
1 Introduction

In recent years, the combinatorial properties of finite and
infinite words have become significantly important in fields of
physics, biology, mathematics and computer science. One of
the first impulses for extensive research in this field was the
discovery of quasi-crystals.

Normal crystal structures show rotational and translation-
al symmetry. In 1982, however, Dan Shechtman discovered an
aperiodic structure (which was formed by rapidly-quenched
aluminum alloys) that has a perfect long-range order, but no
three-dimensional translational periodicity (see e.g. [1] or
[2]). Since then many stable and unstable aperiodic structures
have been discovered. They are now known as quasi-crystals.

The problematics of aperiodic structures has been studied
from various points of view and there are numerous relations
with other applications (besides solid-state physics), such as
pseudo-random number generators [3], pattern recognition
and symbolic dynamical systems. Early results are reported in
[4] or [5].

This paper is devoted to Sturmian words. Sturmian words
are infinite words over a binary alphabet with exactly n�1 fac-
tors of length n for each n � 0. They represent the simplest
family of quasi-crystals. The history of Sturmian words dates
back to the astronomer J. Bernoulli III [6]. He considered the
sequence � � � �( )n n� � � �1 1 2 1 2� � , where n � 1 and � is a
positive irrational. Based on the continued fraction expan-
sion of �, he gave (without proof) an explicit description of
the terms of the sequence. There also exist some early works
by Christoffel and Markoff.

A. A. Markoff was the first to prove the validity of Ber-
noulli’s description. He did that in his work [7], where he
described the terms of the sequence � � � � � �( )n n� � �1 � � � ,
n � 1 (later known as a mechanical sequence).

The first detailed investigation of Sturmian words is due
to Hedlund and Morse [4], who studied such words from the
point of view of symbolic dynamics and, in fact, introduced
the term „Sturmian“; named after the mathematician Charles
Francois Sturm.

It appears that there are several equivalent ways of con-
structing Sturmian words. We will describe some of them and
show the relationship with other notions from the combina-
torics on words such as palindromes and return words. Then
we make some notes on an extension of Sturmian words using
the cut-and-project scheme. The next section is devoted to
the important question of the invariance of Sturmian words

on a substitution. In the last section we present some open
problems related to generalizations of Sturmian words.

2 Sturmian words
An infinite one-sided word

w w w w wn n N� ��( ) ,
0 0 1 2�

is a sequence of letters from a finite set A which is called an
alphabet. We use the notation N for the set of integers and
N N0 0� 	 { }. A finite word v v v vn� �0 1 1� is a finite string
of letters from A and v n� is the length of v. The set of all
finite words over the alphabet A is denoted by A*. A finite
word u A
 * is a factor of w if there exist 0 � �k l such that
u w wk l� � . The empty word is denoted by �. The set of fac-
tors of w of length n is written Ln(w) and the set of all factors of
w is denoted by L(w). The set L(w) is often called the language.

An infinite word w is ultimately periodic if there exist a
word u and a word v such that w uv� � where v� is the infinite
concatenation of the word v. It is periodic if u is the empty
word. If the infinite word w does not have any of the previous
forms we say that it is aperiodic. We say that u is a prefix (resp.
suffix) of v v v vn� �0 1 1� , v L wn� ( ), if there exists0 1� � �l n
such that u v vl� 0� (resp. u v v vl l n� � �1 1� ). The infinite
word w, l � 0, is a suffix of w.

An infinite word w is uniformly recurrent if for every inte-
ger k there exists an integer l such that each word of L wk( )
occurs in every word of length l.

The usual way of defining Sturmian words is via the
complexity function. Let w be an infinite word and Cw be a
mapping N N0 � , such thatC nw( ) is the number of different
factors of length n of w; i.e. C n L ww n( ) # ( )� . Cw is called
the complexity and we say that the word w is Sturmian if
C n nw( ) � � 1for all n. Since Cw( )1 2� , Sturmian words are de-
fined over a binary alphabet, say A � { , }0 1 . Clearly Cw( )0 1�
for any w.

