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Abstract. Stationary numerical solutions of incompressible viscous flow inside a wall-driven
semicircular cavity are presented. After a conformal mapping of the geometry, using a body-fitted mesh,
the Navier-Stokes equations are solved numerically. The stationary solutions of the flow in a wall-driven
semi-circular cavity are computed up to Re = 24000. The present results are in good agreement with
the published results found in the literature. Our results show that as the Reynolds number increases,
the sizes of the secondary and tertiary vortices increase, whereas the size of the primary vortex decreases.
At large Reynolds numbers, the vorticity at the primary vortex centre increases almost linearly stating
that Batchelor’s mean-square law is not valid for wall-driven semi-circular cavity flow. Detailed results
are presented and also tabulated for future references and benchmark purposes.

Keywords: Driven semi-circular cavity flow, large Reynolds number flow, numerical solutions, 2-D
incompressible viscous flow.

1. Introduction
Flows in enclosures are studied very frequently in Com-
putational Fluid Dynamics studies since they retain
rich flow physics in rather simple geometries. The flow
in a lid-driven square cavity is one example for flows
in enclosures and the driven cavity flow is studied
extensively in the literature and among a very large
number of computational studies, the studies [1],[2]
and [3] can be given as examples. Other than the flow
in a square cavity, in the literature, there are studies
on flows in different cavity geometries as well. For
example, the flows in a driven skewed cavity ([4, 5]), in
a driven triangular cavity ([6–8]) and also in a driven
trapezoidal cavity ([9]) are studied in numerous nu-
merical studies in the literature. In these enclosures,
the formation of the flow structures as the Reynolds
number increases attracts the attention of researchers.

Similar to the flows in different enclosures men-
tioned above, Glowinski et al. [10] studied the flow in
a semi-circular cavity. They ([10]) used an unsteady
operator-splitting/finite elements method and solved
the governing flow equations on an unstructured mesh
and presented detailed stationary solutions of the
semi-circular cavity flow. Later, Yang et al. [11, 12]
and Ding et al. [13] numerically studied the same flow
problem using the Lattice Boltzmann method. Also,
Yu et al. [14] solved the Navier-Stokes equations in
polar coordinates using a compact difference scheme
and simulated the semi-circular cavity flow problem.

Mercan and Atalik [15] considered the arc-shaped
cavity flow for the semi-circular case numerically using
an unsteady finite difference method. They ([15])
used an elliptic grid generator scheme in order to
obtain a body-fitted general coordinates and solve the
governing streamfunction and vorticity equations. In
their study, they ([15]) have also presented variations

of the arc shaped cavity flow with different aspect
ratios.

Migeon et al. [16] carried out experiments to study
the flow development inside a semi-circular cavity as
well as inside square and rectangular cavities. They
([16]) presented qualitative experimental flow visual-
izations of the semi-circular cavity flow.

