
1 Introduction to Atmel
microcontrollers

The structure of AVR microcontrollers was designed so as
to comply with high-level language compilers, namely the
widely used C language. Such an optimized core unit having
the Harvard architecture bears the main characteristics of mi-

croprocessors with a reduced instruction set (RISC). The basic
architecture of the AVR microcontrollers is depicted in Fig. 1.

The whole family of AVR microcontrollers can be divided
into 3 subgroups: the AT90S, ATtiny and ATmega families.
The AT90S series was developed first, and its name suggests
that it represents a continuation of the AT89C series. The
situation with the other two series is different, since the
manufacturer had more experience with the previous series

38 © Czech Technical University Publishing House http://ctn.cvut.cz/ap/

Acta Polytechnica Vol. 45 No. 2/2005 Czech Technical University in Prague

Implementation of a
Microcode-controlled State Machine and
Simulator in AVR Microcontrollers
(MICoSS)
S. Korbel, V. Jáneš

This paper describes the design of a microcode-controlled state machine and its software implementation in Atmel AVR microcontrollers. In
particular, ATmega103 and ATmega128 microcontrollers are used. This design is closely related to the software implementation of a
simulator in AVR microcontrollers. This simulator communicates with the designed state machine and presents a complete design
environment for microcode development and debugging. These two devices can be interconnected by a flat cable and linked to a computer
through a serial or USB interface.
Both devices share the control software that allows us to create and edit microprograms and to control the whole state machine. It is possible
to start, cancel or step through the execution of the microprograms. The operator can also observe the current state of the state machine. The
second part of the control software enables the operator to create and compile simulating programs. The control software communicates with
both devices using commands. All the results of this communication are well arranged in dialog boxes and windows.

Keywords: state machine, microcontroller, microprogramming, software implementation of a simulator.

Control

registers

Interrupt unit

SPI unit

T/C0

Serial UART

T/C1

T/C2

Watchdog

Timer

32 I/O lines

Analog

Comparator
256x8

EEPROM

256x8 Data

SDRAM

32x8 General

Purpose

registers

Status and

Tests

Program

Counter

4K x16 Program

Memory

Instruction

Register

Instruction

Decoder

Control Lines

ALU

D
ir

e
c
t

A
d

d
re

si
s

in
g

Data Bus 8bit

In
d

ir
e

c
t
A

d
d

re
s
s
in

g

Fig. 1: Architecture of AVR microcontrollers

and designed the names of these two according to their
designation.

Representatives of the ATtiny family are designed for
smaller, simpler applications, while the ATmega family repre-
sentatives are designed for complex and more sophisticated
applications.

More detailed information concerning the architecture of
AVR microcontrollers can be found in [4] and [6].

2 Applications of microcontrollers in
the design environment
In the 1970’s computer controllers were designed as

microcode-controlled state machines. Although we have now
switched when designing microcomputers to standard circuit
control units, state machines are still important. They are
suitable for certain control applications and tutoring. When
writing a microprogram we can test the controlling proce-
dures of some of the operations and subsequently use the
acquired knowledge in optimizing the microprogram. The
correct function of the microprogram and the subsequent
optimization is strongly dependent on the development and

tuning devices. Thus there is great emphasis on the design
environment in which the microprograms are written.

It is appropriate to use a microcode-controlled state ma-
chine structure for developing microprograms (see Fig. 2).
The whole structure of a state machine has been imple-
mented into AVR microcontrollers by Atmel Company [3].
The simulation of the behavior of the designed micropro-
gram is carried out on the model of a control system, which is
also implemented in the AVR microcontroller. This model is
so universal that it can be used for simulation of an arbitrary
system.

The design environment MiCoSS is composed of two
parts: Microcode-Controlled State machine [1] and Simula-
tor of the controlled unit [2]. These devices can be inter-
connected by a flat cable and linked to a computer through a
serial RS-232 or USB interface.

The application software is common to both devices. It al-
lows us to crate and to edit microprograms and to control the
whole state machine, i.e., to start, cancel or step the running
of the microprograms and to monitor the current state of the
state machine. The second part of the simulator software en-
ables an operator to create and compile simulating programs

© Czech Technical University Publishing House http://ctn.cvut.cz/ap/ 39

Czech Technical University in Prague Acta Polytechnica Vol. 45 No. 2/2005

Fig. 2: Structure of a microcode-controlled state machine

Fig: 3: Design environment scheme

and to control the simulator. A scheme of the design environ-
ment is given in Fig. 3.

