödinger equation with a full
time-dependent potential from a known stationary
problem [19, 20, 24]. In this section, we use a trans-
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formation of this kind in combination with a conflu-
ent supersymmetry transformation to obtain a time-
dependent step-like potential from the stationary case.

2.1. Confluent supersymmetry
Darboux transformation, intertwining technique
or supersymmetric quantum mechanics (SUSY) is
a method to map solutions ψ of a Schrödinger equa-
tion into solutions ψ̄ of another Schrödinger equation
[25–29]. It is based on an intertwining relation where
two Hamiltonians and a proposed operator L† must
fulfill the relation

H̄L† = L†H, (1)

where

H = − d2

dy2 + V0(y), H̄ = − d2

dy2 + V̄ (y). (2)

The main ingredient of SUSY are the seed solutions,
which correspond to solutions of the initial differential
equation Hu = ϵu, where ϵ is a real constant called
factorization energy. In this work we focus on the so
called confluent supersymmetry, where L† is a second-
order differential operator. Once a seed solution and
a factorization energy are chosen, the next step is to
construct the following auxiliary function

v = 1
u

(
ω +

∫
u2(y)dz

)
, (3)

where ω is a real constant to be fixed. Then, one way
to fulfill (1) is by selecting

L† =
(

− d

dy
+ v′

v

) (
− d

dy
+ u′

u

)
, (4)

and the potential term in H̄ as

V̄ (y) = V0(y) − 2 d
2

dy2 ln
(
ω +

∫ y

y0

u2dz

)
. (5)

Then, solutions of the differential equation Hψ = Eψ,
where E is energy, can be mapped using L† and the
intertwining relation as follows:

Hψ = Eψ,

⇓ times L†

L†Hψ = EL†ψ,

⇓ using (1)
H̄L†ψ = EL†ψ,

⇓ defining ψ̄ ∝ L†ψ

H̄ψ̄ = Eψ̄.

We define ψ̄ as

ψ̄ = 1
E − ϵ

L†ψ. (6)

The factor (E − ϵ)−1 is introduced for normalization
purposes. Moreover, H̄ could have an extra eigenstate

that cannot be written in the form (6). This state is
called missing state and plays an important role in this
work. The missing state is obtained as follows: First
we have seen that L† maps solutions of Hψ = Eψ
into solutions of H̄ψ̄ = Eψ̄, by obtaining the adjoint
equation of (1) HL = LH̄, where L = (L†)† we can
construct the inverse mapping, but there is a solution
ψ̄ϵ such that Lψ̄ϵ = 0. This solution is explicitly:

ψ̄ϵ = Cϵ
1
v

= Cϵ
u

ω +
∫
u2(y)dy

, (7)

where Cϵ is a normalization constant if ψ̄ϵ is square
integrable. This state fulfills H̄ψ̄ϵ = ϵψ̄ϵ. Notice that
the selection of u, ϵ and ω is very relevant, we must
choose these carefully to avoid the introduction of sin-
gularities in the potential V̄ that lead to singularities
also in ψ̄. The function ω +

∫
u2dy must be node-

less. We can satisfy this if either limy→∞ u(y) = 0 or
limy→−∞ u(y) = 0 and if ω is appropriately chosen.

2.2. Point transformation
Given that we know the solution of the time indepen-
dent Schrödinger equation

d2

dy2 ψ̄(y) +
[
E − V̄ (y)

]
ψ̄(y) = 0 (8)

with a potential defined in y ∈ (−∞,∞), let us con-
sider the following change of variable

y(x, t) = x

4t+ 1 , (9)

where x ∈ (−∞,∞) is considered as a spatial variable
and t ∈ [0,∞) a temporal one. Then, the wavefunc-
tion

ϕ(x, t) = 1√
4t+ 1

exp
{
i(x2 + E

4 )
4t+ 1

}
ψ̄

(
x

4t+ 1

)
, (10)

solves the time-dependent Schrödinger equation

i
∂

∂t
ϕ(x, t) + ∂2

∂x2ϕ(x, t) − V (x, t)ϕ(x, t) = 0, (11)

where the potential term is

V (x, t) = 1
(4t+ 1)2 V̄

(
x

4t+ 1

)
. (12)

In other words, the change of variable (9) together
with the replacements V̄ → V and ψ̄ → ϕ trans-
form a stationary Schrödinger equation into a time
dependent solvable one.