At large Reynolds numbers, the stationary flow loses
stability and eventually, a transition to turbulence oc-
curs. For the Navier-Stokes equations, the stationary
solution still exists at large Reynolds numbers along-
side with the transient solutions. As stated in [17]
and [18], for the theory of the Navier-Stokes model, it
is important to study the stationary solutions at large
Reynolds numbers even when the flow loses stabil-
ity. In order to illustrate the point, the classical flow
problem of the incompressible viscous flow around
a circular cylinder can be given as an example. For
this flow problem, it is well known that the flow is sta-
tionary up to Reynolds number of approximately 40.
Above this Reynolds number (Re = 40), the flow over
a circular cylinder becomes unsteady and Karman vor-
tex street appears in the downstream flow field. In the
case of vanishing viscosity (i.e. large Reynolds num-
ber), Helmholtz-Kirchhoff solution (see [19]) presents
a limiting solution when Re → ∞. In the literature,
Smith [20] and Peregrine [21] analysed the laminar
incompressible flow past a circular cylinder at large
Reynolds numbers mathematically. Also, in the lit-
erature, there are numerical studies that analysed
the incompressible steady viscous flow past a circu-
lar cylinder at large Reynolds numbers (well above
Re = 40), such as [17, 18, 22–27]. As Christov et
al. [27] stated, when Re → ∞, without dissipation,
the limiting solutions of the Navier-Stokes is an im-
portant fundamental problem.
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In this study, we numerically investigate the be-
havior of the stationary solutions of an incompress-
ible viscous flow in a wall-driven semi-circular cav-
ity at large Reynolds numbers. In our study, unlike
in [10, 11, 13, 15], as discussed in [28], we use a steady
approach and solve the governing steady Navier-Stokes
equations. We used complex algebra and mapped the
considered semi-circular geometry into an infinite half
domain conformally in order to analytically obtain
a body-fitted mesh. For the solution of the semi-
circular cavity flow problem, the streamfunction and
vorticity equations are solved iteratively up to large
Reynolds numbers. The present numerical results are
compared in detail with the results of [10, 12, 14, 15].
For the flows in enclosures, Batchelor’s mean square
law ([29]) states that the flow, which is coupled to the
solid wall velocities at the boundaries, should have
a solid body motion inside the enclosure with a uni-
form vorticity at large Reynolds numbers and the flow
quantities should converge to the limiting values. We
examine whether or not the Batchelor’s model ([29])
is valid for the wall-driven semi-circular cavity flow
problem. Detailed results are presented.

2. Numerical method
The schematic view of the considered flow problem,
i.e., the semi-circular cavity flow, is given in Figure 1.
The width of the top moving lid, i.e., the straight top
side of the semi-circular cavity, is equal to 1 and the
velocity of this lid is also equal to 1.

The steady incompressible viscous flow in a wall-
driven semi-circular cavity is governed by the Navier-
Stokes equation. We consider the governing equations
in streamfunction and vorticity formulation as the
following

ψyωx − ψxωy = 1
Re

(ωxx + ωyy) (1)

ψxx + ψyy = ω (2)

where Re is the Reynolds number based on the velocity
of the top lid (U) and the width of the lid (L) which
are both equal to unity.
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Figure 1. Schematic view of the considered flow
problem, boundary conditions and flow topology of
the semi-circular cavity flow.

2.1. Numerical mesh
In computational fluid dynamics, it is always preferred
to use a body-fitted orthogonal coordinate system for
numerical solutions. Using a complex variable analysis,
one can obtain that the following complex function

w = ln
z − 1

2
z + 1

2
(3)

conformally maps the considered semi-circular cavity
geometry into a body-fitted orthogonal coordinate
system. In the mapped complex w-domain, the real
and imaginary parts are given as w = ϕ+ iψ where ψ
and ϕ are the coordinate axes in the mapped domain.
Also, the complex z-domain represents the x-y plane
as the following z = x + iy. We note that, one can
obtain this transformation also using the potential flow
analysis with the superposition of a source located
at (− 1

2 ,0) coordinates and a sink located at ( 1
2 ,0)

coordinates with equal strengths of 2π as shown in
Figure 2.

Upon separating the real and imaginary parts, the
velocity potential function is the real part where

ϕ = ln
∣∣z − 1

2
∣∣∣∣z + 1

2
∣∣ = ln

√(
x− 1

2
)2 + y2√(

x+ 1
2
)2 + y2

(4)

and also the stream function is the imaginary part
where

ψ = arctan y

x− 1
2

− arctan y

x+ 1
2

(5)

In this study we used the ψ and ϕ coordinates in
order to construct a body-fitted mesh for the semi-
circular cavity. For any value of the velocity potential
function, such that ϕ = c, we have

c = ln

√(
x− 1

2
)2 + y2√(

x+ 1
2
)2 + y2

(6)

y

x

Figure 2. Velocity potential and stream function
lines of the potential flow with a source and a sink
with equal strengths.

