
https://doi.org/10.14311/AP.2021.61.0391
Acta Polytechnica 61(2):391–405, 2021 © 2021 The Author(s). Licensed under a CC-BY 4.0 licence

Published by the Czech Technical University in Prague

NON-LINEAR ANALYSIS OF SLENDER MASONRY COLUMN
SUBJECTED TO BIAXIAL BENDING

Marek Vokál∗, Michal Drahorád

Czech Technical University in Prague, Faculty of Civil Engineering, Department of Concrete and Masonry
Structures, Thákurova 7, 166 29 Prague, Czech Republic

∗ corresponding author: marek.vokal@fsv.cvut.cz

Abstract. The article deals with a method for analysing slender masonry columns. The proposed
method uses material and geometric non-linearity. Various stress-strain diagrams can be used: linear,
linear-plastic, parabolic-plastic, two various parabolic and rigid-plastic. In all cases, the tensile strength
is neglected. The method can be used for analysing the column in accordance with Eurocodes in two
ways: SLS (serviceability limit state) and ULS (ultimate limit state). The internal forces are calculated
on a general beam model, with imperfections in both directions, which result in two bending moments
in two perpendicular planes – biaxial bending. This case is not covered by the current code – Eurocode,
even though all columns are more or less loaded in both directions. In this numerical study, using
Matlab software, an algorithm was developed for modelling a real 3D case. The results of this study
are also compared to the results of laboratory tests of masonry columns.
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1. Introduction
In general, all structures are loaded in both directions
and all material behaviour is precisely described by the
non-linear behaviour. In practical structural design,
the stiffness of an element usually permits the smaller
load effect to be neglected and to consider the element
loaded in one direction only. It is not suitable for cases,
for which My > 0.1Mz (or Mz > 0.1My), such as
columns in a corner of a building, where load by wind
can occur in two directions or, for example, of a high
bridge pier, where the transverse wind load cannot
be neglected. The impact of the biaxial loading is
even higher in the case of slender columns. According
to the current code of masonry structures ([1]), the
rectangular cross section loaded by a combination of
normal force and one bending moment (which results
in a smaller, also rectangular cross section, if the
rigid-plastic stress-strain diagram is considered) can
be considered. This is not sufficient for the case of
biaxial bending moments, which can lead to a skewed
neutral axis and trapezoidal or general polygon-shaped
cross section. The general stress diagram depicting
biaxial bending is shown in Figure 1 for the case
the SLS and in Figure 2 for the case of the ULS
(an example of a rigid-plastic diagram). The stress-
strain diagram for the SLS is clearly linear for the
compression, but for the ULS, there are many options.
The [1] recommend a non-linear relation, even though
it doesn’t recommend which relation should be used.
Another possibility is to use an elastic - ideal plastic.
The equation for the check of design value of resistance
normal force arises from the rigid-plastic diagram,
which is also used in this article. See all the used
diagrams in chapter 3.

2. Methods and literature review
The biaxial bending is mentioned in few masonry
standards throughout the world. In case that the
biaxial bending is mentioned, the verification is very
conservative. For example, according to the British
standard – [2], the slenderness ratio λs is limited by
the value of 27 (in this study, columns of ratio λs

up to value of 300 are analysed). All the methods
consider only a rectangular shape of the cross section.
In general, methods can be divided by (each method
has its shortcut):
• Consideration of material non-linearity for the cal-
culation of internal forces.
. Yes (M)

– Linear stress-strain diagram (L)
– Rigid-plastic diagram (R)
– Non-linear diagram (N)

. No (-)
• Consideration of geometric non-linearity for the
calculation of internal forces.
. Yes (G)
. No (-)

• Method, according to which the check is done.
. Effective area – rectangular shape, 1 coefficient
for the impact of buckling (B1)

. Effective area – rectangular shape, 2 coefficients
for the impact of buckling (B2)

. Effective area – general shape according to B.
Das [3], 1 coefficient for the impact of buckling
(D)

. Fully non-linear calculation, controlling the strain
and stress of the material (S)
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Figure 1. The general stress diagram of a rectangular
cross section - SLS.

