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Abstract. We report on some recent purely algebraic approaches to superintegrable systems from
the perspective of subspaces of commuting polynomials in the enveloping algebras of Lie algebras that
generate quadratic (and eventually higher-order) algebras. In this context, two algebraic formulations
are possible; a first one strongly dependent on representation theory, as well as a second formal approach
that focuses on the explicit construction within commutants of algebraic integrals for appropriate
algebraic Hamiltonians defined in terms of suitable subalgebras. The potential use in this context of
the notion of virtual copies of Lie algebras is briefly commented.
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1. Introduction
Both the study of (quasi-)exactly solvable systems,
as well as that of super-integrable systems make an
extensive use of the universal enveloping algebras of
Lie algebras, either in the context of the so-called
hidden algebras or as symmetry algebras of the sys-
tem. Of particular interest are those systems that,
beyond super-integrability properties, also belong to
the class of (quasi-)exactly solvable systems [1–5]. In
particular, quadratic subalgebras have been shown to
be a powerful tool for classifying and comparing super-
integrable systems, as shown in [6], where the scheme
of superintegrable systems on a two-dimensional con-
formally flat space has been characterized in terms of
contractions. Additional examples in higher dimen-
sions [7] lead us to suspect that n-dimensional super-
integrable systems are somehow associated to (higher
rank) polynomials in a suitable enveloping algebra [8],
further stimulating the search of alternative algebraic
approaches based on the structural properties of en-
veloping algebras. Although the precise fundamental
properties of enveloping algebras of generic semidirect
sums of simple and solvable Lie algebras are still far
from being completely understood, a purely formal
ansatz applied to the case of the Schrödinger alge-
bras Ŝ(n) has recently been shown to provide some
interesting features [9].

In this work we comment on some purely alge-
braic approaches formulated in the enveloping algebras
of Lie algebras for the identification or construction
of quadratic algebras that may lead to super-integrable
systems, once a suitable realization of the enveloping
algebra by first-order differential operators has been
chosen. The motivation for this analysis lies primarily
on the inspection of super-integrable systems from
the point of view of the algebraic properties of first
integrals seen as elements of an enveloping algebra, as
well as an attempt to determine to which extent these

integrals are characterized algebraically by the hidden
algebra [10]. This moreover suggests a realization-free
description of systems in terms of commutants of al-
gebraic Hamiltonians in enveloping algebras [11], in
which elements of the coadjoint representation of Lie
algebras may be useful to simplify computations.

2. First algebraic reformulation
In the context of (quasi)-exactly solvable problems, the
Hamiltonians are described as differential operators
in p variables that admit an expression as elements in
the enveloping algebra of a Lie algebra g, commonly
known as the hidden algebra, not necessarily associ-
ated to any symmetry algebra of the system. The main
requirement is the existence of a representation of g
that is invariant for the Hamiltonian, a constraint that
allows us to determine its spectrum (either partially or
completely) using algebraic methods [12]. So, for ex-
ample, the universal enveloping algebra of the simple
Lie algebra sl(2,R) and its realization as first-order
differential operators on the real line provide a char-
acterization of quasi-exactly solvable one-dimensional
systems [13]. A second type of systems that uses the
structural properties of enveloping algebras is given by
super-integrable systems, where both the Hamiltonian
and the constants of the motion are interpreted in the
enveloping algebra of some Lie algebra g. Merely in-
tegrable n-dimensional systems can be interpreted as
the image, via a realization Φ by first-order differential
operators, of an Abelian subalgebra A of U(g), while
super-integrable systems would correspond to non-
Abelian extensions of A. The problem under what
conditions a system both exhibits super-integrability
and (quasi-)exact solvability has been analyzed in de-
tail, and large classes of super-integrable systems that
are exactly solvable have been found (see [3, 14, 15]
and references therein).
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A first algebraic formulation, as developed in [10],
is motivated by the use of quadratic algebras in the
context of super-integrable (and exactly solvable) sys-
tems with a given hidden algebra g [3]. To this extent,
we consider a Hamiltonian H expressed in terms of
a subalgebra m ⊂ g via a realization Φ by differential
operators of the Lie algebra g:

H =
dim m∑
i,j=1

αijΦ(Xi)Φ(Xj) +
dim m∑
k=1

βkΦ(Xk) + γ0, (1)

where αij , βk, γ0 are constants and {X1, . . . , Xdim m}
is a basis of m. In this context, the Hamiltonian H is
obtained as the image of a quadratic element Ha in the
universal enveloping algebra U(m) ⊂ U(g). Similarly,
the (independent) constants of the motion φ1, . . . , φs

can also be rewritten as the image of elements in the
enveloping algebra U(g). As differential operators
they satisfy the commutators

[H, φj ] = 0, 1 ≤ j ≤ s. (2)

The commutators [φi, φj ] provide additional (depen-
dent) higher-order constants of the motion. A spe-
cially interesting case is given whenever the first inte-
grals generate a quadratic algebra.

Abstracting from the specific realization Φ, and fo-
cusing merely on the underlying algebraic formulation,
the formal polynomial

Ha =
dim m∑
i,j=1

αijXiXj +
dim m∑
k=1

βkXk + γ0

in the enveloping algebra U(m) of m allows us to re-
cover Hamiltonian H of the system once the generators
are realized by the differential operators. In analogous
form, we can find elements J1, . . . , Js in U(g) that cor-
respond, via the realization Φ, to the first integrals
φ1, . . . , φs of the system. While for the initial system
the relations

[H, φk] = 0, 1 ≤ k ≤ s,

are ensured, there is no necessity that the polynomials
Jk commute with Ha in U(g), although the relation

[Ha, Jk] = 0 (mod Φ) (3)

is satisfied. Similarly, for the polynomial relations
[φi, φj ] = αkℓ

ij φkφℓ + βk
ijφk of the first integrals, the

commutators in U(g) lead to the relation

[Ji, Jj ] = αkℓ
ij JkJℓ + βk

ijJk (mod Φ) (4)

If equations (3) and (4) are satisfied for any realiza-
tion Φ, then the problem is entirely characterized
algebraically by the reduction chain m ⊂ g. It should
be observed that this situation is rather exceptional, as
the analysis of the exactly solvable systems described
in [3] from the point of view of the first algebraic

formulation indicates that, in general, the first inte-
grals of the system do not correspond, at the level
of the enveloping algebra of the hidden algebra, to
polynomials that commute with the algebraic Hamil-
tonian, showing that the commutativity properties
are a consequence of the realization by differential
operators.

Using the correspondence existing between the rep-
resentations of g and those of its enveloping algebra
U(g) (see e.g. [11]) and identifying a Lie algebra g
with the first-order (left-invariant) differential opera-
tors on a Lie group G admitting g as its Lie algebra,
it follows that the universal enveloping algebra can be
seen as the set of (left-invariant) differential operators
on G of arbitrary order. Therefore, if Φ : g → X(Rn)
is some realization of the Lie algebra by first-order
differential operators, it can be uniquely extended to
a realization Φ̂ : U(g) → X(Rn).

In this context, this first algebraic reformulation of
the system is still strongly related to the representa-
tion theory of Lie algebras. More precisely, supposed
that Ha ∈ U(m) is an algebraic Hamiltonian defined
in the enveloping of some subalgebra m ⊂ g and
that the (independent) polynomials J1, . . . , Js gener-
ate a quadratic algebra, that is, satisfy the conditions

[Ji, Jj ] = αkℓ
ij JkJℓ + βk

ijJk, (5)

we consider the (two-sided) ideal I in U(g) generated
by the polynomials

Qi := [Ha, Ji] , 1 ≤ i ≤ s.