517



Ercan Erturk Acta Polytechnica

Figure 3. Body-fitted numerical mesh (1 out of every
10 grids is shown).

or by rearranging it, we have

x2 + y2 + e2c + 1
e2c − 1x+ 1

4 = 0 (7)

We note that the above equation defines a system
of coaxial circles with their centres being on the x-
axis as shown in Figure 2. The centre coordinates
of these coaxial circles are given as x = − 1

2
e2c+1
e2c−1 ,

y = 0 . Also, the radii of these circles are equal

to r = 1
2

√(
e2c+1
e2c−1

)2
− 1. We also note that when

c = 0, the radius of the circle becomes infinite, which
is a perpendicular straight line at the origin.

Following the same procedure, for any value of the
stream function, such that ψ = c, we have

c = arctan y

x− 1
2

− arctan y

x+ 1
2

(8)

By rearranging it, we get

x2 + y2 − y

tan c − 1
4 = 0 (9)

We note that the above equation defines a sys-
tem of coaxial circles with their centres being on the
y-axis as also shown in Figure 2. The centre coor-
dinates of these coaxial circles are given as x = 0,
y = 1

2 tan c. Also, the radii of these circles are equal
to r = 1

2

√
1

(tan c)2 + 1. We note that each of these
circles passes through the location of the source and
the sink, i.e., through the points (− 1

2 ,0) and ( 1
2 ,0).

Using the equations given above, we can easily ob-
tain the mesh points inside the semi-circular cavity.
In order to keep the aspect ratio

(
∆x
∆y

)
of the grid

points in the mesh more or less around unity in ma-
jority of the domain, we used 600×150 grid points in
the mesh. We divide the upper lid of the arc shaped
cavity into 600 equal points and we calculate the val-
ues of the velocity potential function (ϕ = c) at these
points. Similarly, we divide the vertical line at x = 0
into 150 equal points and we calculate values of the
stream function (ψ = c) at these points. Then, the
intersection points of these velocity potential function
(ϕ) and stream function (ψ) are obtained as the grid
point locations. The body-fitted orthogonal mesh we
used is given Figure 3.

2.2. Governing equations in the
computational domain

Since ϕ and ψ provide a body-fitted orthogonal coor-
dinate system for the considered semi-circular cavity
geometry, the natural choice is to use ϕ and ψ as the
coordinate axes in the mapped domain. However, the
value of ϕ at the corners of the arc shaped cavity (i.e.,
at the location of the source and the sink) is equal
to ±∞. For this reason, it was not possible to use
ϕ and ψ as coordinate axes. Also, using ϕ and ψ
as coordinate axes (except at the the corner points)
introduces extra difficulty in finite differencing of the
spatial derivatives on a non-uniform mesh. In order to
overcome this difficulty, we transform the curvilinear
mesh in physical domain to a rectangular uniform
mesh in computational domain with ξ and η coordi-
nates where the grid spacing is uniform and equal to
unity (i.e. ∆ξ = ∆η = 1). The x and y derivatives
are transformed to the computational domain as the
following

fx = yηfξ − yξfη
J (10)

fy = −xηfξ + xξfη
J (11)

where f is any differentiable function and J is the
Jacobian of the transformation, which is defined as

J = xξyη − xηyξ (12)

In the computational ξ-η domain, the governing
streamfunction and vorticity equations are trans-
formed as the following

αψξξ − 2βψξη + γψηη + σψη + τψξ

J2 = ω (13)

ψηωξ − ψξωη =
1
Re

αωξξ − 2βωξη + γωηη + σωη + τωξ
J

(14)

where the coefficients in these equations (α, β, γ, σ,
τ) are defined as

α = x2
η + y2

η

β = xξxη + yξyη

γ = x2
ξ + y2

ξ

σ = yξ (Dx) − xξ (Dy)
J

τ = xη (Dy) − yη (Dx)
J (15)

where Dx and Dy are

Dx = αxξξ − 2βxξη + γxηη

Dy = αyξξ − 2βyξη + γyηη (16)

