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ABSTRACT.

A simplified one-dimensional model of measurement of the position of a quantum particle by two
distant detectors is considered. Detectors are modelled by quantum particles bounded in potential
wells with just two bound states, prepared in the excited states. Their de-excitation due to the short
range interaction with the measured particle is the signal for the detection. In the approximations of
short time or small coupling between the particle and the measuring apparatuses, the simultaneous
detection of the particle by both detectors is suppressed. The results extend to other models with
two-level detectors.
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1. INTRODUCTION

The theory of measurement is one of the topics in quantum mechanics from its early days [I]. The development
can be found, for example, in reviews [2], [3], [4], [5], [6]. Recently, a comparison of an experimental measurement
on a trapped 3-level ion by an interaction with a photon environment with the ideal quantum theoretical
measurement was done in [7]. Measurements in quantum field theory with non-relativistic quantum-mechanical
detectors coupled to the quantum field were studied in [8].

The famous Einstein-Podolsky-Rosen (EPR) [9] paradox concerns the relation of the measurement results
performed on distant parts of a quantum system. Later, the subject evolved to a whole branch of the quantum
physics, studies of the quantum entanglements and their applications in quantum informatics (see, e.g., Chapter
16 in [I0] for the overview, also extracted in [I1], review [12] with an extensive list of references, Chapters 4
and 6 in [13], Chapter 9 in [I4], or [15]). For a brief review of the physical background up to 2005 see [L6].
Consequences for the black-hole physics are discussed in [I7]. Effects in several microscopic and statistical
systems were recently studied in [I8], [19], [20], [21], [22]. Further possible applications in quantum information
are proposed in [23], [24]. The collapse of quantum state due to the measurement was, again, considered in
[25], the entanglement in a system chaotic in the classical limit was studied in [26].

Although mostly entanglement of spin states of the two particles is considered, the general idea concerns
any simultaneous measurements at distant locations with correlated results. The EPR paradox in the case of
a particle position measurement means a simultaneous measurement of the particle presence at two distant
places. As the particle can be detected at one place only, a sort of superluminal interaction between the two
places seems to be necessary. Another possible interpretation could be that the simultaneous detection at the
two places is excluded (or perhaps only strongly suppressed) by the quantum evolution of the complete system,
consisting of the measured particle and both detectors (and perhaps even their environment), starting from a
given initial state. We try to support such an idea by a simple, perhaps not very realistic, model. We obtain
suppression of the simultaneous detection at the two places in an approximation but not exactly.

The description of the quantum measurement as the unitary evolution of the complete system was considered
already by von Neumann in his classical book [I] (called as process 2 in Section V.1). There exist a number
of attempts to model macroscopic measuring apparatuses as quantum objects, let us mention only a sample
here. In [1] (Sect. VL.3), [27] (Sect. 139 and Appendix XIV), [28] [29] and essentially also in [30] (Chapter 22),
the apparatus is modelled by one very massive body. More close to the quantum description of a macroscopic
system are the models of the measuring apparatus as a many-body system, composed of infinite or very large
finite number of particles, typically a spin chain - see [31], [32], [33] (Chapter 7).

We consider a rather simple model described in the next section. It consists of a particle interacting with two
mutually distant detectors. However, we do not attempt to describe the detector as a macroscopic apparatus.
We model it by a single quantum particle bounded in a potential well only.

445


https://doi.org/10.14311/AP.2022.62.0445
https://creativecommons.org/licenses/by/4.0/
https://www.cvut.cz/en

Jaroslav Dittrich AcTA POLYTECHNICA

2. THE MODEL

We consider one light particle and two detectors on a line. Each detector consists of a very massive particle
bounded in the square potential well of a width 2a and depth V{ tuned to the existence of just two bound states
of energies F, > Ejy. The detector is prepared for the measurement in the excited state F;. The detection of
the light particle at the detector is modelled by the passing of the detector to the ground state Ey due to the
interaction with the light particle. This is the determination of the particle position before the measurement
as it gains energy E; — Ejy and is kicked away. The two detectors are located with centres of their potential
wells at points —R, R with R > a (see Figure .

—R—a —R+a R—a R+a
E, E,
Ey Ey
-V Vo

FIGURE 1. Potential wells of the two detectors. Remember that they bind two different massive particles (it is not a
double-well potential but two different one-well potentials).