Figure 2. The general stress diagram of a rectangular
cross section in ULS – an example of a rigid-plastic
stress-strain diagram.

For example, the method proposed by this arti-
cle is ML,R,N GB1,D,S method (“,” means multiple
options). The order of characters in the shortcut cor-
responds to the order of items in the list above. The
method of EC6 [1] is -RGB?, see the following chapter.

2.1. Methods according to EC6 [1]
According to [1], only the wall should be verified.
Biaxial bending is not handled. The eccentricity of
the load occurs in just one direction (in the direction
of the smaller stiffness). The design normal resistance
force must fulfil the following condition:

NEd ≤ NRd = ΦBHfd, (1)

Φi = 1− 2ei

B
, (2)

for the check of the foot and the head of the column,
and

Φm = A1e
−u2

2 , (3)

A1 = 1− 2emk

B
, (4)

u = λ− 0.063
0.73− 1.17emk/B

, (5)

Figure 3. Shape of the cross section due to the load
with eccentricity in one direction.

λ = hef

B

√
fk

E
, (6)

for the check in the middle of the columns height,
where: NEd – design value of applied normal force,
NRd – normal resistance force, Φ – capacity factor
according to slenderness, Φi at the top or bottom of
the column, Φm in the middle , B – width of a section,
H – thickness of a section, fd – design strength of
masonry, fk – characteristic masonry normal strength,
E – Young’s modulus of elasticity, hef – critical (buck-
ling) length, e – the base of the natural logarithm, emk

– sum of eccentricities from the load, initial imperfec-
tion and creep in the middle of the column, ei – sum
of eccentricities from the load, initial imperfection and
creep in the head or foot of the column.
This relation considers bending in only one plane,

in the ultimate limit state. Serviceability limit state
is not handled, no relationship is given. It is gener-
ally denoted, that overstressing or damage shall be
avoided.

2.2. JÄGER, W. Mauerwerk-Kalender
According to [4], the reduced shape of the cross section
has the following shape:
According to [4], the following relation should be

used:

NRd = ΦiyΦizBHfd, (7)

Φiy = (1− 2ey

B
)e

−u2
y

2 , (8)

Φiz = (1− 2ez

H
)e

−u2
z

2 , (9)

where: uy and uz can be calculated according to
previous section. ey and ez – sum of eccentricities
from the load, initial imperfection and creep in the
middle of the column in the direction of axes y and z,
respectively. It is the RGB2 method. The equations
consider a rigid-plastic stress-strain diagram and mul-
tiply two coefficients of buckling (capacity factors),
which is very conservative.
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Figure 4. Method, which uses effective area – rectangle shape (shortcut B).

2.3. Valentin Förster [5]
The method shortcut is -R-B1. The article [5] states,
that:

NRd = min(ΦRd,yBredHfd; ΦRd,zBHredfd), (10)

Bred = (1− 2ey

B
)B, (11)

Hred = (1− 2ez

H
)H, (12)

where: ΦRd,y – slenderness reduction factor in the
direction of axis y according to the previous section,
ΦRd,z – slenderness reduction factor in the direction
of axis z according to the previous section.
This proposal is based on using the load-bearing

capacity of exclusively uniaxially eccentrically loaded
compressed members for calculating the load-bearing
capacity of biaxially eccentrically loaded compression
members. It uses a rigid-plastic stress-strain diagram
and just one coefficient of buckling.

2.4. Cais, J. and Das, B.: skew shape of
compressed area

Skew shape (shortcut -R-D) using a rigid-plastic stress-
strain diagram according to [3] and [6] proposed for
the check of the stress in the soil under the rectangular
shallow foundations gives us the following relations:

NEd ≤ NRd = ΦAefffd, (13)

Aeff = λDβ/2, (14)

λD = 3/2− 3εx, (15)

β = 3/2− 3εz, (16)

εz = ez/H, (17)

εx = ex/B, (18)

where: B – width of a section, H – thickness of
a section, ex – eccentricity in the direction of the
dimension H, ez – eccentricity in the direction of the
dimension B.