Since we are only interested in the stationary solu-
tions rather than the transient solutions in this study,
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(a) . Re = 500 (b) . Re = 1000 (c) . Re = 2000

(d) . Re = 3000 (e) . Re = 4000 (f) . Re = 5000

(g) . Re = 6600 (h) . Re = 8000 (i) . Re = 10000

(j) . Re = 15000 (k) . Re = 20000 (l) . Re = 24000

Figure 4. Streamline contours of semi-circular cavity flow as Reynolds number increases.

we used the Successive Over Relaxation (SOR) method
in order to solve the governing steady streamfunction
and vorticity equations numerically. These governing
equations are numerically solved in the computational
domain using 3 point second order accurate central
differencing, O(∆ξ2,∆η2).

2.3. Mapping transformation metrics
We calculate the mapping transformation metrics (xξ,
xη, yξ, yη) numerically using finite difference. The
mapping transformation metrics appear explicitly in
the coefficients (α, β, γ, σ, τ) of the governing stream-
function and vorticity equations (13 and 14). In order
to minimize the effect of the finite difference approxi-
mation errors associated with numerically calculated
mapping transformation metrics on the numerical so-
lution of the governing flow equations, we decided to
use fourth order accurate differencing, O(∆ξ4,∆η4),
in calculating the mapping metrics, which is higher
than the accuracy of the streamfunction and vorticity
finite difference equations. With high order accurate
finite difference approximation for the mapping trans-

formation metrics, we obtain more accurate numerical
solutions for streamfunction and vorticity equations.
We note that since we calculate the mapping metrics
only once, the increase in the computational effort
when using higher accuracy for the mapping metrics
is insignificant as compared to the computational ef-
fort used for solving the governing streamfunction
and vorticity equations. At the interior points of the
computational domain, the mapping metrics are calcu-
lated using the following 5 point central fourth order
finite difference equation

(fη)i,j = fi,j−2 − 8fi,j−1 + 8fi,j+1 − fi,j+2

12 (17)

where again, f is any differentiable function, which, in
our case, can be x or y and the subscripts i and j de-
note the grid index in ξ and η directions, respectively.
Using the same finite difference equation, the trans-
formation metrics for ξ-direction (fξ) are calculated
similarly. Near the boundaries of the computational
domain, at the first grid points above the wall, the
mapping metrics are calculated using the following 5
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(a) . Re = 500 (b) . Re = 1000 (c) . Re = 2000

(d) . Re = 3000 (e) . Re = 4000 (f) . Re = 5000

(g) . Re = 6600 (h) . Re = 8000 (i) . Re = 10000

(j) . Re = 15000 (k) . Re = 20000 (l) . Re = 24000

Figure 5. Vorticity contours of semi-circular cavity flow as Reynolds number increases.

point one-sided fourth order finite difference equation

(fη)i,1 = −3fi,0 − 10fi,1 + 18fi,2 − 6fi,3 + fi,4
12

(18)
where the subscripts 0 refer to the wall grid points
and 1, 2, 3 and 4 refer to grid points above the wall
in the order. Similarly, on the boundaries of the
computational domain at the points on the wall, the
mapping metrics are calculated using the following 5
point one-sided fourth order finite difference equation

(fη)i,0 = −25fi,0 + 48fi,1 − 36fi,2 + 16fi,3 − 3fi,4
12

(19)
Using the above finite difference equations, the trans-
formation metrics xξ, xη, yξ, yη are calculated with
fourth order accuracy O(∆ξ4,∆η4).