Let us write the Hamiltonian of the whole three-particle system. Let us denote the potential well

Vo for —a<x<a

V() = —VoX(-a,a)(®) = { 0 for x<-a or x>a 1)

where X (_q,q) is the characteristic function of the interval (—a,a) for definiteness although the detailed shape
of the potential V' is not really used. Denoting r € R the coordinate of the measured light particle (mass m),
2 € R the coordinate of the heavy particle in the left detector (mass M) and y € R that in the right detector
(mass M), the free Hamiltonian (without an interaction of the measured particle and detectors) reads

h? h? h?
— - ——02+V(@+R) - -—02+V(y—-R), (2)

Hy = —
0 om " 2M'“ oMY

understood as a self-adjoint operator in the state space L?(R3) with the domain H?(R?). Let us assume that
the measured particle and the particle of the detector interact when their distance is shorter than a with the
model interaction Hamiltonian (g is an interaction constant)

Hp = 9X(-a,a) (’/‘ - 1‘) + 9X(—a,a) (T - y) . (3)

For simplicity, the interaction potential between the measured particle and the heavy particle in each detector is
chosen, again, in the form of a square well (or barrier). Its width 2a is chosen the same as for the potentials
binding heavy particles in the detectors, which can be interpreted as the detector size (in the order of magnitude,
at the least). The complete Hamiltonian

H=Hy+H;. (4)

We assume that the detector with Hamiltonian

R,
—m@c +V(x) (5)

has just two bound states g, ¥ with energies Fy < E;. The detectors are prepared for measurement in the
excited states 11, and the measured particle in a state g so the initial wave function of the complete system is

(0,7, z,y) = @o(r)ir(z + R)i1(y — R) . (6)

Let us assume that the energy of the light particle is insufficient to release the detector particles from their
potential wells and that their states from the continuous spectrum can be neglected in the time evolution. In
other words, we assume the wave function of the complete system in the form

U (t,r,x,y) = coo(t,7)Yo(x + R)Yo(y — R) + cor(t,7)bo(x + R)b1(y — R)
+cio(t, 7)1 (x + R)Yo(y — R) + e (t, r)1 (2 + R)yr (y — R) . (7)
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Inserting into the Schroédinger equation,
thoy U = HU | (8)

and projecting onto ¥;(x + R)Yr(y — R) (j,k = 0,1), we obtain

thoscjp(t, 1) = f%fcjk(t, )+ (Ej + Ey)cjr(t, )
1
+9 > (falr+ R)ew(t,r) + fulr — R)cju(t, 1)) (9)
1=0
where
z+a7
o) = [ Bl do (10)

come from the matrix elements of interaction term Hj and the finite integration range here is a consequence
of the finite range of interaction. As eigenfunctions v; are exponentially decaying for |z| > a, the same is
true for fjr at |z| > 2a.

In the matrix notation

cun=(in oin ) - (0 8 ) )
_( foo(r+R) for(r+ R)
Fo= (iR Meis ) (12
_( Joo(r=R) fio(r — R)
sor=( Tt Tk ) s
the equations @D read
ithoC(t,r) = —%836'@ )+ (E+ gF(r)C(t,r) + C(t,r)(E + gG(r)) . (14)
The initial condition @ gives
0 0
c0,r) = ( 0 wolr) ) . (15)

Matrices F(r) and G(r) are Hermitian and bounded in r € R according to their construction. So it is easily
seen that the operator on the right-hand side of is self-adjoint in L?(R,C*) with the domain H?(R,C*)
and the solution C(t,7) exists there for every C(0,-) € H?(R,C*).

The probability of finding the left detector in the state v; and the right detector in the state v at the
time t is calculated by @

Pii(t) = / et )P dr (16)

i.e., Pyp is the probability that no detector reacts (Pi1(0) = 1 as detectors are initially prepared in the excited
state 11), Pp1 the probability of detection by the left detector only, Py the probability of detection be the right
detector only, and Pyg the probability of simultaneous detection by both detectors.

3. SHORT-TIME EVOLUTION

In the approximation

C(t,r) = C(0,7) +td,C(0,7) + O(t?) , (17)
C(t,r) =
< 0 _i%F01(r)500(r) > (18)
—i2G1o(r)po(r) 2L 0200(r) + (1 — i (2E1 + gF11(r) + gG11(r)))po(r) )’
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assuming at the least that ¢y belongs to the domain of 2. Therefore, the probability Pyo(t) of the simultaneous
detection by the both detectors, indicated by their de-excitations to the ground states, remains zero in the
first nontrivial approximation as ¢t — 0,

Fuo(t) = [ lewa(t.7) P dr = O(¢"). (19)

in comparison with the probabilities of detection by just one detector Py (t), Pio(t), which are of the order of
O(t?). This is seen from , looking by which powers of ¢ the expansions of ¢;(t,7) start.