These relationships are valid just for the case where
the effective area has a triangular shape, see Figure 5.
In other cases, the calculation is much more compli-
cated, see [3].

2.5. ACI – standard of American
concrete institute

The method of ACI [7] is described in section 4.2.

3. Method used in this article
3.1. Assumptions of analysis
On the level of the cross section, the local axes are
used: y_loc and x_loc. For forming the global stiff-
ness matrix, the global axes are used: xg and yg.
Because the tension cannot be carried by the material,
cracks open and the loaded part of the cross section,
which carries the load, changes its shape. As a conse-
quence, the centroid of the cross section moves. The
centroid can, in general, move in both horizontal di-
rections, in the plane of the cross section (according
to Figure 7, in direction of y_loc and x_loc). The
behaviour of the slender column, when considering the
material non-linearity, can be described by Figure 6:
According to the magnitude of the acting bending

moments, the neutral axis can be skewed or, in a
special case, perpendicular to one of axes y_loc and
x_loc of the local coordinate system. The special
case, for which the neutral axis is parallel to one of
the axes and the imperfection in the perpendicular
direction is considered zero, is discussed in article [8].
In general, the following shapes of cross sections

can occur:

(1.) Rectangular shape in the case of one bending
moment – My_loc.

(2.) Rectangular shape in the case of one bending
moment – Mz_loc.
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Figure 5. Shape of effective compressed area according to [3].

Figure 6. Change of geometry of the column due to
material non-linearity.

(3.) General polygon shape, which was created by
cutting off one triangle.

(4.) Trapezoidal cross section, where edge B is re-
duced (see B, H in Figure 3).

(5.) Trapezoidal cross section, where edge H is re-
duced.

(6.) Triangular shape.

In the proposed algorithm, all cases are covered.
If Mz_loc < 0.1My_loc, case # 1 can be used and if
My_loc < 0.1Mz_loc, case # 2 can be used. The case
# 6 usually results in the collapse of the structure
for the case of slender column (see the conclusions
of this article). However, it can occur in the case
of the short column being loaded by large eccentrici-
ties. In this article, the approach to the interaction
between the mortar and the masonry units is chosen
the same as in the current code [1] – the masonry
is homogenized in a suitable manner. According to
[9], the method of homogenization used in Eurocode
is called "yield line theory" and it is based on labo-

Figure 7. Cases which can occur in the structure.

ratory tests (e.g., [10] and [11] ) conducted on brick
masonry walls subjected to lateral loads, showing that
the failure takes place along a well-defined pattern of
lines. In this article, the whole column is considered
as a beam from the same material of uniform strength
and uniform Young’s modulus of elasticity. The shape
of the cross section depends on the resulting strain
diagram for the appropriate cross section in i-th step
of the calculation. The tensioned part of the cross
section is excluded. The column has an eccentricity
(imperfection) in both directions y_loc and z_loc. In
general, the imperfection in the direction y_loc can
be independent on the imperfection in the direction
z_loc. The imperfection of sin function shape is con-
sidered. The buckled shape or eigenvector is described
in [12]. As a boundary conditions, both the top and
the bottom of the column are considered hinged, at
the bottom, all translations are fixed, at the top, hor-
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izontal translations are fixed, the vertical is free (a
simply supported beam).

3.2. Developed algorithm
The algorithm considers both step the material non-
linearity and the geometric non-linearity in each step.
The geometric non-linearity is handled by the second
order analysis. The solution is sought iteratively, the
calculation stops if the error is less than the chosen
precision threshold of the calculation. As an error,
the difference between the two deformations in the
middle of the column in two following steps is chosen:

ε = abs(ri
Nel/2 − r

i−1
Nel/2)) < εchosen, (19)

where: Nel – number of elements, Nel/2 means
middle of the column, r see below, i – number of steps,
εchosen – chosen error in metres. In algorithm, 10e-07
is used.
A beam representing the column is divided into

smaller elements, which have a prismatic shape – the
cross section is constant over the elements’ length. For
the required precision, the usual number of elements
is between 128 and 512. The solution is carried out
in the following steps:

(1.) Finding a linear solution in the first step, calcu-
lation of internal forces.