2.4. Wall boundary conditions
Using the velocity of the top moving lid and simplify-
ing terms, at the top wall, we obtain

U = ψy = −xηψξ + xξψη
J = xξψη

J = 1 (20)

Simplifying the streamfunction equation and also
substituting the above equation, at the grid points on
the top moving wall, the vorticity value is obtained
as the following

ω(i, 0) = γ

J2

(
2ψ(i, 1) + 2 J

xξ

)
(21)

Similarly, on the bottom curved wall, the vorticity
value is obtained as the following

ω(i, 0) = 2 γ
J2ψ(i, 1) (22)

3. Results and discussion
As convergence criteria in our simulations, we use the
change in the streamfunction and vorticity variables
between two consecutive iterations, which is normal-
ized by the previous values defined as the following

Residualψ = max
(∣∣∣∣∣ψ

k+1
i,j − ψki,j

ψki,j

∣∣∣∣∣
)

(23)
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Figure 6. The u-velocity profiles along the vertical line at x = 0 at various Reynolds numbers, symbols [10],
symbols [13]

Residualω = max
(∣∣∣∣∣ω

k+1
i,j − ωki,j

ωki,j

∣∣∣∣∣
)

(24)

where max denotes the maximum value in the solution
domain and the superscript denotes the iteration num-
ber. In our numerical solutions at the convergence
both Residualψ and Residualω are less than 10−6.
This means that at the convergence, the streamfunc-
tion and vorticity values change less than one millionth
of their values between two consecutive iterations at
a grid point in the computational domain as the max-
imum in absolute value and even less in the rest of
the grid points in the computational domain.

For the mesh generation and also for the numer-
ical solution of the governing equations, computer
codes in C++ programming language are written and
using these codes, we numerically solve the incom-

Re ψmin (x, y)

1000 present study -0.07808 (0.6193,-0.2030)
Glowinski et al. [10] -0,0779 (0.6214,-0.2030)
Yang et al. [12] -0.0775 (0.6201, -0.2060)
Yu et al. [14] -0.0779 (0.6225, -0.2044)

2000 present study -0.07674 (0.6359,-0.2062)
Glowinski et al. [10] -0.0763 (0.6359,-0.2052)
Yang et al. [12] -0.076 (0.6376, -0.2061)
Yu et al. [14] -0.0764 (0.6367, -0.2046)

3000 present study -0.07461 (0.6551,-0.2020)
Glowinski et al. [10] -0.0742 (0.6514,-0.2027)
Yang et al. [12] -0.0737 (0.6553, -0.2041)
Yu et al. [14] -0.0740 (0.6636, -0.1993)

5000 present study -0.07026 (0.6891,-0.1931)
Glowinski et al. [10] -0.07 (0.6833,-0.1936)
Yang et al. [12] -0.069 (0.6846, -0.1963)
Yu et al. [14] -0.0691 (0.7055, -0.1863)
Mercan et al. [15] -0.0694 (0.7132,-0.1825)

6600 present study -0.06718 (0.7096,-0.1868)
Glowinski et al. [10] -0.067 (0.7009,-0.1891)
Yang et al. [12] -0.0657 (0.7002, -0.1905)
Yu et al. [14] -0.0652 (0.7353, -0.1745)
Mercan et al. [15] -0.0656 (0.7464,-0.1704)

Table 1. Comparison of the minimum streamfunction
and location of center of the primary vortex.

pressible viscous flow in a semi-circular cavity. We
start solving the considered flow for Reynolds number
of 500. Then, we progressively increase the Reynolds
number by using the previous Reynolds number solu-
tion as the initial guess for the next highest Reynolds
number. With this approach, we obtain numerical
solutions of the wall-driven semi-circular cavity flow
up to Reynolds number of 24000.

The streamfunction and vorticity contours pre-
sented in Figure 4 and Figure 5 show the change in the
flow topology in a semi-circular cavity as the Reynolds
number increases. From Figure 4 and Figure 5, we
can see that between Re = 500 and Re = 1000 and
Re = 4000 and Re = 5000, a secondary and a ter-
tiary vortex, respectively, appear in the flow field. We
can also see that as the Reynolds number increases,
the size of both the secondary and the tertiary vor-
tex increases where as the size of the primary vortex
decreases.