The problem is now to analyze whether there ex-
ists an equivalence class of (faithful) representations
Φ : g → X(Rn) such that for the corresponding ex-
tension Φ̂ : U(g) → X(Rn), the image of the ideal
I is contained in the kernel ker Φ̂, ensuring that the
realized polynomials Φ̂(Qi) correspond to first inte-
grals of the Hamiltonian in the given realization. In
some sense, this is a special case of an important
and still unsolved problem, namely the embedding
of a Lie algebra g into the enveloping algebra U(k)
of another Lie algebra k, for which currently only the
case of embeddings ι : g → U(g) for g semisimple
has been completely solved [16], using techniques of
deformation theory [17].

We illustrate the preceding procedure consider-
ing the six-dimensional non-solvable Lie algebra r ⊂
sl(3,R) with basis {X1, . . . , X6} and nonvanishing
commutators

[X1, X2] = X1, [X1, X5] = X4, [X2, X5] = X5,
[X2, X6] = −X6, [X3, X4] = −X4, [X3, X5] = −X5,
[X3, X6] = X6 [X4, X6] = X1, [X5, X6] = X2 − X3.

Superintegrable systems based on this hidden algebra
r and the vector field realization

X1 = ∂t, X2 = t∂t − N

3 , X3 = su∂u − N

3 ,

X4 = ∂u, X5 = t∂u, X6 = u∂t,
(6)
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have been extensively studied in [4], where in addition
their exact solvability was analyzed. We consider
a special case of the generic Hamiltonians studied
there. Taking the values s = k = ω = 1, a = b = − 1

2
and N = 0, we obtain the Hamiltonian h1 and two
quadratic integrals

h1 = −4t∂2
t − 8u∂2

tu − 4u∂2
u + 4t∂t + 4u∂u,

φ1 = 4u(u − t)∂2
u, φ2 = 4(t − u)

(
∂2

t − ∂t

)
.

(7)

Now h1, φ1, φ2 are the image by the realization of the
following polynomials in the enveloping algebra of r:

H1 = 4X2(1 − X1) + 8(1 − X3)X1 + 4(1 − X4)X3,

P1 = −4X3X5 + 4X2
3 − 4X3,

Q1 = 4(X2X1 − X6X1 + X6 − X2).

At the purely algebraic level we have

[H1, P1] ̸= 0, [H1, Q1] ̸= 0,

showing that the polynomials P1 and Q1 do not belong
to the commutant of H1 in U(r). Therefore, the origin
of the quadratic integrals of system (7) is not algebraic,
but a consequence of the specific realization (6).

If we maintain the algebraic Hamiltonian as given
above and search for quadratic polynomials in U(r)
commuting with it, we find that only two such opera-
tors exist (see [10] for the general case), given by

A1 = X4 − X3 − X6 + X1(1 + X3 + X6) + (X3 + X6)X4,

B1 = −4X1 − X2 + X6 + X1X2 + X1X3 − X1X6 − X6X4.

These polynomials are not independent, as they sat-
isfy the relation A1 +B1 + 1

4 H1 = 0. Now, if we extend
the analysis to cubic polynomials in U(r), we find the
following operator C1 that commutes with H1:

C1 = 3X1 − 2X3 − X5 − 4X6 + 2X1X3 + 4X1X6 + X2
3

+ X2X4 + X2
3 − X3X5 + X3X6 + X6X4 − X6X5

− X1X2
3 − X1X3X6 + X2X3X4 + X2X6X4.

The operators A1 and C1 generate a finite-
dimensional polynomial algebra in U(r), with explicit
nonvanishing commutators

[A1, C1] = D1, [A1, D1] = D1, [B1, C1] = −D1,

[C1, D1] = 1
2{B1, D1} − 1

2{A1, D1} − 12A1

− 12A1 + 4B1 + 4C1 − 2{A1, B1},

where {◦, ◦} is the anticommutator.
Now, as the operators H1, A1, C1 commute at the

algebraic level, for any realization of r by vector fields
they give rise to a Hamiltonian system possessing
a quadratic and a cubic integral, respectively.1 For the
particular realization (6), it follows that the resulting
system is actually equivalent to the initial one (7), as
the image of the ideal J generated by A1, B1, C1, D1 is
properly contained in the ideal spanned by φ1 and φ2,
thus being functionally dependent on these integrals.