(2.) Finding the neutral axis of each element, forming
the updated matrix of cross-section properties with
reduced moments of inertia Iy, Iz, Iyz, areas of the
cross sections and the shifts of the centroid caused
by the material non-linearity.

(3.) Updating the geometry of the column, finding
the solution to the set of new equations, go to the
step 2 and repeat it, until the error is lower than
the chosen precision threshold of the calculation.
The case for which the error is growing and does
not converge means a collapse of the structure.

3.3. General equations for the solution
The analysis of frame buckling by the stiffness method
generally reduces according to [13] to a linear matrix
equation:

K(µ)r = f, (20)

where: r is the column matrix of small generalized
displacement increments from the initial state, f is
a column matrix of the associated small generalized
force increments, K is the matrix of incremental stiff-
ness coefficients and µ is the parameter of initial loads
that are independent of f . Equation 1 represents a
matrix eigenvalue problem of a nonstandard type, be-
cause the coefficients of K depend on µ non-linearly,
and µ does not appear only in diagonal terms. To get
rid of this non-linearity, columns are subdivided into
three or more elements (in this article, the number
of elements is between 128 and 512), the linear part

of Taylor expansion is used, we obtain nonstandard
linear eigenvalue problem:

(K −KG)r = 0, (21)

where: KG – geometric stiffness matrix. The itera-
tive solution begins with the equation:

Kr = f + fekv, (22)

where:

fekv = KGr. (23)

3.4. Equations used for the solution and
the step-by-step solution

In the first step
Kr0 = f, (24)

From which we get r0, N0,K0
G, where: r0 – initial

displacement vector from the first step, N0 – initial
normal force from the first step, K0

G – geometric stiff-
ness matrix, which is calculated from the initial normal
force and is used in the next step. In i-th step of the
iteration:

Kri+1 = f +Ki
Gr

i, (25)

Convergence criterion: see Equation 19.

3.5. Material non-linearity
For the calculation of stresses, many stress-strain di-
agrams can be used. In the study of non-linear be-
haviour of masonry columns, six basic possibilities are
used, see Figure 8, the rigid plastic can be seen in
Figure 9:
Linear-plastic, parabolic-plastic (parabolic-

rectangular) and rigid-plastic diagrams are given in
[1]. The ASCE diagram can be seen in [14], Augenti
and Parisi can be seen in [15]. The method of finding
the stress distribution in the cross section consists
of two iterative calculations. The cross section is
divided in a final number of parts (for the final results,
300 parts were used), the stress resulting from the
strain is integrated numerical and internal forces are
obtained. In the first iterative calculation, the Em
– the multiple of modulus of elasticity is sought, to
fulfil the force equilibrium condition. In case that the
bending moment acting in the cross section is not
equal to the bending moment obtained by integrating
the stresses, the neutral axis is moved and the Em is
sought again, until both the moment and the force
equilibrium conditions are fulfilled.
This calculation is done for all elements. Then,

the (i + 1)-th step (further step) of the calculation
according to section 3.4 is carried out. This step is
repeated, until the convergence criterion is fulfilled.
In each step, the strain is controlled.
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4. Results of modelling
The results can generally be divided into 3 cases:
(1.) Short columns – just 2 steps of calculation are
enough to fulfil the criterion according to 19. The
failure occurs due to material crushing (overstress).

(2.) Long columns, for which the finite number of
steps is enough to fulfil the convergence criterion
and the stress doesn’t exceed the tensile strength
(which is considered zero). The failure occurs due to
material crushing (the bending moments increased
by slenderness).