Glowinski et al. [10], Yang et al. [12], Yu et al. [14]
and Mercan et al. [15] have presented detailed data
from the flow field. In Table 1 we compare the present
results of the minimum streamfunction value and its
location in the semi-circular cavity geometry with the
results presented in [10, 12, 14, 15]. In their study,
Glowinski et al. [10] also presented the detachment
angles of the secondary and tertiary vortex measured
counterclockwise from the top lid as shown in Figure 1.
On the wall boundary, the skin-friction coefficient is

Re θbegin
SV θend

SV θbegin
T V θend

T V

Present study
1000 20.83 74.83 - -
2000 10.87 97.01 - -
3000 8.38 107.94 - -
5000 6.39 121.23 59.12 76.44

Glowinski et al. [10]
1000 21.42 71.49 - -
2000 10.78 94.34 - -
3000 7.77 104.53 - -
5000 6.70 117.09 57.54 73.84

Table 2. Comparison of the detachment angles of the
secondary and tertiary vortex.

521



Ercan Erturk Acta Polytechnica

Re
y 500 1000 2000 3000 4000 5000 6600 8000 10000 15000 20000 24000

0 1 1 1 1 1 1 1 1 1 1 1 1
-0.0333 0.6094 0.5398 0.4523 0.3901 0.3166 0.2239 0.0453 -0.1074 -0.2528 -0.3103 -0.2870 -0.2660
-0.0667 0.3734 0.3962 0.3932 0.3531 0.2973 0.2314 0.1075 0.0043 -0.0606 -0.0828 -0.1135 -0.1315

-0.1 0.2636 0.3161 0.3005 0.2609 0.2175 0.1745 0.1056 0.0437 -0.0042 -0.0630 -0.0937 -0.1030
-0.1333 0.1729 0.2151 0.1954 0.1631 0.1299 0.0998 0.0590 0.0247 -0.0020 -0.0478 -0.0648 -0.0716
-0.1667 0.0733 0.1081 0.0955 0.0712 0.0453 0.0219 -0.0082 -0.0221 -0.0118 -0.0308 -0.0390 -0.0433

-0.2 -0.0321 0.0040 0.0012 -0.0169 -0.0379 -0.0581 -0.0830 -0.0693 -0.0166 -0.0120 -0.0139 -0.0161
-0.2333 -0.1371 -0.0962 -0.0894 -0.1028 -0.1212 -0.1407 -0.1534 -0.0890 -0.0092 0.0109 0.0120 0.0108
-0.2667 -0.2346 -0.1940 -0.1778 -0.1879 -0.2060 -0.2250 -0.1873 -0.0627 0.0108 0.0383 0.0386 0.0374

-0.3 -0.3130 -0.2902 -0.2665 -0.2746 -0.2922 -0.2897 -0.1400 -0.0128 0.0332 0.0676 0.0650 0.0634
-0.3333 -0.3546 -0.3745 -0.3560 -0.3592 -0.3471 -0.2547 -0.0488 0.0197 0.0393 0.0886 0.0915 0.0884
-0.3667 -0.3433 -0.4120 -0.4148 -0.3813 -0.2693 -0.1121 0.0095 0.0256 0.0256 0.0744 0.1134 0.1144

-0.4 -0.2785 -0.3593 -0.3556 -0.2464 -0.0963 -0.0101 0.0250 0.0167 0.0084 0.0287 0.0827 0.1189
-0.4333 -0.1811 -0.2253 -0.1768 -0.0668 0.0027 0.0228 0.0182 0.0039 -0.0038 0.0000 0.0160 0.0384
-0.4667 -0.0809 -0.0836 -0.0309 0.0122 0.0238 0.0225 0.0072 -0.0055 -0.0087 -0.0058 -0.0060 -0.0046

-0.5 0 0 0 0 0 0 0 0 0 0 0 0

Table 3. Selected u-velocity values along x = 0 line.

defined as
Cf = τw

ρU2 (25)

where τw = µ∂u∂y

∣∣∣
w

. At the detachment points on
the wall, the skin-friction coefficient will be zero. In
our study, by calculating the skin-friction coefficient,
we have located the detachment points in the lower
circular wall of the semi-circular cavity. In Table 2,
we compare our results of the detachment angles of
the secondary and tertiary vortex with the results
of Glowinski et al. [10]. Present results in Table 1
and Table 2 are in good agreement with the results
of Glowinski et al. [10], Yang et al. [12], Yu et al. [14]
and Mercan et al. [15].