1Provided that the transformed operators are independent.

3. Commutants in enveloping
algebras and coadjoint
representations

A second algebraic approach, of a more general na-
ture, can be proposed considering chain reductions
g′ ⊂ g of (reductive) Lie algebras, and analyzing the
structure of the commutant of g′ in the enveloping
algebra U(g), in order to identify polynomial (in par-
ticular, quadratic) subalgebras [9]. In the generic
analysis of commutants, elements of the theory the
coadjoint representation of Lie algebras can be used,
in order to simplify some of the computations in en-
veloping algebras. If g is a Lie algebra with generators
{X1, . . . , Xn} and commutators [Xi, Xj ] = Ck

ijXk,
the Xi’s are realized in the space C∞ (g∗) by means
of the first-order differential operators:

X̂i = Ck
ijxk

∂

∂xj
, (8)

where {x1, . . . , xn} are the coordinates of a covector
in a dual basis of R {X1, . . . , Xn}. The invariants of
g (in particular, the Casimir operators) correspond
to the solutions of the following system of partial
differential equations:

X̂iF = 0, 1 ≤ i ≤ n. (9)

For an embedding of Lie algebras f : g′ → g, a basis
{X1, . . . , Xr} of the subalgebra can be extended to
a basis {X1, . . . , Xn} of g. Therefore, we can con-
sider the subsystem formed by the first r equations of
(9), corresponding to the generators of the subalgebra
g′. The solutions of this subsystem, that in particu-
lar encompass the invariants of g′, are usually called
subgroup scalars [18].

By means of the standard symmetrization map

Λ
(
xi1 . . . xip

)
= 1

p!
∑

σ∈Sp

Xσ(i1) . . . Xσ(ip) (10)

polynomial solutions of the subsystem correspond to
elements in the enveloping algebra U(g) of g that
commute with the subalgebra g′. If we now define an
algebraic Hamiltonian

H = H (X1, . . . , Xr) ∈ U(g′), (11)

in terms of the subalgebra generators, the commutant

CU(g)(H) = {U ∈ U(g) | [H, U ] = 0}

certainly includes the solutions of (9) common to the
g′-generators, i.e.

CU(g)(H) ⊃
{

Λ(φ) | X̂1(φ) = · · · = X̂r(φ) = 0
}

,

where φ(x1, . . . , xn) ∈ C∞ (g∗).
Depending on the structure of g and the subalgebra

g′, as well as on the choice of H, two possible cases
arise for a polynomial P ∈ CU(g)(H):
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(1.) P commutes with all X1, . . . , Xr.
(2.) There is an index k0 with [P, Xk0 ] ̸= 0.
Polynomials P in the first case actually commute with
the Hamiltonian H, and thus belong to the two-sided
ideal ⟨I⟩ generated by the set I = {J1, . . . , Js} of
elements corresponding to the symmetrization of in-
dependent polynomials satisfying the subsystem of
(9) corresponding to g′. For these elements, it fol-
lows at once that [Jk, Jℓ] belongs to I. In the general
case, the Hamiltonian H does not commute with all
Xj-generators, and in order to find the commutant
CU(g)(H), we can restrict the analysis to the determi-
nation of a basis of the factor module CU(g)(H)/⟨I⟩.
Although the problem is computationally cumbersome,
certain algorithms in terms of Gröbner bases have been
developed that allow its precise determination [19].