(3.) Slender columns, where the material non-linearity
impacts the result, because the tensile strength is
exceeded. The failure occurs because of buckling.
In this chapter, the results of modelling of a single

column are presented as well as a study of a relevant
set of columns, which shows how the 3D effects, mate-
rial non-linearity and geometric non-linearity impact
the stability and the resistance of the masonry column.

4.1. Example of single column
To demonstrate an example, a column of a height of
5 m is chosen. The dimensions of the column are B×
H = 0.5× 0.3 m. Eccentricity (initial imperfection) is
chosen as ey = 0.15b, eccentricity ez = 0.025 H, fk =
6.42 MPa,E = 1000 fk.

4.2. Study of various columns
The ACI approach [7] is compared to the result of
modelling used in this article (named “Mason”). Ac-
cording to the ACI, the stress in all points of the cross
section must be negative (compression). Second order
moments should be included. In the study, column
thickness B was chosen 0.4 m and H was variable, as
well as slenderness λs. Eccentricities were chosen the
same as in the example above.

For the purpose of showing the effect of using vari-
ous stress-strain diagrams, the following example is
used. A cross section with dimensions B × H =
0.4 × 0.4 m is loaded with the force NEd = 670 kN
and various bending moments. After the convergence
of an iteration of the bending moment is fulfilled, a
different height of the compressed area was found for
the various stress-strain diagrams, see Figure 16.

Due to a different resulting height of the compressed
area, the final carrying capacity varies for the various
stress-strain diagrams. Note that the carrying capac-
ity is limited by the slenderness (and second-order
effect) as well as the stress limitation according to the
stress-strain digram (see the Figure 8 and 9).The limit
stress, which should not be exceeded, is considered as
fk for all the stress-strain diagrams for the reason of
comparability, except for the ASCE and Augenti &
Parisi diagrams, for which the maximal stress is equal
to fk/0.86.

It can be seen from the Figure 17 that the resulting
curve, due to the ACI requirements, is quite similar
to curve representing the linear behaviour. This is

because of the fact that the considered eccentricities
are the same for all the cases and the decisive criterion
was always criterion of maximal stress, not the crack
opening. For different eccentricities, the curves would
vary.

5. Comparing the results from the
experiment

The experiment, described in [16], was based on test-
ing 5 columns with a height of 2.75 m loaded by a
force and an eccentricity in one horizontal direction
(denoted “1e”) and 5 columns with a height of 1.75 m
loaded by a force and an eccentricity in two horizontal
directions (denoted “2e”). Dimensions of the columns
are B×H = 0.44×0.5 m. The specimen 1 was tested
in a centric compression, the design stress fde was
taken from this specimen 1 and considered for the
other specimens. The following expression was used:

fde = Nm,A2

BH
, (26)

where: fde – the strength of specimen 1, which is
used for other specimens, Nm,A2 – the normal force,
at which the crushing of specimen 1 occurred.

The bricks tested are usually used in new masonry
walls and they have cavities due to the requirements
of energy codes. As it can be seen from Figure 18,
the curves obtained by measuring the strain by strain
gauges are linear for the whole duration of the experi-
ment. According to [16], "the way of deforming can be
described as quasi-linear, mode of failure is brittle and
the crushing always occurred at the outer edge, closer
to the applied force" which means, that a collapse of
a one face of a brick means stopping further loading.
The collapse is always caused by the combination of
a normal force and bending moment and the point of
failure was always a collapse of a one face of a brick.

In Table 1, a new check is added for the comparison.
In this check, “Mason – lin. Diagram -> rigid plastic
check”, the normal force of resistance in the ULS –
NRd is calculated in the following manner: internal
forces and the shape of the cross section was taken
from the linear stress-strain diagram (see the exam-
ple of stress-strain diagram in Figure 1). Then, the
resulting effective cross section is loaded by the force
with eccentricities calculated from the acting bending
moments – the forces from the linear calculation are
checked by the rigid-plastic check of the ULS.