In Figure 6, we plot the computed u-velocity profiles
along the vertical line at the mid of the semi-circular
cavity, i.e., at x = 0 line, at various Reynolds numbers.
In the same figure, the velocity profiles of Glowinski et
al. [10] and Ding et al. [13] are also given with red and
green symbols, respectively. As seen in Figure 6, at low
Reynolds numbers, our computed u-velocity profiles
are in good agreement with the u-velocity profiles
of Glowinski et al. [10] and Ding et al. [13], where
as at large Reynolds numbers, our velocity profiles
deviate from those of Glowinski et al. [10] and Ding
et al. [13]. We believe that due to the fine mesh used
in the present study, our results are more accurate. In
Table 3, we tabulate selected values of the u-velocity
values along x = 0 line at various Reynolds numbers
for future references.

In Table 4 and Table 5, we present the streamfunc-
tion and vorticity values at the centres of the vortices
together with the centre locations and also the de-
tachment angles of the secondary and tertiary vortex,
respectively, for all the Reynolds numbers considered
in this study for benchmark purposes.

In order to see the behaviour of the detachment
points better, in Figure 7, we plot the detachment
angles given in Table 4 as a function of the Reynolds
number. From Figure 7, we can see that while θbeginSV

seems to converge to a value at large Reynolds num-
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Figure 7. Detachment angles of the secondary and
tertiary vortex as a function of the Reynolds number.

bers, θendSV , θbeginTV and θendTV are still increasing as the
Reynolds number increases. This states that the solu-
tion of the semi-circular cavity flow is still changing
even at the highest Reynolds number considered in
the present study (i.e. Re = 24000).

At large Reynolds number, the Batchelor’s
model ([29]) states that the steady laminar flow with
closed streamlines moves like a solid body with a uni-
form vorticity at the inviscid vortex. Erturk [2] showed
that in the driven square cavity flow at large Reynolds
numbers in the primary vortex, the vorticity is almost
uniform such that the core fluid rotates like a solid
body in agreement with the Batchelor’s model ([29]),
also, at the primary vortex centre, the vorticity value
converges to the limiting value analytically calculated
by Burggraf [30]. In the case of the driven semi-
circular cavity flow at large Reynolds numbers, from
Figure 4 and Figure 7, we can see that the sizes of
the primary, secondary and tertiary vortices are still
changing significantly even at the highest considered
Reynolds number of Re = 24000, while the size of the
primary vortex decreases, the size of the secondary
and tertiary vortices increases. This indicates that
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Re ψ ω x y

