
1 Introduction

Philosophers and scientists in the 19th century started to
investigate many natural and social phenomena. In fact, the
19th century was a revolutionary era during which the first
“natural law” of economics [1] – Pareto’s law was observed.
Pareto’s law states that the high end of wealth distribution fol-
lows the power-law P(w) ~ w����, where exponent � is stable
for an investigated country in a given period of time.

Many scientists have questioned the validity of Pareto’s law
and they have made measurements of the distribution, but
the main message still remains true – the higher end of wealth
distribution behaves like the power law. Experiments in e.g.
[2, 3, 4, 5] performed in the last few years, have shown the va-
lidity of Pareto’s law. The functional form itself is not amazing
but the stability of the law in time and space is remarkable.
The value of exponent � varies slightly from one country to
another and there are small fluctuations of exponent � in
time, but Pareto’s law has been found almost everywhere.
Moreover, the validity of Pareto’s law can be extended back to
ancient Egypt, to the times of the Pharaohs [6].

This universality of the power-law tail is a surprising phe-
nomenon, and it asks for an explanation. Recent studies [7, 8,
9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20] have investigated
the multiplicative random process repelled from zero as a
mathematical source of power-law distributions. However,
there are a million ways to implement multiplicative random
processes, and the most studied implementations are the
generalized Lotka-Volterra equation [10, 11, 12, 13] and the
analogy with directed polymers in random media [21, 22, 23].
In these methods, models are formed by a kinetic equation
that describes the exchange of wealth in a society of agents
and global redistribution which is analogous to repelling from
zero in stochastic processes.

Empirical studies of the lower end of the distribution have
shown exponential behavior [3, 24, 25] and this behavior has
been interpreted as a conservation law for total wealth, which
leads to the robust Boltzmann exponential distribution that is
analogous to the energy distribution in a gas of elastically
scattering molecules.

Similar studies in [26] with previous notes lead to the view
of economic activities as a scattering process, where the agents
are analogous to inelastic scattering particles [27, 28, 29,
30, 31, 32, 33]. Inelasticity is very important to explain the

power-law tail of wealth distribution. The assumption that
there is a total wealth increase on average is reasonable for
economic reasons (e.g., rising GDP).

Inelastical scattering of particles has been investigated in
the context of granular materials [34] and the Maxwell model
and its inelastical variants, e.g., [35, 36]. These studies lead to
the conclusion that a self-similar solution of kinetic equations
exists. This solution is not stationary but assumes a time-inde-
pendent form after rescaling the energy, and the tail of the
scaling function is the power-law when certain conditions
are used.

A theoretical investigation of inelastical scattering agents
on a fully-connected network (mean field solution) is per-
formed in [37] and power-law tails of wealth distribution
were found for a large set of parameters �, � of the inter-
action. It is suggested in [37] that the theoretical solutions
do not answer the problem of the robustness of exponent � in
different societies and the answer could be given by a socio-
logical ingredient in the model.

Recent investigations of networks, which has been re-
viewed in [38], show some remarkable phenomena, and mod-
els that agree with the basic experimental measurements have
been introduced e.g. in [39, 40]. One possible enhancement
of the model could be the use of networks where interaction is
allowed only along the edges. This paper deals with simula-
tions of the model in [37] on the Watts- Strogatz network [39].

2 Definition of the model
Let us imagine a society of N agents, where each agent

has only one variable which signs his/her wealth ~wi,
i N�{ , , , }1 2 � . Thus, the state of the system is described by
W w w wN� {~ ,~ , ,~ }1 2 � . The agents are able to interact and the
interaction is essentially instantaneous. Of course, a real society
is more complicated and many economic interactions can
take place at the same time, pairwise, although some economic
interactions can be taken as multilateral rather than bilateral
in a real society, and positive, the interaction has a positive
effect on the total wealth of the society of the agents. Thus, the
interacting agents become, in sum, more wealthy after the
interaction than at the beginning of the interaction.

When two agents i and j are chosen to interact, the dynam-
ics of the wealth of agents i and j is governed by interactions
that can be formalized as follows
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and all other agents remain unchanged, so ~ ( ) ~ ( )w t w tk k� �1
for k i and k j where � and � are parameters of the model.
� �( , )0 1 measures the strength of the exchange and � > 0
measures the one-step inow of wealth.

Interaction is allowed only along the edges of a network,
which is represented by the graph � �� ( , )E , where � is the
set of all nodes and E is the set of all edges. Edge e is a unor-
dered pair e i j� ( , ) connecting nodes i and j. Each node i from
i �� has its neighborhood � � �i j i j� � �{ |( , ) }. Each agent i
is bound to its own node i and the agent’s neighborhood is �i.

The network is generated by the Watts-Strogatz algorithm
[39], which supports the network with basic features that have
been found to describe human networks. A rewiring algo-
rithm is applied to a totally ordered network, which means
that each edge is rewired to a randomly chosen agent with
probability p.

There are two possible ways to execute one Monte Carlo
step, using
� an agent initiated model,
� an edge initiated model.

2.1 Agent initiated model
The updating mechanism of the Monte Carlo step is

based on the choice of agents i.e., agent i �� is chosen with
uniform distribution and a second agent j is chosen with
uniform distribution from his/her neighbors �i. It can be
argued that the edges of the graph are only dispositions
that can be used by agents and pair agents that interact, are
interested in collaboration, and the collaboration is useful for
them.