There have been some attempts to extend Sturmian words
to words over alphabets with more than two letters, for in-
stance [8] or [9], but none of these constructions show such
nice properties as Sturmian words. However, the approach of
Arnoux and Rauzy presented in [8] resulted in another inter-
esting family of words called Arnoux-Rauzy sequences.

Another combinatorial definition of Sturmian words is
based on the distribution of letters in the word. Let w be an in-
finite word, u v L w, ( )� be two factors of the same length
u v� and function � be defined

�( , )u v u v� �0 0 ,
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where u 0 denotes the number of occurrences of 0 in u. We say
that w is balanced if and only if �( , )u v �1 for all u v L w, ( )�
with u v� . Note that the structure of a balanced word over
the alphabet A � { , }0 1 is formed, either by a block of 0’s be-
tween two consecutive 1’s, or by a block of 1’s between two
consecutive 0’s. It is easy to see that the length of the blocks of
0’s between two consecutive 1’s (resp. blocks of 1’s between
two consecutive 0’s) differs at most by 1 in a balanced word. As
we will see balanced words are equivalent to Sturmian words.

In the literature one can find several constructions of
binary words. We start with the construction presented by
Hedlund and Morse in [4]. Let �, � be real numbers, where
� �( , )0 1 and � �[ , )0 1 . Then s s n� � � �, , ( )� , s s n� � � �, , ( )� are
sequences defined by,


 � 
 �s n n n� � � � � �, ( ): ( )� � � � �1 , for n � 0,

� � � �s n n n� � � � � �, ( ): ( )� � � � �1 , for n � 0.
These words are usually referred to as mechanical words

and � is called the slope and � the intercept. Mechani-
cal words of s � �, resp. s� �, have a nice geometrical
interpretation. Consider the integer lattice Z2, the straight
line y x� �� �, x � 0, and two sequences of integer points


 �� �X n nn � �, � � and � �� �Y n nn � �, � � . The elements of
Xn cover integer points of the lattice just below the line
y x� �� � and the elements of Yn cover points just above the
line. If s n� �, ( ) � 0 then the points Xn and Xn�1 lie on the hori-
zontal line, and if s n� �, ( ) �1 then they lie on the diagonal
line. The same holds for s n� �, ( ) and Yn. In fact, the sequences
s � �, , s� �, are the coding of a discretization of a straight line.

Note that if � is irrational then s � �, and s� �, differ by at
most for two values of n. Clearly, this can happen only if
n� �� is an integer for some n. If we consider � � 0 and n � 0,
then s �, ( )0 0 0� and s�, ( )0 0 1� and we obtain the important
special case of mechanical words

s c� �,0 0� , s c� �,0 1� ; n � 0.
The infinite word c� is called the characteristic sequence

of �.
Crisp et al. study, in their work [10], another way of

constructing characteristic sequences. Consider again the in-
teger lattice Z2 and the straight line y x� � , where � is a
positive irrational and x � 0. We label the intersections of the
line y x� � with verticals of the grid using 0, and we label by 1
the intersections of y x� � with horizontals. The sequence
of labels forms the so called cutting sequence and is denoted
by S�. It can be shown that c� �� S if and only if � � �� �( )1

(see e.g. [10]).
One can often encounter the term r-interval exchange

map in connection with infinite words. Properties of words
generated by the r-interval exchange map (called the coding
of the r-interval exchange map) are studied from different as-
pects in [11], [12] or [13]. Let us closely mention the 2-interval
exchange map and its reference to Sturmian words.

Let � �( , )0 1 be an irrational number and x �[ , )0 1 . Let
I1 0 1� �[ , )� , I2 1 1� �[ , )� be the decompositions of the inter-
val [ , )0 1 . The map T�, given by the rule

T x
x x
x x�

� ��

� � �
( )

, [ , ,
, [ , ,

�
� � �

� � � �
�
�
�

for
for

0 1
1 1 1

is called the 2-interval exchange map. It can be written in a
more complex way


 �T x x x x� � � �( ) { }� � � � � � , � �x [ , )0 1 .