3. Time dependent step-like
potential with a freezable
bound state in the continuum

In this section, we depart from the well-known step
potential V (y) = V̂Θ(−y) as time independent sys-
tem. Then, using confluent supersymmetry we will
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add a single BIC. Furthermore, with the point trans-
formation previously introduced we transform the
stationary system into a time-dependent system with
an explicitly time-dependent potential. We will choose
a stopping time or freezing time ti after which the
potential no longer evolves:

VF (x, t) =
{
V (x, t) 0 ≤ t < ti,

V (x, ti) t ≥ ti.
(13)

Finally, the solutions of the Schrödinger equation will
be presented.

Let us commence our discussion by considering the
Step-Potential

V0(y) =
{
V̂ y ≤ 0,
0 y > 0,

(14)

defined along the axis y ∈ (−∞,∞) and V̂ is a positive
constant. The solutions of this system are well known
in the literature (see [30, 31]). Restricting ourselves
to the case 0 < Eq < V̂ , the solutions are:

ψ(y) =
{

exp(ρy) y ≤ 0,
cos(qy) + κ

k sin(qy) y > 0,
(15)

with energy Eq = q2 and ρ =
√
V̂ − Eq.

Next, to perform the confluent supersymmetric
transformation we choose a factorization energy such
that 0 < ϵ < V̂ and the corresponding seed solution
u(y) as

u(y) =
{

exp(κy) y ≤ 0,
cos(ky) + κ

k sin(ky) y > 0,
(16)

with k2 = ϵ and κ2 = V̂ − ϵ. Note that u(y) → 0
when y → −∞. Then, from (5) we obtain explicitly
the SUSY partner V̄ :

V̄ (y) =

V̂ − 16 exp(2κy)κ3ω

(exp(2κy)+2κω)2 y ≤ 0

32k2
(
k cos(ky) + κ sin(ky) ṽ(y)

v̂(y)

)
y > 0,

(17)

where the functions ṽ(y) and v̂(y) are

ṽ(y) =
[
(k2 + κ2)(k2x+ κ) + 2k4ω

]
sin(ky)

− k
[
(k2 + κ2)(κy + 1) + 2k2κω

]
,

v̂(y) =
[
2ky(k2 + κ2) + 4k3ω − 2kκ cos(2ky)

+(k2 − κ2) sin(2ky)
]2
.

We can calculate directly from (7) the missing state
associated to the factorization energy ϵ:

ψ̄ϵ(y) = Cϵ


2κ exp(κy)

2κω+exp(2κy) y ≤ 0,
4k3(cos(ky)+ κ

k sin(ky))
ψ̂ϵ(y) y > 0,

(18)

where

ψ̂ϵ(y) = (k2 − κ2) sin(2ky) − 2κk cos(2ky)
+ 4ωk3 + 2ky

(
κ2 + k2)

.
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Figure 1. |ψ̄ϵ(y)|2 and an envelop function of
the form A(y) = a

b+y
, with a = 2k(κ2 + k2)−1/2,

b = 2ωk2(κ2 + k2)−1. The scale of the graph is fixed
with V̂ = 5, k = 1, κ = 2 and Cϵ = 1, in the appropri-
ate units.

In order to confirm that ψ̄ϵ is square integrable, we
proceed in the following way. First, we separate the
integral ||ψ̄ϵ||2 =

∫ ∞
−∞ |ψ̄ϵ|2dy =

∫ 0
−∞ |ψ̄ϵ|2dy +∫ ∞

0 |ψ̄ϵ|2dy. The first integral can be directly calcu-
lated:∫ 0

−∞
|ψ̄ϵ|2dy = |Cϵ|2

√
2
κω

tan−1
(

1√
2κω

)
.

For the second integral, we can show that it is bounded
by a square integrable function:∫ ∞

0 |ψ̄ϵ|2dy
|Cϵ|2

=
∫ ∞

0

∣∣∣∣∣4k3(cos(ky) + κ
k sin(ky))

ψ̂ϵ(y)

∣∣∣∣∣
2

dy

≤
∫ ∞

0

∣∣∣∣∣ 4k2√
k2 + κ2

4ωk3 + 2ky (κ2 + k2)

∣∣∣∣∣
2

dy

=
∫ ∞

0

∣∣∣∣ a

b+ y

∣∣∣∣2
dy = a2

b
, (19)

where a = 2k√
κ2+k2 , b = 2ωk2

κ2+k2 . Figure 1 shows a fair
fit to the squared modulus of eq. (18) for y > 0.