2.2 Edge initiated model
This model is based on the choice of an edge e i j� ( , ) with

uniform distribution. The interacting agents are signed i and
j, the rule of interaction is symmetric to the exchange of i for j,
so there is no ambiguity. It can be argued that every connec-
tion in society is used with the same probability, and highly
connected agents will interact very frequently.

3 Interesting variables
Measured wealth was normalized w w wi i� ~ . This means

that there are N units of wealth in the society after normaliza-
tion, and they are distributed among the agents.

The first interesting variable is social tension, which mea-
sures differences in wealth
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where w
N

wii E
�

��1 so it is the average. � �( , )0 1 is a pa-

rameter set up to � �1 2 in our simulations.
The second interesting variable is distribution of wealth

D w P w w( ) ( )� � � . (3)

P means probability that a randomly chosen agent’s wealth is
greater than w.

The following variable is the correlation between wealth
and connectivity

H c wP w c( ) ( | )� . (4)
Value H(c) is computed as

H c
wik c

k c

i

i

( ) �
�

�

�
� 1

, (5)

where ki is connectivity of individual agent i and c is an integer
value.

4 Results of simulations
The model was investigated with fixed interaction param-

eters that were set up to fulfill equation 10 from [37]
2 1 2� � �� �( ) . (6)

with � � 3 2, i.e., the same interaction where the power-law
exponent of wealth distribution of the model on the fully-con-
nected network was � � 3 2. Now there is only one freedom,
which will be fixed by setting up � � 001. .

The simulations were performed with the following
parameters:
General parameters of the Monte Carlo method
� Number of agents N � 10000
� Final time of the simulations T � 1.5 109

� Number of Monte Carlo runs R � 10

Parameters of the interaction
� � � 2.5 10�5

� � � 0.01

Parameters of the network
There are two parameters in the construction of the small-

-world network using the Watts-Strogatz algorithm [39]:
� Initial number of edges from agent m � 4 (mean

connectivity)
� Probability p �[ , ]0 1 of rewiring of the edge.

The initial wealth of the agents was set at 1, so the initial
wealth dispersed in the society of N agents is N.

4.1 Agent initiated model
The model is based on random choice of agents that will

interact using motion equation 1. The time evolution of social
tension (Fig. 1) for all p rises and then decreases, but in the
case of parameter p < pa, 0.00007 < pa < 0.0001, the pro-
cess is slower and for the subset of cases with p  0 there is a
trough or plateau in the time evolution after the peak of social
tension. The case with p > pa behaves differently: there is one
peak and then a rapid decrease in social tension.

The distribution of wealth (Fig. 2) permits the power-law
tail for p>pa (the same symbol is used as a consequence of the
power-law behavior and the different social tension evolution)
with exponent �0.96, which is stable for the interval of p at
the thermodynamic limit N � ��, T � �� and N T con-
stant. The power-law is valid for approximately 1–5 % of the
population, which is in quite good agreement with the mea-
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Fig. 1: Time evolution of social tension in the agent initiated model

Fig. 2: Distribution of wealth among agents in the agent initiated model

Fig. 3: Correlation of wealth and connectivity in the agent initiated model



surements in [25]. The deviation of the data from the power-
-law for the higher end of distribution behaves as a finite-size
effect. If p > pa, behavior of wealth distribution is no longer
power-law, and the initial power-law tail is spread by the dy-
namics of the model.

In Fig. 3, the average connectivity of the network was 4,
and the connectivity is dispersed around this value during the
rewiring process. In the case p < pc, there is a strong correla-
tion between average wealth and connectivity, but the case
p > pa enables less connected agents to outperform agents
with average connectivity.

4.2 Edge initiated model
The model is based on a random choice of edges that will

interact using motion equation 1. Time evolution of social
tension (Fig. 4) seems very similar to the previous case. In the
case of p < pe , 0.00007 < pe < 0.0001, the dynamic is slower
than in the following case, and for p > 0 there is a peak and a
plateau, or a twin peak. This is in contrast to the case p > pe,
where there is only one peak and then a rapid decrease.

The distribution of wealth (Fig. 5) allows power-law be-
havior with exponent � � �0.95 for the case p < pe and the
power-law tail is stable at the thermodynamic limit. As in the
previous case it is valid for 1–5% of the population and the
deviation from the power-law for the higher end of the distri-
bution is a finite-size effect. However, there is no power-law
for p > pe.

The correlation of wealth (Fig. 6) shows that average
wealth is a strictly growing function of connectivity c. The
average wealth of a player with average connectivity (4) is
better for p < pe, which is similar to the previous case.

5 Conclusions
A model of wealth distribution based on inelastical scatter-

ing interaction was simulated on the Watts-Strogatz network
with the aim of obtaining the powerlaw tail in the higher end
of the distribution, which corresponds with Pareto’s empirical
observations. There are intervals p where the model admits
the power-law p < pg, g a e�{ , }, which is stable at the thermo-
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Fig. 4: Time evolution of social tension in the edge initiated model

Fig. 5: Distribution of wealth among agents in the edge initiated model



dynamic limit and p > pg where there is no longer the power-
-law. So the model admits the power-law only for a “closed”
community without many merchants that trade with distant
communities. The exponents, which were measured in the
simulations, differ from the mean-field computations in [37]
with the exponent � � 3 2.

Connectivity of the agents was a positive factor for wealth,
although there are counter-cases. This is especially true for
higher connectivities.
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