397



Marek Vokál, Michal Drahorád Acta Polytechnica

0 0.2 0.4 0.6

x [m]

0

1

2

3

4

5

6

z 
[m

]

Final Step.  PlotFactor = P
F
 = 10

0 0.02 0.04 0.06 0.08

y [m]

0

1

2

3

4

5

6

z 
[m

]

Final Step.  PlotFactor = P
F
 = 10

Deformation multiplied with P
F

Coordinates including geometry change
Original axis of structure

Figure 10. Final geometry in global coordinate system xg, yg.

Figure 11. Moment convergence.

398



vol. 61 no. 2/2021 Non-linear analysis of slender masonry column

-100 -50 0 50 100

Vy-loc [kN]

0

1

2

3

4

5

6

z 
[m

]

Shear force Y-loc

-50 0 50 100 150

Mz-loc [kNm]

0

1

2

3

4

5

6

z 
[m

]

Bending moment Z-loc

Figure 12. Final internal forces - bending moment and shear force.

Figure 13. Final shape of column (excluding tensioned parts) in global coordinate system.

399



Marek Vokál, Michal Drahorád Acta Polytechnica

00
2

0.2

100

0.4

1.5

resistance according to ACI

fi A
C

I [-
]

200

0.6

6
max

=L/i
min

 [-]

ratio H/B

1

0.8

300

1

0.5 400

5000

Figure 14. Slenderness reduction factor fi = Φ from the algorithm, using the ACI approach.

0
2

0.2

01.5

0.4

100

fi m
as

on
 =

 N
R

d
 / 

(B
.H

.f
d
) 

[k
N

]

ratio H/B

0.6

1 200

resistance according to Mason

6
max

=L/i
min

 [-]

0.8

3000.5
400

1

0 500

Figure 15. Slenderness reduction factor fi = Φ from the algorithm, using the "Mason" approach.

400



vol. 61 no. 2/2021 Non-linear analysis of slender masonry column

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

M
Ed

 / [kNm]

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

H
c / 

[m
]

Heigths - Final normal force, Last moment step

linear-plastic
parabolic-rectangular
ASCE
Augenti & Parisi
rigid-plastic
linear

Figure 16. Comparing the resulting heights of cross sections from various stress-strain diagrams.

0 50 100 150 200 250 300 350

6
max

=L/i
min

 [-]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

?
=

N
R

d
/(

B
.H

.f
k)

linear-plastic
parabolic-rectangular
ASCE
Augenti & Parisi
rigid-plastic
linear
ACI

Figure 17. Comparing the final slenderness reduction factor from various stress-strain diagrams.

401



Marek Vokál, Michal Drahorád Acta Polytechnica

experiment 1e
specimen 1-0 1-1 1-2 1-3 1-4
Quantity name
eccentricity ez [m] 0 0.072 0.147 0.11 0.11
eccentricity ey [m] 0 0 0 0 0
Max.force Nm [kN] 1207 992.0 577.0 717.0 759.0

EN1996 - rigid-plastic check (rec. shape)
A1z [-] 1 0.673 0.332 0.5 0.5
A2y [-] 1 1 1 1 1
Ac [-] 0.22 0.148 0.073 0.11 0.11
u1 [-] 0.237 0.322 0.512 0.397 0.397
φ1 [-] 0.972 0.950 0.877 0.924 0.924
φ2 [-] 1.000 1.000 1.000 1.000 1.000
NRd [kN] 1207 793 361.3 573.8 573.8

Mason, lin. diagram -> rigid-plastic check (rec. shape)
NRd [kN] 1224 818.2 377.0 581.9 581.9

Mason, rigid-plastic diagram and check (rec. shape)
NRd [kN] 1210 825.1 407 613.3 613.3

Table 1. Uni axial bending experiment “1e”.

Figure 18. The detail of failure of specimen loaded
by force with eccentricities in two directions.

Figure 19. The graphical expression of maximal
forces of “1e”.