A (restricted) systematic procedure that circum-
vents the above-mentioned obstruction and allows us
to analyze polynomial algebras with respect to a reduc-
tion chain g′ ⊂ g can be proposed starting from the
polynomials in U(g) that commute with all the gen-
erators intervening in the expression of the algebraic
Hamiltonian H ∈ U(g′). More precisely, if the Hamil-
tonian H is given as a polynomial P (Xi1 , . . . , Xis) in
terms of the generators of the subalgebra g′ with basis
{X1, . . . , Xr}, we consider the subsystem of (9) given
by

X̂ij
F (x1, . . . , xn) = 0, 1 ≤ j ≤ s.

We then extract a maximal set of independent poly-
nomial solutions {Q1, . . . , Qp} of (9), which in the re-
ductive case forms an integrity basis for the solutions.
Symmetrizing these functions we obtain elements Mj

in the commutant CU(g)(H). Starting from the set of
polynomials S = {H, M1, . . . , Mp}, we inspect their
commutators and determine whether, either adjoining
new (dependent) elements to S or discarding some
elements of S, a finite-dimensional quadratic algebra
A can be found. Although there is some ambiguity
in the construction, as there is no quadratic algebra
“canonically" associated to the reduction chain g′ ⊂ g,
it provides an alternative method that does not re-
quire a specific realization by vector fields, as the
integrability condition is guaranteed by the commu-
tant.

This ansatz has been successfully applied in [9] to
the enveloping algebra of the Schrödinger algebras
Ŝ(n) for arbitrary values of n ≥ 1 and various choices
of algebraic Hamiltonian, showing that the construc-
tion is formally of use for the analysis of hidden alge-
bras that are not reductive.

4. Virtual copies in enveloping
algebras

In the solution of the embedding problem into envelop-
ing algebras for semisimple algebras, the vanishing
of the first cohomology group with values in U(g)
plays an important role, as it allows to provide a gen-
eral solution for the perturbation problem [16]. For

nonsemisimple Lie algebras, the application of the pro-
cedure is quite complicated for both computational
reasons and the currently incomplete understanding
of the precise structure of the corresponding envelop-
ing algebras. However, for certain types of semidirect
sums of simple and solvable Lie algebras, some analo-
gous statements may be proposed, providing copies
of semisimple Lie algebras in the enveloping algebra
of a semidirect sum, up to a polynomial factor.

Supposed that s is the Levi subalgebra of a semidi-
rect sum g = s

−→⊕Γr, we seek for elements of degree
d ≥ 2 in the generators in U(g) that transform accord-
ing to the structure tensor of s, up to a (polynomial)
factor. The procedure can be summarized as follows:
Consider a basis {X1, . . . , Xn} of s with commmuta-
tors

[Xi, Xj ] = Ck
ijXk. (12)

and extend it to a basis {X1, . . . , Xn, Y1, . . . , Ym} of
of the semidirect sum g. We now define operators

X ′
i = Xi R (Y1, . . . , Ym) + Pi (Y1, . . . , Ym) (13)

in U(g), where Pi and R are still undetermined poly-
nomials. In order to simplify computations, they can
be considered as homogeneous polynomials of degrees
k and k −1 respectively, so that X ′

i is homogeneous of
degree k. We require that these operators commute
with the generators Yk of the radical r, so that the
identity

[X ′
i, Yj ] = 0, 1 ≤ i ≤ n, 1 ≤ j ≤ m

is satisfied for all indices. Expanding the latter leads
to the expression

[X ′
i, Yj ] = [XiR, Yj ] + [Pi, Yj ]

=Xi [R, Yj ] + [Xi, Yj ] R + [Pi, Yj ] .

Taking into account the homogeneity degree of the
terms with respect to the generators of s and the rep-
resentation space, it follows that Xi [R, Yj ] can be
seen as a polynomial of degree (k − 1) in the vari-
ables {Y1, . . . , Ym}. On the other hand the terms
of [Xi, Yj ] R + [Pi, Yj ] have degree k, allowing us to
further separate the commutator as

[R, Yj ] = 0,

[Xi, Yj ] R + [Pi, Yj ] = 0. (14)

From the first equation we conclude that the factor
R commutes with all generators Yi, thus defines an
invariant of the solvable Lie algebra r. We further
require that the operators X ′

i transform by the action
of s as the generators of the latter algebra, i.e.