500 PV -7.6674E-02 4.73550 0.1334 -0.1940
1000 PV -7.8084E-02 4.53861 0.1193 -0.2030

SV 4.1296E-04 -0.58656 -0.3456 -0.2570
2000 PV -7.6735E-02 4.57210 0.1359 -0.2062

SV 3.8975E-03 -1.37969 -0.3250 -0.1817
3000 PV -7.4606E-02 4.70449 0.1551 -0.2020

SV 6.5343E-03 -1.48358 -0.3096 -0.1836
4000 PV -7.2385E-02 4.86208 0.1722 -0.1978

SV 8.6265E-03 -1.47665 -0.2829 -0.1933
5000 PV -7.0263E-02 5.02531 0.1891 -0.1931

SV 1.0289E-02 -1.47578 -0.2609 -0.1986
TV -1.5422E-05 0.13901 -0.1629 -0.4461

6600 PV -6.7180E-02 5.28290 0.2096 -0.1868
SV 1.2349E-02 -1.46225 -0.2396 -0.2052
TV -1.5500E-04 0.37152 -0.0828 -0.4365

8000 PV -6.4793E-02 5.50007 0.2252 -0.1786
SV 1.3747E-02 -1.44986 -0.2236 -0.2086
TV -3.0604E-04 0.47522 -0.0321 -0.4323

10000 PV -6.1823E-02 5.79482 0.2432 -0.1720
SV 1.5309E-02 -1.43214 -0.2037 -0.2128
TV -4.8690E-04 0.56585 0.0230 -0.4261

15000 PV -5.6092E-02 6.45364 0.2757 -0.1561
SV 1.7854E-02 -1.39370 -0.1747 -0.2220
TV -7.8118E-04 0.67408 0.1123 -0.4074

20000 PV -5.1952E-02 7.02646 0.2953 -0.1447
SV 1.9332E-02 -1.36248 -0.1543 -0.2243
TV -9.7761E-04 0.73133 0.1649 -0.3892

24000 PV -4.9336E-02 7.44717 0.3088 -0.1382
SV 2.0103E-02 -1.34078 -0.1425 -0.2272
TV -1.0986E-03 0.75759 0.1919 -0.3758

Table 4. Streamfunction, vorticity at the centres
of vortices and (x,y) locations at different Reynolds
numbers.

even at Re = 24000, the flow is still evolving and the
flow quantities are not converging to a value asymp-
totically. However, in the case of the square driven
cavity in Erturk [2], the change in the the primary
vortex’s size or the change in the flow quantities at the
centre of the primary vortex becomes very small as the
Reynolds number increases to high values converging
to a stable value. In order to see the behaviour of
the driven semi-circular cavity flow at large Reynolds
numbers better, in Figure 8, we plot the vorticity value
at the centre of the primary vortex with respect to
the Reynolds numbers, which are tabulated in Table 3.
From Figure 8, we can see that the vorticity value
at the primary vortex centre continuously increases
almost linearly with respect to the Reynolds number
without converging to a value even at Re = 24000.
Present results show that at large Reynolds numbers,
the driven semi-circular cavity flow does not agree
with the Batchelor’s model ([29]).

4. Conclusion
In this study we have presented stationary solutions of
an incompressible viscous flow in a wall-driven semi-
circular cavity at large Reynolds numbers. The govern-
ing equations are numerically solved up to Re = 24000

Re θbegin
SV θend

SV θbegin
T V θend

T V

1000 20.83 74.83 - -
2000 10.87 97.01 - -
3000 8.38 107.94 - -
4000 7.16 115.52 - -
5000 6.39 121.23 59.12 76.44
6600 5.61 128.01 59.28 88.75
8000 5.14 132.45 60.38 96.53
10000 4.66 137.28 62.15 105.01
15000 3.90 145.04 65.99 118.75
20000 3.43 149.75 68.79 127.04
24000 3.16 152.44 70.52 131.72

Table 5. Flow detachment angles of the secondary
(SV) and tertiary (TV) vortices at different Reynolds
numbers.
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Figure 8. Variation of the vorticity value as a func-
tion of the Reynolds number at the centre of the
primary vortex.

with using a body-fitted mesh obtained by a confor-
mal mapping. Our numerical solutions are in good
agreement with the numerical solutions found in the
literature. Our computations indicate that as the
Reynolds number increases up to Re = 24000, the size
of the secondary and tertiary vortex increases continu-
ously whereas the size of the primary vortex decreases
continuously. Present numerical solutions show that
the vorticity value at the centre of the primary vortex
increases almost linearly at large Reynolds numbers,
up to the highest considered Reynolds number of 24000
in this study, stating that Batchelor’s mean-square
law is not valid for the wall-driven semi-circular cavity
flow.
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