Figure 20. The graphical expression of maximal
forces of “2e”.
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experiment 2e
specimen 2-0 2-1 2-2 2-3 2-4
Quantity name
eccentricity ez [m] 0 0.147 0.073 0.073 0.147
eccentricity ey [m] 0 0.167 0.08 3 0.167 0.083
Max.force Nm [kN] 955 225 691 420 488

EN1996 - rigid-plastic check (rec. shape)
A1z [-] 1 0.332 0.668 0.668 0.332
A2y [-] 1 0.332 0.668 0.332 0.668
Ac [-] 0.22 0.024 0.098 0.049 0.049
u1 [-] 0.12 0.258 0.163 0.163 0.258
u2 [-] 0.095 0.205 0.129 0.205 0.129
φ1z [-] 0.993 0.967 0.987 0.987 0.967
φ2y [-] 0.996 0.979 0.992 0.979 0.992
NRd [kN] 955 100.8 422 207.1 205.4

Cais, J. - rigid-plastic check (general shape)
λ [-] 1.5 0.498 1.002 1.002 0.498
β [-] 1.5 0.498 1.002 0.498 1.002
λ ·B [m] 0.219 0.441 0.441 0.219
β ·H [m] 0.249 0.501 0.249 0.501
NRd [kN] 959.3 115.8 478.8 236.1 233

Mason, lin. diagram -> rigid-plastic check (rec. shape)
NRd [kN] 952.6 219.6 528.5 249.7 249.5

Mason, rigid-plastic diagram and check (rec. shape)
NRd [kN] 941.6 106.4 431.3 214.3 214.2

Table 2. Uniaxial bending experiment “2e”.

It can be seen that for all the cases, the results
from the "Mason" calculation are closer to the results
obtained from the experiment than the resistance
according to the current standard EN1996. It should
be noted that more experiments should be carried
out and columns in the experiments should be more
slender.

Mathematical modelling was also part of the article
[16]. The author used 3D FEM model using 3D solid
elements with a non-linear behaviour – a modified
Drucker-Prager model was chosen. The shortcut of
this method is MN-S. It was stated that “computa-
tional models compared to the results of experiments
reflect very well the behaviour of the tested masonry
pillars and bodies as well as the way of their deforma-
tion and failure”.

6. Results discussion
All the methods used in the mentioned literature re-
view have at least one error. Mostly, it is the assump-

tion of a rigid-plastic behaviour, which we consider
incorrect (see below). The use of a real stress-strain
diagram leads to methods, which can’t be used for
a practical design. For example, article [16] deals
especially with the preciseness of modelling of the
boundary conditions – especially the supporting sheet
metal of the compression testing machine. In a case
of a practical design, these conditions are unknown,
and therefore the 3D solid non-linear time-demanding
and tough method seems to be impracticable. The
calculation according to the ACI gives the same re-
sults, for small bending moments (small eccentricities,
such as eccentricities chosen in the study of this arti-
cle), as the non-linear calculation, because the tension
doesn’t occur until the collapse of the column. How-
ever, the ACI approach is conservative, because a
larger bending moment, which causes tension, is not
admitted.
The verification of a normal loading capacity pro-

vided in the current standard [1] by using the rigid-
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Figure 21. Typical strain on the perimeter of the pier.

plastic stress-strain diagram is insufficient for a 3D
case. Handling the 3D case by calculating the eccen-
tricities from the equilibrium conditions and using
the equation, which is also used to verify the shallow
foundation of rectangular shape, we get:

NEd ≤ NRd = (B − 2ey)(H − 2ez)fd, (27)