For the n-th iteration of the 2-interval exchange map T�
we obtain

T x T x n xn
n� � �( )( ) ( ) { }� � � .

Since � is irrational, T� does not have any fixed point. It is
not difficult to check that


 � 
 �( ) ( ) [ ,( )n x n x T xn� � � � � � �1 0 1� � ���

which implies that

s n
T
T

n

n� �
�

�

� ��

� � �
,

( )

( )( )
( ) [ , ,
( ) [ , .

�
� �

� �

�
�

0 0 1
1 1 1

if
if�

Let us show the most famous example of Sturmian words,
the Fibonacci word.
Example 2.1: Let 	 be the map given by 	 : ,0 011 0� � with
the property 	 	 	( ) ( ) ( )uv u v� for any finite words u, v over
the alphabet {0, 1}. Define the n-th finite Fibonacci word fn in
the following way: f0 0� and for all n � 0,

f fn n� �1 	( ).

Since f0 0� and 	(0) starts with 0, then fn is the prefix of
fn �1 for each n � 0. The Fibonacci word is defined as the limit
of the sequence of words fn and thus
lim

n
nf

��
� 010010100100101001010010010�

Note that the further applications of the map fn do not
change the Fibonacci word. Observe that the length fn is the
n-th element of the Fibonacci sequence Fn, (F F Fn n n� �� �1 2;
F0 1� , F1 2� ), for all n � 0. It can be shown that the
complexity of the Fibonacci word equals to n�1, thus the
word is Sturmian. The Fibonacci word also coincides with the
mechanical word with slope 1 2
 and zero intercept, where

 � �1 2 1 5( ) is the golden mean.

We finalize this part with a theorem by Hedlund and
Morse [4] which states that Sturmian, balanced and mechani-
cal words are indeed equivalent.
Theorem 2.1: (Hedlund, Morse). Let w be an infinite word over
the alphabet A � { , }0 1 . The following conditions are equivalent:
1. w is Sturmian;
2. w is balanced and aperiodic;
3. there exist an irrational �, � �( , )0 1 and a real � �[ , )0 1 such that

w s� � �, or w s� � �, , for all n � 0.

There exist several proofs of the theorem. The origi-
nal proof [4] is of combinatorial nature, while the other
by Lunnon and Pleasants [14] is based on geometrical
considerations.

2.1 Other characteristics of Sturmian words
We have mentioned several equivalent definitions of

Sturmian words as those with minimal complexity, balanced
aperiodic sequences and mechanical words. In the past few
years, there have been successful attempts to find a new
characterization of Sturmian words. The first one, which
we will describe uses return words, while the second uses
palindromes.

Let w be a one-sided infinite word and u a factor of w. We
say that a finite word v is the return word over u if vu is a factor
of w, u is a prefix of vu and there are exactly 2 occurrences of u
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in vu. In other words, the return word v over u starts with the
occurrence of u and ends just before the next occurrence of u.
Example 2.2: Let 0100101001001010010100100101… be
the Fibonacci word. The set of return words over 0101 con-
tains words 01010010 and 01010. For clarity, here is the
Fibonacci word with indicated return words over 0101 :

0100101001001010010100100101…
Vuillon [15] observed that the number of return words in-

dicates whether a word is Sturmian or not. He showed the
following theorem.
Theorem 2.2: A binary infinite word w is Sturmian if and only if
the set of return words over u has exactly two elements for every non
empty word u.

Note that the proof of the necessary condition includes a
nice application of Rauzy graphs, which are often used for in-
vestigation of growth of the complexity in infinite words [8].

