Czech Technical University in Prague Acta Polytechnica Vol. 45 No. 2/2005

Fixed-Point Arithmetic in FPGA

M. Bedvii, P. Stukjunger

Arithmetic operations are among the most frequently-used operations in contemporary digital integrated circuils. Various structures have
been designed, utilizing different features of IC architectures. Nevertheless, there are very few studies that consider the design of arithmetic
operations in Field Programmable Gate Arrays (FPGAs), a re-programmable type of digital integrated circuit. This text compares the results

achieved when implementation of basic fixed-point arithmetic units in FPGA.

Keywords: arithmetic, fixed-point, FPGA.

1 Introduction

Nowadays, arithmetic operations are among the most
common operations in digital integrated circuits. Even the
simplest circuit adds, subtracts or multiplies something.
Therefore there are high requirements on arithmetic opera-
tions. The computation should be fast and the area consumed
by the arithmetic units should be small. These are two basic
requirements, which are unfortunately contradictory.

Numbers in digital integrated circuits can be repre-
sented in various ways. The most widely known and most
frequently used is fixed-point addition and multiplication
representation.

As mentioned above, the question of efficient fixed-point
arithmetic operations is interesting when implementing a
digital circuit. This is not a new question. Many studies have
been done and many articles and books have been published
on the topic of arithmetic. However, these have only rarely
considered this question in conjunction with FPGAs (Field
Programmable Integrated Circuits). In the design of an arith-
metic unit in FPGA, it was common to use the corresponding
operator of an HDL (Hardware Description Language) and
rely on a synthesis tool. No thorough study and comparison
of different structures of basic fixed-point arithmetic units has
yet been published.

This paper shows the results of our study [7], based on im-
plementing and then comparing of fixed-point arithmetic
units. Virtex-II FPGA was chosen for implementation since it
possesses arithmetic-support features common for contem-
porary FPGAs. The paper is divided into five sections. After
the introduction, the second section describes the selected
implementation platform. The third section outlines the im-
plantation of arithmetic units. The fourth section consists of a
discussion and a comparison of the results of the measure-
ments. The last section concludes the text with a summary of
the results.

2 Platform

As shown in Table 1, contemporary FPGAs possess special
features to support of arithmetic operations. The support
features differ from one FPGA vendor to another. It was not
the goal of the study to compare the different FPGAs. We de-
cided to use Xilinx [8] Virtex-II FPGAs as the implementation
platform. This is a very popular implementation platform in
contemporary designs, and it has special support features for
both addition and multiplication.

© Czech Technical University Publishing House

http://ctn.cvut.cz/ap/

Table 1: Arithmetic support features in FPGAs

Vendor Chip Features

Altera Stratix IT | Adder logic, carry chain, DSP

support.

AT40KAL| Vector Multipliers. The
AT40KAL'’s patented 8-sided
core cell with direct horizontal,
vertical and diagonal cell-to-cell
connections implement ultra
fast array multipliers without
using any busing resources.

Atmel

Lattice IspXPGA | Dedicated carry chain and
Booth multiplication logic

(extra two-input AND).

ECU blocks (up to 8-bit MAC
functions) for DSP

(8b multiplier, 16b adder), 12
ECUs in the largest device.

QuickLogic | Eclipse-1I

Xilinx Virtex-II | Dedicated fast carry chain and
carry propagation logic, embed-
ded 18x18 bit signed multipliers

with associated RAM blocks.

Cad tools are another important part of the implementa-
tion platform. The choice of tools affects the results of the
implementation. Again, a comparison of CAD (Computer
Aided Design) tools was not the goal of our study. The tools
were chosen according to their availability in our department.

The following tools were used in the relevant implementa-
tion steps:

o Synthesis: Leonardo Spectrum 2001, Mentor Graphics [4]

o P&R, Timing Analysis: Xilinx ISE 5.2 Foundation, Xilinx
(8]

o Simulation: ModelSim 5.5f, Mentor Graphics [4]

3 Implementation

This section lists the implemented adders and multipliers.
They were chosen from different sources [1-3][5-6] to meet
the objectives of the study: to explore the characteristics of
arithmetic unit structures when implemented in FPGA, and
to examine the FPGA architecture itself including the features
that support arithmetic operations.