[X ′
i, Xj ] = [Xi, Xj ]′ := Ck

ij (XkR + Pk) . (15)

As this relation must hold for all the generators of the
semidirect sum g, further structural constraints on
the polynomials R and Pi are obtained. Expanding
the left-hand term of condition (15) yields

[X ′
i, Xj ] = [Xi, Xj ] R − Xi [Xj , R] + [Pi, Xj ] .
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As the Yj are the generators of the representa-
tion space Γ, it follows that the term [Xi, Xj ] R −
Xi [Xj , R] is linear in the generators of s and of de-
gree (k −1) in the Yj ’s, while [Pi, Xj ] does not involve
generators of s. Comparing now with the right-hand
side of (15), the condition again separates into two
parts:

[Xi, Xj ] R − Xi [Xj , R] = Ck
ijXkR,

[Pi, Xj ] = Ck
ijPk.

(16)

Simplifying the first equations shows that

Xi [Xj , R] = 0,

hence implying that R also commutes with the gen-
erators of the Lie algebra. As R corresponds simul-
taneously to an invariant polynomial of the radical,
it must correspond to an invariant of g that depends
only on the generators of its maximal solvable ideal.2
The second equation shows that the polynomials Pi

transform according to the adjoint representation of
the semisimple Lie algebra s. Supposed that all the
conditions are satisfied, we obtain the commutators
of the operators X ′

i in the enveloping algebra U(g) as[
X ′

i, X ′
j

]
= [XiR + Pi, XjR + Pj ]
= [XiR + Pi, XjR] + [XiR + Pi, Pj ]
= Ck

ijXkR2 + Ck
ijPkR + [X ′

i, Pj ] .

(17)

As the X ′
i commute with the Yj , it follows from

equation (17) that [X ′
i, Pj ] = 0 and therefore that[

X ′
i, X ′

j

]
= [Xi, Xj ]′ R, showing that the operators

reproduce the commutators of s, up to the invariant
factor R. It should be emphasized that R is not nec-
essarily a central element, but an invariant of g that
solely depends on the generators of the characteristic
representation Γ.

It follows in particular from this construction that
the operators {R, X ′

1, . . . , X ′
n} generate a finite dimen-

sional quadratic algebra A in the enveloping algebra
U(g), with commutators

[R, X ′
i] = 0,

[
X ′

i, X ′
j

]
= Ck

ijX ′
kR, 1 ≤ i, j, k ≤ n.

Under some specific conditions, these so-called vir-
tual copies of semisimple Lie algebras in enveloping
algebras can be used to construct (formal) Hamiltoni-
ans with first integrals given by some of the operators
X ′

i. Let us outline one possibility, based on the branch-
ing rules of representations of semisimple Lie algebras.
To this extent, we fix a semisimple subalgebra s′ of the
Levi factor s of the semidirect sum g. Further suppose
that the adjoint representation ad(s) decomposes, as
a representation of s′, as follows

ad(s) ↓ ad(s′) + Γ1 + · · · + Γs, (18)
2This fact actually provides information concerning the di-

mension of the characteristic representation Γ in the semidirect
sum.

where Γ = Γ1 + · · · + Γs is the so-called character-
istic representation [20]. Suppose that the trivial
representation Γ0 of s′ has multiplicity k > 0 in the
decomposition (18). This means specifically that we
can find k generators

{
X̃1, . . . , X̃k

}
of s that commute

with the subalgebra s′. Now, by condition (15), for
the corresponding operators X̃s (1 ≤ s ≤ k) we have
that [