Let us focus on palindromes. A palindrome is a finite word
that reads the same backwards as forwards. For instance, these
are the first palindromes of the Fibonacci word: �, 0, 1, 00,
010, 101, 1001, 00100, 01010,… In [16], Droubay and Pirillo
showed the characterization of Sturmian words by observing
the number of palindromes of even and odd length.
Theorem 2.3: An infinite word is Sturmian if and only if, for each
nonnegative integer n, there is exactly one palindrome of length n, if
n is even, and there are exactly two palindromes of length n, if n
is odd.

The mapping that assigns to an integer n the number of
palindromes of length n in a word is called the palindromic
complexity.

In the context of palindromes and Sturmian words, let us
draw attention to paper [17]. The authors proved that the
number of palindromes in a word n of length n is less or is
equal to n�1. Note that this holds for any kind of words (not
necessary Sturmian) over arbitrary alphabets. However in the
case of Sturmian words it was shown in [17] that the number
of all palindromes in a factor of length n is equal to n�1. The
reader may like to try finding words of length n over a 2-letter
alphabet with the number of palindromes less than n�1; this
is not as trivial as it may appear to be.

2.2 Bidirectional Sturmian words
In the previous sections we have outlined several charac-

teristics of Sturmian words. However we have limited our-
selves, from the very first definitions, to one-sided infinite
words. This restriction is typical for a large number of papers,
in spite the fact that the definitions of notions like balanced
words, mechanical words etc. can be extended, very naturally,
to both sides. The question is, whether the above listed theo-
rems still hold for bidirectional infinite words. Let us show a
way of generating bidirectional infinite words from which it
will be clear that such a generalization is possible.

Consider �, � fixed positive irrational numbers, � �� � ,
� �[ , )0 1 and the set
�� � � � � � � �, ( , ] { | , , }đ� � � � � � � �1 1m n m n m n Z .

It follows that m has to satisfy
� � 
 � �� � � � �n m n ,

hence 
 �m n� �� � , i.e. any element of �� � � �, ( , ]�1 has the
form 
 �� � �� �n n , for some n Z� . Using this fact we can
write


 ��� � � � � � ��, ( , ] { : }� � � � � �1 x n n n Zn ,

thus the elements of �� � � �, ( , ]�1 form an increasing se-
quence ( )xn n Z� . We can compute the lengths between two
consecutive points of ( )xn n Z� as


 � 
 �x x n nn n� � � � � � � �1 1( )� � � � �.

The term 
 � 
 �( )n n� � � �1 � � � � takes only two values 0
and 1 for each n Z� . Thus there are only two distances be-
tween neighbors in �� � � �, ( , ]�1 , namely 1 � � and �. Let us
define a sequence ( )wn n Z� of 0’s and 1’s by

w
x x
x xn
n n

n n
�

� �

� � �
�
�
�

�

�

0
1 1

1

1

if
if

�

�

,
.

The sequence ( )wn n Z� is a pointed bidirectional infinite
word

( ) | ,w w w w w wn n Z� � ��� �2 1 0 1 2

where | denotes a delimiter. Since the distances between the
consecutive points in �� � � �, ( , ]�1 are ordered as the me-
chanical word s � �, then w (i.e. the infinite word to the right
from the delimiter) is the Sturmian word. From the construc-
tion it is clear that the language of w w w0 1 2� is the same as
the language of �w w� �2 1. The complexity function Cw has
been defined for the right sided infinite words, however
the definition can be naturally extended to left sided infi-
nite words, say � � � �w w w� 2 1 as : C n L ww n� � �( ) # ( ). Since
C n L w L w C nw n n w� � � � �( ) # ( ) # ( ) ( ) the word �w w� �2 1 is
also Sturmian. Since an arbitrary shift of the whole interval
( , ]� ��1 (i.e. we are keeping the unit length of the interval)
does not change the set �� � � �, ( , ]�1 , it just shifts the position
of the delimiter, we can conclude that the word( )wn n Z� is the
pointed bidirectional infinite Sturmian word. From now on
we will consider only bidirectional infinite words.