3 Microcode-controlled state machine
The realized microcode-controlled state machine was de-

veloped according to the scheme in Fig. 1, so that its behavior
and function would resemble as much as possible the state
machine of an AMD2909 chip. For the implementation of the
whole core of the state machine, the AVR microcontroller
was chosen and designated as ATmega103 [4].

This microcontroller has input/output interfaces by means
of which it is possible to communicate with outside parts. A
great advantage is the large number of these interfaces, so
that they can be used as direct inputs and outputs without any
additional multiplexing. Interfaces A, B and C are outputs
and interfaces D, E and F are inputs. The lowest two bits from
interface E and the lowest two bits from interface F are re-
served for communication.

This implies that the micro operational command is
24 bits wide, without the necessary output multiplexing.
There are 16 bits connected directly into MPX input and
4 bits into MAPROM memory. The total input is thus
20 bits. This is then reflected in the number of 40 pin con-
nectors on the printed circuit board (20 pins are grounded).

The address of microinstruction was chosen to be 15 bits
and owing to this, it is possible to develop microprograms
up to maximum size 32k (32769 microinstructions).

The above considerations imply that it is possible to deter-
mine the size of the individual parts of the microinstruction,
whose structure is depicted in Fig. 1. Because 16-bit input was
chosen, the condition code (CC) is 5 bits sized. The reason for
5 bits and not 4 bits is as follows: because the input as well as
the output from the backward micro cycles counter (BMC) is
input into multiplexer MPX, and because constants 1 and 0
are also input here, the total numbers of input bits to input
multiplexer MPX are thus 19. From this value it follows that
to choose just one input bit from the whole set of 19, the above
mentioned 4 bits are not sufficient. The width of the jump
type TS was taken from AMD Company, to be precise from
chip 29811, i.e. 4 bits. In keeping with the width of the ad-
dress of microinstruction, the address of the jump ADRSK is
15 bits.

The resultant structure of the microinstruction, including
the proposed widths of the individual items, is given in Fig. 4.

What remains to be determined is the width of the back-
ward counter of the micro cycles ZPC, the depth of the
stack ZAS and the size of the mapping memory MAPROM.
The backward counter ZPC is set according to the address of
the jump ADRSK from the microinstruction, thus its width
will also be 15 bits.

The stack memory (STM) at slices AMD was 4 items deep.
If the microinstruction address space were extended up to
32k, the depth of 4 items space would not be sufficient.

Therefore the depth of the stack memory was enlarged up to
16 items. Another reason for this enlargement is the fact that,
with such a large space, it is possible to create more complex
microprograms; consequently the demand for stack memory
rises as well.

The width of mapping memory MAPROM is the same as
the address of microinstruction, i.e., 15 bits. In order to
address this memory 4 input bits will be used; therefore
16 items result from it.

The proposed state machine properties are summarized
in the following table.

3.1 Implementation of a microcode-controlled
state machine

The whole design of a microcode-controlled state ma-
chine was developed in the AVR Studio version 3.53 [5]. The
AVR Studio is a professional development tool for develop-
ment and debugging of C applications that will be running
in AVR microcontrollers.

The implementation of the microcode-controlled state
machine itself is depicted in Fig. 1. The individual blocks of
the scheme are described as variables and independent func-
tions that perform the required task. All these functions are
periodically called in an infinite loop until the running is
interrupted. If there is no data on the data link to PC, the
application runs autonomously according to the input condi-
tions, and it generates outputs signals. If this is not the case
(individual inquiries are being sent from PC), the application
performs the requested tasks.

A more detailed description of the implementation and
specification of the individual blocks according to Fig. 2 is
given in [1].

4 Controlled system simulator
As stated above, a part of the design environment is a sim-

ulator of a controlled system. The simulator is a completely
universal structure, which enables us to simulate an arbitrary
system. To achieve this, there are also external or data inputs
and outputs available besides control inputs and outputs.
Control and data inputs are chosen by means of multiplexers;
conversely, the control and data outputs use latch registers. A
total of 16 data inputs and outputs are implemented.

40 © Czech Technical University Publishing House http://ctn.cvut.cz/ap/

Acta Polytechnica Vol. 45 No. 2/2005 Czech Technical University in Prague

Fig. 4: Resultant microinstruction structure

Characteristic Size

CC 5 bits

JT 4 bits

JMPADR 15 bits

COMMAND PART 24 bits

Backward micro cycles counter 15 bits

Input multiplexer 19 bits

Stack size 16 items

MAPRAM size 16 items

Table 1: Properties of state machine

The data inputs can be used to simulate the inputs of vari-
ables or to connect an external matrix keyboard. The data
outputs can be used for example for connecting of the seven
segment LED display. The data inputs and outputs can be
used either together or separately by means of a jumper. The
general architecture of the device is depicted in Fig. 5.