X̃ ′
i, Z

]
=

[
X̃i, Z

]′ = 0, Z ∈ s′, (19)
from which it follows that for any algebraic Hamilto-
nian H ∈ U(s′) the integrability condition[

X̃ ′
i, H

]
= [R, H] = 0, 1 ≤ i ≤ k (20)

is satisfied. On the other hand, by condition (17), it
is straightforward to verify that[

H,
[
X̃ ′

i, X̃ ′
j

]]
= 0. (21)

This last identity implies that the terms appearing in
the commutator

[
X̃ ′

i, X̃ ′
j

]
also transform according to

the trivial representation of the subalgebra s′.
We conclude that the set

{
R, X̃ ′

1, . . . , X̃ ′
k

}
generates

a finite-dimensional quadratic algebra in the envelop-
ing algebra U(g) that are (formal) first integrals for
the Hamiltonian H. Whether or not these integrals
are sufficient for guaranteeing (super-)integrability,
essentially depends on the subalgebra s′ and the as-
sociated branching rule. In any case, the preceding
construction determines the maximal number of op-
erators X ′

i that commute with the Hamiltonian H,
independently of any realization of the hidden algebra
g by first-order differential operators. For the case
where the characteristic representation Γ does not con-
tain the trivial representation of the subalgebra s′, i.e.,
when no generators of s simultaneously commute with
the elements of s′, the integrability condition for the
operators would not be a consequence of the structure
of the enveloping algebra, but the specific consequence
of a realization of g, relating this approach with the
first algebraic formulation.

We finally observe that the construction presented
here, that depends essentially on the homogeneity of
the operators X ′

i, is specially suitable for semidirect
sums admitting a nonvanishing centre and the class
of one-dimensional non-central extensions of double
inhomogeneous Lie algebras [21, 22], while the argu-
ment is not valid whenever the Levi factor s and the
radical do not have nonconstant invariants in common.
Due to this obstruction, it is formally conceivable to
propose a generalized construction by skipping the
homogeneity assumption. It should however be taken
into account that using operators of different degrees
in (13) may lead to incompatibilities in the commuta-
tors, as equations (14)-(16) cease to hold, and more
general constraints depending on the particular de-
grees of each Pi would be required. If and under
what specific assumptions a solution can be found for
a generalized inhomogeneous set of generators (13), is
still an unanswered question that is currently being
studied in detail.
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5. Conclusions
Two possible approaches to the problem of determin-
ing quadratic algebras as subalgebras of the enveloping
algebra of a Lie algebra have been commented. The
first approach corresponds to an algebraic abstrac-
tion of already known systems, which are analyzed
purely from the perspective of the Hamiltonian and
the integrals as the image by a realization of dif-
ferential operators of elements in some enveloping
algebra, trying to determine to which extent such
integrals are realization-dependent [10]. In a the sec-
ond algebraic formulation, commutants of subalgebras
g′ ⊂ g in the enveloping algebra of g are considered,
from which quadratic algebras formed by polynomi-
als that commute with a given algebraic Hamiltonian
defined in U(g′) are deduced. In order to simplify
the computations in the enveloping algebra, distin-
guished elements in the commutant can be deduced
from the coadjoint representation. For the subalge-
bras found with this method, a realization by vector
fields of an appropriate number of variables automat-
ically provides a (super-)integrable system for the
given Hamiltonian [9]. The method of virtual copies,
initially introduced in the context of invariant theory,
provides an additional approach that combines ele-
ments of the two algebraic formulations, and refers to
a number of still open problems, such as the general
solution of the embedding problem of Lie algebras
into enveloping algebras [16], as well the classification
problem of realizations of Lie algebras in terms of
differential operators [23]. Whether these approaches
are compatible or can be combined with other proce-
dures like the quadratic deformations of Lie algebras
or the formalism of Racah algebras (see e.g. [8, 24, 25]
and references therein) is a problem worthy to be in-
spected. We hope to report on some progress in these
directions in a near future.
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