Note that the set �� � � �, ( , ]�1 is called the cut-and-project
set and the interval ( , ]� ��1 is an acceptance window.

There are a couple of papers dealing with cut-and-project
sets. In [18] it is shown that a cut-and-project set has either
two or three distances between adjacent points; two distances
correspond to the case of the unit length of the acceptance
window and the distances form a Sturmian word. On the
other hand, the words corresponding to the cut-and-project
sets with three distances are exactly those which arise from the
coding of the 3-interval exchange map, and vice versa. In
[19], [20] the authors study substitution properties and the
substitutivity of cut-and-project sets.

3 Sturmian words and substitutions
Let us take a look at Sturmian words from a different point

of view. One can see in Example 2.1 that there exist Sturmian
words which are generated by certain maps (here we will call
them substitutions). In fact, the mentioned Fibonacci word is a
fixed point of the map 	. The question is whether this is a
general property of all Sturmian words, or whether there ex-
ists a class of Sturmian words invariant under substitutions.
Let us now state basic definitions and then we give an over-
view of the most interesting results.

A morphism 	 is a map of A* into itself satisfying
	 	 	( ) ( ) ( )uv u v� for each u v A, *� . The morphism is called
non-erasing if 	( )ai is not an empty word for any
a Ai � . A non-erasing morphism 	 is called a substitution.
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The action of 	 can be extended to bidirectional infinite
words

( ) |w w w w w wn n Z� � ��� �2 1 0 1 2

by

� �	 	 	 	 	( ) ( )| ( ) ( ) ( )w w w w w� �2 1 0 1 2

We say that the word ( )wn n Z� is invariant under the substitu-
tion 	 (or is a fixed point of 	) if

� � � �	 	 	 	 	( ) ( )| ( ) ( ) ( ) |w w w w w w w w w w� � � ��2 1 0 1 2 2 1 0 1 2

Suppose that we have a substitution 	 and there exist let-
ters a a Ai j, � , such that 	( )a uai i� and 	( )a a vj j� for some
non-empty words u v A, *� . Then by repeated application of
	 on the pair a ai j| of letters separated by the delimiter | we
obtain words 	 	( ) ( )( )| ( )n

i
n

ja a , n N� of increasing length.

Clearly

	 	 	 	( ) ( ) ( ) ( )( )| ( ) ( )| ( )n
i

n
j n

n
i

n
j na a u a a v� � �1 1 ,

for certain words u v An n, *� . The limit of 	 	( ) ( )( )| ( )n
i

n
ja a

for n � � is an infinite bidirectional word ( )wn n Z� and we
say that 	 generates the word ( )wn n Z� .

Let us define a weaker notion of a substitutive word.
We say that ( ) |w w w w w wn n Z� � ��� �2 1 0 1 2 is a substi-
tutive word, if there exists a substitution 	 on an alphabet B
with a fixed point ( ) |v v v v v vn n Z� � ��� �2 1 0 1 2 and a map
� :B A� such that w vn n� �( ), for each n Z� . Note that all
fixed points of a substitution are substitutive. The opposite is
not true.

Let A a ak� { , , }1 � be an alphabet. To a substitution 	 one
may assign a substitution matrix A � �Nk k in the following
way:
A ij j ia a: ( )� number of letters in the word 	 .

The problem of invariance under a substitution (or the
weaker notion of substitutivity) has motivated many papers.
There are some partial results, where authors consider only
one sided Sturmian words or characterize substitution invari-
ant bidirectional Sturmian words depending on the slope � if
the intercept � � 0.

Crisp et al. [10] carried on the work of Brown [21] and
studied substitution invariant cutting sequences. They proved
that the cutting sequence S� (resp. the mechanical sequence
c� is substitution invariant if and only if the continuous frac-
tion expansion of � (resp. �) has a certain form. The author in
[22] used some of their results and simplified their condition
on the invariance of the characteristic sequence c� under a
substitution. He showed that c�, � �( , )0 1 , is invariant under a
substitution 	 if and only if � is a quadratic irrational with
conjugate � 
� ( , )0 1 . Such � is called a Sturm number. This
result was shown independently by Allauzen, [23].