67

Acta Polytechnica Vol. 45 No. 2/2005

Czech Technical University in Prague

Classes of Implemented Fixed-point Adders:

o Carry-Ripple Adder (CRA): A basic adder structure based
on full adders connected into a chain. This is the simplest
structure for implementation and also the slowest for oper-
ation. Nevertheless, it is important for comparison with the
other structures.

o Generated Adder (GA): An adder generated by a synthesis
tool. In contrast to CRA it utilises the dedicated carry
chains of Xilinx Virtex IT FPGAs.

o Carry-Lookahead Adder (CLA): The carry-Lookahead ad-
der uses two special signals G(enerate) and P(ropagate) to
predict the propagation of a carry signal without using a
carry chain. Several CLAs were implemented with different
building-block types and sizes.

o Carry-Skip Adder: Based on CLA Carry-Skip, this adder
uses only the P(ropagate) signal, and for this reason, it is
much easier to implement. It can be seen as a compromise
between the complexity of CLAs and the long delay of
CRAs.

o Carry-Select Adder: Two sets of adders are used, one with
the carry-in signal driven to logic 0 and the second with
the carry-in signal driven to 1. The result is selected by
multiplexers controlled by the actual carry-in signal. This
structure is suspected to have the largest consumption,
which should however compensate its performance.

Fixed-point multipliers can be divided into two groups by
the type by their operation: serial mode multipliers and par-
allel mode multipliers. A serial mode multiplier computes bits
of the result one by one in each computation cycle. On the
other hand, a parallel mode multiplier computes all bits of
the result at once. Several multiplier structures from the two
groups were selected for implementation. In the case of the
parallel mode, not only conventional versions but also pipe-
lined versions of multipliers were implemented.

As they were implemented, the multipliers take n-bit
operands and produce a 2n-bit result. No adjustments of the
result, such as radix-point position or length truncation, were
considered in the implementation.

Classes of Implemented Fixed-point Multipliers:

Serial mode multipliers:

o Classical Multiplier: The most basic serial mode multi-
plier structure that computes multiplication in a human-
-like way, i.e., going through the bits of one operand and
simultaneously accumulating the second operand and
shifting the sum.

o Booth Multiplier: A serial mode multiplier that uses Booth
recoding. This enables it to compute signed number multi-
plication and, for radices greater than two, also increases its
speed by computing several bits of the result in one compu-
tational step.

o CSA Multiplier: A serial mode multiplier that uses Carry-
-Save Adders, adders that have 3N inputs and 2N outputs.
Carry-Save Adders have a shorter delay than a normal full
adder, which shortens the length of a single step of the
multiplier.

68

© Czech Technical University Publishing House

e Booth + CSA Multiplier: Combining the concepts of
Booth and CSA multipliers, this multiplier uses radix-4
Booth recoding to reduce the number of computational
steps and CSA adders to shorten the duration of a single
computational step.

Parallel mode multipliers:

e Array Multiplier: A parallel mode multipliers with a struc-
ture based on the basic formula for computation of a
multiplication. It consists of N2 cells connected into an
array-like structure.

e Wallace Multiplier: A parallel mode multiplier that uses a
tree of CSA adders. Thanks to the CSAs at each level of the
tree, the number of operands is reduced by a factor of 3:2.

o Generated Multiplier (Generated HW): A parallel mode
multiplier generated by a synthesis tool. It utilises 18-bit
hardware multipliers embedded in Xilinx Virtex II FPGAs.

e Combinative Generated Multiplier (Generated C): A par-
allel mode multiplier also generated by a synthesis tool,
but with disabled usage of the embedded multipliers. This
multiplier was implemented for the purposes of compari-
son with other structures and also for investigating the
pipelining abilities of the synthesis tool.