This formula also assumes the fully rigid-plastic
behaviour. This can theoretically occur in the case of
an infinite rotation of the cross section. This cannot
obviously be considered for the slender columns, it
would result in an infinite deformation and, in the
used second order beam analysis, infinite acting bend-
ing moment and a collapse of the structure. The
results of calculating the compressed area using the
equation 27 without controlling the strain can be seen
in the Figure 17. The height of the compressed area
is much lower than in the other stress-strain diagrams.
For this reasons, we do not recommend the rigid-
plastic stress-strain diagram for analysing the slender
masonry columns.
From Figure21, it can be seen that the function

of the strain is more or less linear (until the failure).
Also, according to [17], the behaviour in experiments
fits best to the linear behaviour of material.
Also, comparing the results of experiments with

various calculation methods showed a good accordance
of the normal resistance force obtained by the linear
calculation and by the experiment.
Based on the previous paragraphs, we recommend

to verify the slender column’s loading capacity, in
terms of the ULS and the SLS, by using a linear
stress-strain diagram for the practical design. The
difference between the ULS and SLS should only be
in the value of the coefficients γM , γF used (see the
explanation in [1]). The method for calculating the

internal forces should include the material and geo-
metric non-linearity. The area of the cross section,
which remains after the reduction by the material
non-linearity and after fulfilling the convergence cri-
terion, was at minimum 50 % in this study. This
tally well enough with standard [18]. This standard
recommends to limit eccentricity to e ≤ h/3 in the
SLS, the author of this article recommends to also use
this limit for the ULS, i.e., to use the relation:

Hcompressed ≥ H/2→ e ≤ H/3, (28)

for the uniaxial bending and

Acompressed ≥ A/2, (29)

for a biaxial bending (A – total area of cross sec-
tion). This recommendation fits for slender columns,
λs >10. For short masonry elements, loaded by a force
with large eccentricity, which significantly reduces the
effective area, the author of this article recommends
to analyse the column as a new column with a reduced
– effective area, i.e., to use the effective dimensions of
the column for the calculation of u and λ, not the
original ones.

Article [19] recommends to modify the equation 28
in dependence on a category of the masonry (cate-
gories are defined in [1]), namely to limit the maximal
eccentricities in the ULS to 0.45H for category 1 and
to 0.4H for category 2.
The shear criterion of the resistance according to

[1]:

VEd ≤ VRd = (fvk,0 + 0.4σd)b(H − 2eu)/γM , (30)

where: VEd – shear force from the load, VRd – shear
resistance force, fvk,0 – characteristic initial shear
strength of masonry under zero compressive stress, σd
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– design compressive stress, eu – eccentricity of the
load.

Equation 30 used for columns loaded in two planes
should be replaced with the following formula:

VEd,3D ≤ VRd, (31)

where:

VEd,3D =
√
V 2

Ed,y + V 2
Ed,z, (32)

VEd,y, VEd,z are shear forces from the load in the
direction of axes y, z respectively.

The results of the experiment showed that the non-
linear model used in this article is closer to the result
of the experiment than the approach of the standard.
It is obvious that the number of the specimen tested in
the experiment is not enough for setting a new detailed
criteria of calculating the load capacity of slender
columns. Slenderness ratio λs for the experiment, "1e"
it is 21.65, for the experiment "2e" is 13.78. Both ratios
are lower than 27, which shows that the investigated
columns are not very slender. The further experiments
should test a larger number of columns of various
degrees of slenderness.

7. Conclusions
A mathematical method of verifying the slender ma-
sonry column was proposed. The method was imple-
mented in Matlab and a study of resistance of various
columns was carried out. Then, the results from the
mathematical modelling were compared to the results
of the experiments. Methods used in a literature were
also compared. According to the combination of this
methods, it was stated that the method of the cur-
rently valid standard – Eurocodes – is not suitable for
the slender masonry column check. The results of a
loading capacity of columns obtained by the calcula-
tion according to the standards are conservative. The
behaviour of slender masonry columns with various
stress-strain diagrams is quite similar, except for the
rigid-plastic model, which was stated as unsuitable.
Based on the previous sections, new recommenda-
tions for the design of columns were made. A second
order analysis should obviously be used, linear stress-
strain diagram can be used for the compression (tensile
strength neglected). The compressed area should be
at least one half of the total area of the cross section.
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