For an energy E = q2 ̸= ϵ, the wavefunction solving
H̄ψ̄ = Eψ̄ is constructed using (6), and (15). It reads

ψ̄(y) =


[

(κ−ρ) exp(ρy)
(q2−k2)

]
ψ̄−(y) y ≤ 0,

ψ̄+(y)−q2 cos(qy)−qρ sin(qy)
q2−k2 y > 0,

(20)

where we abbreviated

ψ̄−(y) = 2κω0(κ+ ρ) + (ρ− κ) exp(2κy)
2κω + exp(2κy) ,

ψ̄+(y) = k2(ρ sin(qy) + q cos(qy))
q

+ 4k(κ sin(ky) + k cos(ky))
ψ̂ϵ(y)

×
[
k

q

(
κ cos(ky) − k sin(ky)

) (
ρ sin(qy) + q cos(qy)

)
+

(
κ sin(ky) + k cos(ky)

)(
q sin(qy) − ρ cos(qy)

)]
.
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In Figure 2 the potential V̄ (y), along with the proba-
bility densities of the missing state |ψ̄ϵ(y)|2 and a scat-
tering state |ψ̄(y)|2 are shown. We observe that the
wavefunction of the BIC has an envelop function which
tends to zero as |y| → ∞, whereas the state ψ̄(y) is
not localized.

The next step is to construct a time dependent
potential from (17) using the point transformation
presented in (9-12). Notice that x = y at t = 0. Then
V̄ transforms as the piecewise potential:

V (x, t) = 1
(4t+ 1)2

{
V̂ −

16κ3ω exp( 2κx
4t+1 )[

2κω + exp( 2κx
4t+1 )

]2

}
(21)

if x ≤ 0, otherwise

V (x, t) = 32k2

(4t+ 1)2

×
[
k cos

(
kx

4t+ 1

)
+ κ sin

(
kx

4t+ 1

)
ṽ(y(x, t))
v̂(y(x, t))

]
. (22)

In Figure 3 (top) we show the potential V (x, t) at
t = 0, t = 0.1 and t = 0.2. Its shape changes in time
and its spatial profile oscillates as expected, vanishing
as x → ∞. Analogously, for the time-dependent BIC,
the associated wavefunction for energy ϵ is explicitly

ϕϵ(x, t) = 1√
4t+ 1

exp

{
i(x2 + k2

4 )
4t+ 1

}
ψ̄ϵ

(
x

4t+ 1

)
, (23)

This function solves the time-dependent Schrödinger
equation i∂tϕϵ + ∂xxϕϵ − V ϕϵ = 0 and its square
integrability is guaranteed since ψ̄ϵ(y) is a square
integrable function:

||ϕϵ||2 =
∫ ∞

−∞
|ϕϵ(x, t)|2dx

= 1
4t+ 1

∫ ∞

−∞

∣∣ψ̄ϵ (
x

4t+ 1

) ∣∣2
dx

=
∫ ∞

−∞

∣∣ψ̄ϵ(y)
∣∣2
dy = ||ψ̄ϵ||2. (24)

where we used the change of variable (9). Its proba-
bility density is shown in Figure 3 (center) at different
times. This state is localized and the first peak in the
probability density broadens and diminishes height as
time increases.

For states with energy Eq = q2 ̸= ϵ, the correspond-
ing time-dependent wavefunction has the explicit form

ϕ(x, t) = 1√
4t+ 1

exp

{
i(x2 + q2

4 )
4t+ 1

}
ψ̄

(
x

4t+ 1

)
, (25)

The behavior of the probability density |ϕ(x, t)|2, for
E = 2 at different times is shown in Figure 3 (bottom).
This state is unlocalized at any time.

Finally, we choose the freezing or stopping time ti.
Then, we can consider a charge particle in a potential:

VF (x, t) =
{
V (x, t) 0 ≤ t < ti,

V (x, ti) t ≥ ti.
(26)

Figure 2. Potential V̄ (y), along with the probability
densities of the missing state |ψ̄ϵ(y)|2 and a scattering
state |ψ̄(y)|2 are shown. The scale of the graph is fixed
with V̂ = 5, k = 1, κ = 2, q =

√
2 and ω = 4.

Figure 3. Behavior of the potential V (x, t) (top), the
BIC ϕϵ(x, t) (center) and the scattering state ϕ(x, t)
(bottom) at the times t = 0, t = 0.1, and t = 0.2. The
scale of the graphs is fixed by V̂ = 5, k = 1, κ = 2,
q =

√
2 and ω = 4.
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where V (x, t) is given by (21,22). Notice that when
t ∈ [0, ti) the potential is changing in time, and when
t ≥ ti the potential is frozen. This potential is in fact
a family, parametrized by ω > 0, recall that ω was
introduced by the confluent SUSY transformation.