VHDL hardware description language was used for imple-
mentation; however there is no reason it should have any
impact on the results of the experiments. Different arithmetic
unit structures were implemented with a common interface,
so that they can be used interchangeably (i.e. an adder can be
replaced by another adder; and a multiplier by another multi-
plier). The units are parametrized, which allows the user to
choose the width of the operands (and consequently of the
result). However, this it can be done only statically before
the start of the implementation process. For more details on
implementation, see [7].

4 Results

The results of the experiments with implemented arith-
metic structures are shown below. The target FPGA chip was
Xilinx Virtex-1I, specifically XC2V500 in the FG456-6 pack-
age. There was no particular reason for choosing exactly this
part rather than some other member of the family. It was
discovered later that some of the 64-bit multiplier structures
did not fit in this chip, so a larger (XC2V1500) chip had to be
used instead. Place and route reports were used as a source
for the evaluation.

4.1 Fixed-point addition

Tab. 2 shows the results of measurements carried out on
the implemented adder structures of 16, 32 and 64 bit-width.
The results show that the best adder structure in terms of both
time and area is the one that uses dedicated carry chains as
depicted in figure Fig. 1. None of the techniques that try to
speed up the addition by cutting the carry chain, applied to
this structure, brought any improvement in speed, but led to
an increase in the occupied area. Therefore, the results of
such structures are not shown.

As mentioned above, the speed-up techniques cripple the
performance of the Generated Adder, and the following ob-
servations are only valid for adders based on the CRA adder.

http://ctn.cvut.cz/ap/

Czech Technical University in Prague

Acta Polytechnica Vol. 45 No. 2/2005

Table 2: Results of fixed-point adders

N=16 N=32 N =64
Area (Slices) | Delay (ns) | Area (Slices) | Delay (ns) | Area (Slices) | Delay (ns)
CRA 23 13.52 47 23.99 95 40.27
Generated 8 4.05 16 5.09 32 8.38
CLA 29 7.97 61 19.06 127 24.84
Carry-Skip 23 11.54 47 15.67 95 18.02
Carry-Select 27 13.27 67 16.47 135 23.88

CLA: CLA occupies the largest area among adders with a
speed-up technique applied, without bringing better speed
improvement than the other techniques. The regularity of
CLA with blocks of size 2 proved to have an advantage over
other CLAs in smaller area consumption.

Carry-Skip Adders: No extra area was occupied by the addi-
tional carry propagation logic — a very favourable result. With
no need for extra area, the Carry-Skip Adder accelerates CRA
to less than half delay at 64 bits.

Area
50

40

30

20

Area [Slices]

Dedicated paths Classical paths

Delay
30

25

20

15

Delay [ns]

10

S

Dedicated paths Classical paths

Fig. 1: Fixed-point adders: comparison of the delay and area con-
sumption of an adder with dedicated carry chains vs. an
adder utilising classical routing paths (an example for
32-bit data width)

© Czech Technical University Publishing House

http://ctn.cvut.cz/ap/

Carry-Select Adders: The carry-Select Adder requires extra
area. In addition, it does not shorten the delay of computa-
tion as much as the Carry-Skip Adder.

4.2 Fixed-point multiplication

Table 3 shows the results of measurements carried out on
different multiplier structures. 16, 32 and 64-bit multipliers
were implemented.

As mentioned above, the implemented multipliers can be
divided according to their operation mode into two groups:
serial and parallel mode multipliers. The multipliers within
each group have similar characteristics, and the results can
often be generalized to the whole group.

As in the case of adders, two parameters were examined:
area and delay. Before dealing with the delay of the multiplier,
it is necessary to state clearly what it means. Two measures
have to be distinguished: delay and response time. Response
time refers to the total time required for computation of the
result. On the other hand, the delay of a sequential circuit is
defined as the reverse value of its clock frequency. Note that
the delay of the parallel mode multipliers is equal to their re-
sponse time, but they response times of serial mode multipli-
ers and pipelined multipliers are multiples of their delays.
These time measures are both important, and were therefore
the object of our examination.