Parvaix [24] proved that bidirectional non-pointed
Sturmian words with � � 0 are invariant under � substitution
if and only if � is a Sturm number and the intercept � belongs
to the quadratic field Q a a b a,b Q( ) { | }� � �� .

A complete characterization of infinite one-sided substitu-
tion invariant Sturmian words was done by Yasutomi [25].
Berthé et al. [26] studied infinite words which arise from the
coding of the 2-interval exchange map and gave an alterna-
tive proof of Yasutomi’s result using Rauzy fractals associated
with invertible primitive substitutions. The authors also de-

fined for every fixed Sturm number � a matrix M� � �Q2 2

that is called the generating matrix of � and is closely related
to the smallest solution of a Pell equation. They showed that a
Sturmian sequence s � �, (� Sturm number, � �[ , )0 1 ) is a fixed
point of a substitution with substitution matrix A if and only if
A has the form M�

l , for some l �1.
We complete this overview by giving a few notes on paper

[27]. The authors have completely solved the question of the
substitution invariance of pointed bidirectional Sturmian
words. The main theorem shown in the paper is the following.
Theorem 3.1: Let � be an irrational number, � �( , )0 1 , � �[ , )0 1 .
The pointed bidirectional Sturmian word with slope � and intercept �
is invariant under a non-trivial substitution if and only if the follow-
ing three conditions are satisfied:

1. � is a Sturm number,
2. � ��Q( ),
3. � � � � � �� � �1 or 1 � � � � � �� � � , where �� is the image of �

under the Galois automorphism of the quadratic field Q( )� .

Note that this result is analogous to those derived in [25]
and [26] for the one-sided case.

The proof presented in [27] is constructive based on
the cut-and-project scheme that was sketched in the para-
graph devoted to bidirectional words. This approach has not
been used yet in the study of substitution invariant Sturmian
words. It turns out to be a good choice because the proof is
simple. One of the advantages of the cut-and-project scheme
is that the more difficult parts of the proof can be illus-
trated on vivid examples, which makes the whole paper more
comprehensible.

We believe that methods similar to those in [27] can solve
the question of the substitution invariance of words over a
3 letter alphabet, which arise from the coding of the 3-interval
exchange map.

4 Open problems
We have summarized several interesting properties of

Sturmian words and here we would like to highlight how the
results about Sturmian words can help in further advances in
the field of aperiodic words. As Sturmian words are the sim-
plest aperiodic structures, the question of generalisation of
results obtained for Sturmian words is particularly interest-
ing. The direct generalization of Sturmian words are infinite
words which arise from the coding of a 3-interval (resp. r-in-
terval) exchange map. We believe that results and techniques
used in the study of Sturmian words can be applied with
success to open problems connected with words coding a 3-in-
terval exchange map. Below you may find a list of the most
interesting issues.
1. A necessary and sufficient condition on the substitution

invariance of the words coding a 3-interval exchange
map is still not known. The problem of finding a similar
condition to that of Theorem 3.1 is still open, but the tech-
niques used in [27] may bring some answers.

2. Giving a description of substitution matrices of substi-
tutions which generate the words coding a 3-interval ex-
change map is a problem closely related to the previous
one. The question of finding generating matrices of such
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substitutions seems to be very challenging. This issue was
solved in [26] for Sturmian words.

3. Although a description of palindromes in the words cod-
ing a 3-interval exchange map is already known [17], we
believe that the use of the cut-and-project scheme can
give an alternative proof of this result. Nevertheless the
palindromic complexity is described only for a 2-interval
exchange map (see theorem 2.3) and a 3-interval ex-
change map [28], but we believe that a general description
can be obtained by considerations based on the cut-and-
-project scheme.
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