This result is an indication that quantum mechanics inherently prefers the detection of a particle at one place
only. However, one should not take it more seriously than the model can approximate macroscopic measuring
apparatuses. For the larger times, Pyo(t) surely is not zero, which also corresponds to the physical picture that
the particle interacts with one detector and is bounced to the other.

4. WEAK COUPLING APPROXIMATION

In this section, we derive a result similar to the one of the previous section but in the first perturbation
approximation according to the coupling constant g between the light particle and the measuring instruments.
The procedure follows the standard approach of passing to the interaction picture and then iteration of the
integral equivalent of the Schrédinger equation.

Let us start from equation and denote as H,, the free Hamiltonian of the light particle, i.e.,

iz32

H,, = —
m 2mr7

(20)

where the right hand side is understood as the corresponding self-adjoint operator in L?(R). We transform
Clt,r) = (ef%Ete*%Hmtol(t, .)e*%Et) ) . (21)

Here Ci(t,-) denotes the matrix function of r with the value C;(t,7) at the point r (¢ is just a parameter).

The operator e~ #Hmt transforms it to another function Cs(t, ), which is then multiplied by two exponentials

depending on E and t only. Finally, the value of the resulting function at the point r, i.e., e #EtC, (t,r)e” #E?

is taken. A similar notation is used in a few following formulas.

Inserting into , we obtain
HC(t,r) = =S ADC(E))) (22)

where the operator A(t) acts as

i

A(D)T = et Hnt (F(t)(e’%HmtT) + (e*%HmtT)(;(t)) (23)
on a matrix function T € L*(R,C*) and F(t), G(t) are multiplications by the matrix functions
F(t,r) = e# P R(r)e %Pt G(t,r) = e #PG(r)et Pt (24)

The integral form of reads

Cittr) = C0.0) = 2 [ (4G ) () dr (25)

Let us iterate this equation starting with C7(0,r) as the first approximation. Since the operator A(7) is uniformly
bounded in 7, the resulting perturbation series is convergent to the unique solution.
Keeping only terms linear in g,

Ciltr) = Cs(0.0) =2 [ (A(C10.) () dr +0(6?). (26)

The initial value C1(0,r) = C(0,r) is given in and reads as

Ci(t,r) = ( 0 gua(t,r) : )+0(92)7 (27)

gua(t,r)  @o(r) + gus(t,r
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where
] ¢ i i i
ui(t,r) = f%/ (e%(EO*El)TeﬁH”"Tféf)e*ﬁH"‘Ttp(J) (r)ydr (28)
0
ug(t,r) = _ﬁ/ (eﬁ(EO_El)TeﬁHmTfé;)e_ﬁHngoo) (r)ydr (29)
0
i [t N _iH
ustr) = — / (eFem (A + A7) F 1m0 ) (rydr (30)
0

denoting f](,f)(r) = fix(r £ R) for j,k = 0,1. The free propagator e~ #Hm™ can be expressed by the wellknown
integral formula here (e.g., Eq. (IX.31) in [34]). Passing back to C(t,r),

0 ge—%(EwEl)te—%Hmt
3 (Bo+E1)to—4 H —Q%Elte—%Hmt(

Clt,r) = ( “ ) +0(g?), (31)

mluy e Yo + gus)

ge
and the probability of the simultaneous detection by both detectors remains zero in the first nontrivial
approximation as g — 0,

Poo(t) = O(g") , (32)

in comparison with Py;(t) and Pjo(t) which are of the order of O(g?).

5. CONCLUDING REMARKS

The obtained results may be interpreted as a support of the idea that the detection of a particle at one place
only is a consequence of the initial conditions for the complete system (particle plus detectors) without any
superluminal interaction between two distant places. However, as they are obtained in the approximation of a
short time or weak coupling only, it may be questioned whether they do not represent just a kind of initial state
stability. A possible objection against this explanation is that Cyg is more stable than Cy; and Cqp.

Another discussible point is the modelling of a macroscopic detector by a single quantum particle. We
tacitly assume that the particles in detectors are heavy and thus have a large action. It was used only in
heuristic justification of the assumption that their states remains in the two-dimensional subspace spanned
by the vectors ¥y and 11, in other words, the detectors are essentially two-level systems. The calculation for
a more realistic models of the detectors and without approximations of small times or weak coupling would
be very desirable but seems to be extremely difficult.

A very specific model was considered for the definiteness but the main results and hold for any
detectors modelled as two-level systems and any interaction separated to the sum of two parts corresponding to
the particle interaction with each detector instead of . The form of the initial particle state @q is also not
important here. The specific form of the model is not essentially used in the above calculations. However, the
probability Pyg of a simultaneous de-excitation of both detectors is already nonzero in the next iterations to
and . So the detection by both detectors is not excluded for large values of ¢ or g in our model.
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