4.2.1 Area

Fig. 2 depicts the area consumption of selected multiplier
structures with 32-bit operand width. This figure shows, and it
is also valid in general, that serial mode multipliers consume
considerably a smaller area than parallel mode multipliers.
The implementation of wide (larger than 64 bits) parallel
mode multipliers approaches the limits of technology — not
only the limits of FPGA, but also the capacity of the synthesis
tool. The results are much better when embedded hardware
multipliers are used, but the number on one chip is limited [8]
and consumption grows exponentionally with operand width.
Note that the area consumption depicted by the figure does
not include the area of the embedded multipliers.

4.2.2 Delay

Two time measures were observed on the multiplier struc-
tures: delay and response time. The response time gives an
overview of the overall performance of the unit. The delay
limits the maximum clock frequency of the system on which
the given multiplier structure will be used. Parallel mode
structures have a shorter response time, while serial mode

69

Acta Polytechnica Vol. 45 No. 2/2005

Czech Technical University in Prague

Table 3: Results of fixed-point multipliers

N=16 N=32 N =64

Area (Slices) | Delay (ns) | Area (Slices) | Delay (ns) | Area (Slices) | Delay (ns)
Serial Mode Multipliers:
Classical 40 4.60 71 4.94 136 8.75
Booth-2 (radix 2) 41 4.63 73 4.89 138 7.99
Booth-4 (radix 4) 55 4.93 104 5.37 202 9.09
CSA 62 3.46 119 3.67 234 4.54
Booth-4 + CSA 101 4.62 191 4.86 370 5.45
Parallel Mode Multipliers:
Array * 364 28.96 1536 53.45 4187 99.97
Wallace * 390 19.81 1542 27.18 6164 37.00
Generated 0 14.87 49 18.54 295 28.94
Generated C 134 20.32 533 26.27 2109 29.97
Pipelined Multipliers:
Array [P2] * 274 14.95 1059 29.98 4193 59.92
Wallace [P] 446 4.64 1654 4.95 6367 9.9
Generated C [P4] * 188 4.95 635 9.94 3317 11.61

Notel: [Pn] denotes a pipelined multiplier with a given number of stages, where appropriate.
Note2: 64-bit versions of multipliers marked * did not fit in an XC2V500 chip. An XC2V1500 was used instead.
Note3: Area consumption does not include the area of embedded multipliers. Generated multipliers of 16, 32 and 64 bit-width

utilize 1, 4, and 16 embedded multipliers, respectively.

multipliers have a better delay criterion. This is an expected
result, thanks to the philosophy of the operation mode. In
parallel mode the computation is done in a single step. The
step is long, longer than one step of the serial mode multi-
plier, but shorter than the sequence of steps that has to be car-
ried out by a serial mode multiplier to compute the result.

300 1542

The pipelining technique was applied on parallel mode
multipliers to see if it brings any improvements. This tech-
nique could not be applied when embedded multipliers were
used, since the multipliers cannot be divided to allow the in-
sertion of registers for the pipeline. The advantages and dis-
advantages of pipelining were observed on the implemented

250

200

150

Area[Slices]

100

104

49
50

0 I

Generated HW Wallace

Booth (r4) serial Classical serial

Fig. 2: Area of fixed-point multipliers: selected types of fixed-point multipliers are shown, two parallel mode multipliers on the left and
two serial mode multipliers on the right (all with 32-bit data width)

70

© Czech Technical University Publishing House

http://ctn.cvut.cz/ap/

Czech Technical University in Prague

Acta Polytechnica Vol. 45 No. 2/2005

180

160

140

-
N
o

—_
(=]
(=]

@
(=]

Response [ns]

[e2]
(=]

B
=]

) . I
0
Generated HW Wallace

Booth (r4) serial Classical serial

Fig. 3: Response time of fixed-point multipliers: selected types of fixed-point multipliers are shown, two parallel mode multipliers on
the left and two serial mode multipliers on the right (all with 32-bit data width)

30 4

[
(=)

Delay [ns]
P

iy
(=)

25
| I
0 T

Generated HW Wallace

Booth (r4) serial Classical serial

Fig. 4: Delay of Fixed-point Multipliers: selected types of fixed-point multipliers are shown, two parallel mode multipliers on the left and
two serial mode multipliers on the right (all with 32-bit data width)

structures. However, pipelining did not show any consider-
able improvements. When a parallel mode multiplier is to be
implemented, embedded multipliers are the best option.