Neither ϕ(x, t) nor ϕϵ(x, t) are stationary states,
they evolve in time, and they are not eigenfunctions
of the operator −∂xx + V . At any time t ≥ ti, the
functions ϕ(x, ti) and ϕϵ(x, ti) satisfy the eigenvalue
equation:[(

− ∂

∂x
+ iAx(x)

)2
+ V (x, ti)

]
ϕ(x, ti)

= E

(4ti + 1)2ϕ(x, ti), t ≥ ti, (27)

where Ax(x) = −∂xθ(x) and

θ(x) = i

4ti + 1

(
x2 + E

4

)
. (28)

Equation (27) is the Schrödinger equation for
a charged particle under the influence of a vector
potential A = (Ax, 0, 0) that, nevertheless, does not
generate magnetic field since B = ∇ × A = 0. Let
us recall that the Schrödinger equation for a charged
particle of charge q immersed in an external electro-
magnetic field is better written in terms of the scalar
φ and vector potentials A through the Hamiltonian

H = (p̂ + qA)2 + qφ. (29)

These electromagnetic potentials allow us to define
the electric and magnetic fields as

E = −∇φ− ∂A
∂t

, B = ∇ × A, (30)

definition that does not change if the following trans-
formations are performed simultaneously,

A → A′ = A + ∇λ, φ → φ′ = φ− ∂λ

∂t
, (31)

where λ = λ(x, t) is a scalar function. This is a state-
ment of gauge invariance of Maxwell’s equations. In
quantum mechanics, the time-dependent Schrödinger
equation

i
∂ψ

∂t
= Hψ (32)

retains this feature if along the transformations in
Eq. (31) in the Hamiltonian (29), the wavefunction
changes according to the local phase transformation

ψ → ψ′ = eiλψ. (33)

In our example at hand, this freedom allows us to
select λ in such a way that if at certain instant of
time ti the vector potential A ̸= 0 but before we
had A = 0, one can still have a Schrödinger equation
without vector potential by tuning appropriately the
scalar potential. In particular, by selecting

λ(x, t) = ℓ(x)Θ(t− ti), (34)

we can shift the scalar potential such that the time-
dependent equation governing this state never de-
velops a vector potential to begin with. Then, by
choosing a vector potential A(x, t) = (Ax(x, t), 0, 0)
where Ax(x, t) = −Θ(t − ti)∂xθ(x), we observe that
the piecewise function

ϕF (x, t) =
{
ϕ(x, t) 0 ≤ t < ti,

ψ̄
(

x
4ti+1

)
t ≥ ti.

(35)

becomes a solution of

i∂tϕF (x, t) = [−∂xx + VF (x, t)]ϕF (x, t) = HϕF (x, t).

In particular, the function

ϕFϵ(x, t) =
{
ϕϵ(x, t) 0 ≤ t < ti,

ψ̄ϵ

(
x

4ti+1

)
t ≥ ti,

(36)

before the freezing time ti is just a time dependent
wave packet but for t > ti it becomes a Frozen Bound
state In the Continuum satisfying the eigenvalue equa-
tion HϕFϵ = εϕFϵ, where ε = ϵ/(4ti+1)2. In Figure 4
we plot the potential VF (top), the Freezable Bound
State in the Continuum ϕFϵ (center) and a scattering
state ϕF (bottom) at t = 0.8, t = 1 and t = 1.8, the
freezing time is ti = 1, note that after t = 1 neither
the potential nor the wavefunctions evolve.

4. Final remarks
In this article, we apply a confluent supersymmetric
transformation to the standard Step-Potential defined
in the whole real axis. The seed solution that we
use makes it possible to embed a localized squared
integrable state in the continuum spectrum, a BIC.
We have provided the system, potential, and states,
with time evolution through a point transformation.
Nevertheless, we notice that the wrinkles in the po-
tential as x → ∞ still localize a BIC at every fixed
time.

Next, we allow the evolution of the system continue
and at a given stopping time ti, we freeze the potential
and fix it stationary. Upon exploring the behavior of
the BIC with this static potential after the freeze-out
time, we surprisingly observe that it does not cor-
respond to a solution of the stationary Schrödinger
equation, but instead it develops a geometric phase
encoded in a vector potential which does not gener-
ate any magnetic field. Thus, by gauging out this
geometric phase, the resulting state becomes indeed
an eigenstate of the frozen Hamiltonian. We call this
state a Freezable Bound state In the Continuum.

Further examples are being examined under the
strategy presented in this work, including vector po-
tentials which might be relevant for pseudo-relativistic
systems.
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Figure 4. Behavior of the potential VF (x, t) (top),
the FBIC ϕF ϵ(x, t) (center) and the scattering state
ϕF (x, t) (bottom) at the times t = 0.8, t = 1, and
t = 1.8. The freezing time is ti = 1. The scale of the
graph is fixed by V̂ = 5, k = 1, κ = 2, q =

√
2 and

ω = 4.
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