5 Conclusion

Arithmetic operations in contemporary digital integrated
circuits have an important role. Our study [7] provides a com-
parison of the structures of fixed-point adders and multipliers
implemented in FPGA. From a number of well-known [1-3],
[6-6] implementation architectures, several structures were
chosen to observe their characteristics when they are im-
plemented in FPGA and, at the same time, to investigate
the possibilities of the FPGA architecture itself. The Xilinx
Virtex-II FPGA family was chosen as the implementation

© Czech Technical University Publishing House

http://ctn.cvut.cz/ap/

platform, because it provides special features to support arith-
metic operations, a trend that seems to be common at the
present time for FPGA chips.

Nine fixed-point adder structures were implemented in
the study. The results show that a structure using Virtex’s
dedicated fast carry chains has the best results in terms of
both area and delay criteria. None of structures utilizing a
speed-up technique showed better results. If no dedicated
carry chain is available, the Carry-Skip Adder is the best
option, because it doubles the speed of an adder with a nor-
mal carry chain without any extra area consumption.

Ten fixed-point multipliers were implemented. They can
be divided according to their operation mode into two
groups: serial and parallel mode multipliers, respectively.
The parallel mode structures provide a shorter response time,

71

Acta Polytechnica Vol. 45 No. 2/2005

Czech Technical University in Prague

but they also require a significantly larger area in terms of
CLB slices. A parallel multiplier structure that utilizes em-
bedded hardware multipliers proved to have the shortest
response time. However, the embedded hardware multipliers
are consumed very rapidly for bit-widths larger than 18 and,
furthermore, the number on a chip is limited [8]. Serial mode
structures proved to have advantages for applications that
require small area usage with a short clock cycle. They provide
a reasonable response time even for relatively large bit-widths
(32 bits and more), on a very small area. This gives the oppor-
tunity to exploit the parallelism between a large number of
serial-mode multipliers in a single FPGA.

References

[1] Ercegovac, M. D., Lang, T.: Digital Arithmetic, Morgan
Kaufmann Publishers, San Francisco, 2003.

[2] Hennessy, J. L., Patterson, D. A., Goldberg, D.: Computer
Archatecture: A Quantitative Approach: Appendix H Com-
puter Arithmetic, Elsevier Science, 1995.

[3] Koren, L.: Computer Arithmetic Algorithms, Prentice-Hall,
Englewood Cliffs, New Jersey, 1993.

[4] MENTOR GRAPHICS, web page,
http://www.mentor.com/.

72

[6] Omondi, A. R.: Computer Arithmetic Systems (Algorithms,
Architectures and Implementations), Prentice-Hall In-
ternational (UK) Limited, 1994.

[6] Pluhacek, A.: Projektovani logiky pocitacii (Designing
Computer Logic), CTU Publishing House, Prague,
1992.

[7] Stukjunger, P.: Arithmetic in FPGA, Diploma thesis, CTU
in Prague, 2004.

[8] XILINX, web page, http:/www.xilinx.com.

© Czech Technical University Publishing House

Ing. Milo§ Becvar
e-mail: becvarm@fel.cvut.cz

Ing. Petr Stukjunger
e-mail: stukjup@fel.cvut.cz

Department of Computer Science & Engineering,

Czech Technical University in Prague
Faculty of Electrical Engineering
Karlovo nam. 13

121 35 Prague, Czech Republic

http://ctn.cvut.cz/ap/