For the implementation of the simulator, the AVR micro-
controller ATmega128 [6] was chosen. This microcontroller
is placed on a printed circuit board together with the com-
munication interfaces, data inputs and outputs, display
elements and mode jumpers.

The ATmega128 microcontroller also has enough inter-
faces; moreover it has one extra communication interface G.
This is, in the design itself, used to control the input multi-
plexer and output latches. Two bits from this interface are
used for indication LED diodes, which inform about the
running and the state of the simulator. The remaining inter-
faces are used for communication between the simulator and
the state machine in the following way; Interfaces A, B and C

are used for inputs to the simulator, and interfaces D, E and F
are used for outputs. The two lowest bits from interface F are
reserved for communication with the computer.

A more detailed description of the simulator can be found
in [2].

4.1 Implementation of the simulator of
controlled system

The whole design was, as in the previous case, performed
in the design environment of AVR Studio version 3.53 [5].

The implementation itself was carried out in the following
way; the basic communication between an application run-
ning in a microcontroller and a computer is accomplished
by sending individual commands. Each command has its
specific code which determines its meaning. For this reason,
each command is assigned one function in the application.
These functions are periodically called in an infinite loop
according to the corresponding received code. The list of
selected codes is given in the Table 2.

A detailed command description is given in [2].

5 Communication software
The proposed software is common to both the

microcode-controlled state machine [1] and the controlled
system simulator [2]. The software application was written in
the program Delphi 6.0 to ensure transferability of the code
between the individual platforms. The program may be exe-
cuted under Windows 95, 98, 2000 and XP.

The design of software for the state machine is maximally
accommodated to software for the simulator; it is composed
of two-level program units. The units of lower level ensure
communication with the device, and high-level units ensure
communication with the user.

5.1 Microcode-controlled state machine
Proposed architecture of communication software is de-

picted in Fig. 6.

5.1.1 Communication with the device (lower level)
Communication with the device is accomplished by a se-

rial UART interface on the part of the microcontroller and a
serial RS-232 or USB interface on the part of the computer.

© Czech Technical University Publishing House http://ctn.cvut.cz/ap/ 41

Czech Technical University in Prague Acta Polytechnica Vol. 45 No. 2/2005

Fig. 5: Architecture of the simulator

Number Command Type Description

3 MAPROM setting Systemic Sets 17–20 simulator output bits.

20 Set 1–8 according to input Command, powerful Sets output bits 1–8 in accordance with input
bits 1-8

63 Set B according to Out (1–8) Command, powerful Sets B register according to output bits (1–8)

74 Give back output state (9–16) Information Simulator sends outputs bits 9–16 state

83 Wait for bits inverting Blocking Simulator waits on chosen input bit settings to
inverse state.

166 Give back registers state Command, powerful Simulator sends to PC actual content of D, E
and F register.

Table 2: Example of simulator commands

The whole communication is accomplished by sending indi-
vidual commands to an application in a microcontroller,
which performs the required function.

There are two different modes. The first is autonomous
running of the state machine. In this mode the running
depends only on the inputs (state information), and the
outputs (controlling information) correspond to the stored
microprogram. In this way the state machine can be used, for
example, to control a processing line. The state machine can
work quite autonomously and is independent of further com-
mands from the computer.

Selection of the second mode enables the user to influence
directly the running of the whole machine. Of course, it is
possible to influence the running of the machine even in the
previous mode; the state machine can be switched between
these two modes.

This choice is accomplished by changing logical ,0’ to logi-
cal ,1’ on the line RTS of RS-232. It can be said that this line
serves as a switch for the functioning of the whole machine
and it switches between the two modes.

If logical ”1”is chosen in the RTS line, the serial interface
UART of the AVR microcontroller plays an important role.
Through UART, individual controlling bytes are sent to a
microcontroller. Each transferred byte represents either a
command (selected command) or transferred data. After log-
ical ”1” has been set on the RTS line, a further, important
choice follows. The microcontroller awaits which byte will be
accepted by UART. A transferred byte (0x10) specifies the
choice of microprogram memory – work with its contents,
while byte (0x20) signifies the choice of MAPROM memory –
also handling its contents; byte (0x30) signifies monitoring
the state of the machine, changes of contents in individual
registers, setting breakpoint and stepping mode. After this
choice, mere transfer of data to the microcontroller follows.

Communication between a computer and a micro-
controller on a low level is solved by the above described
procedure. To illustrate the mutual communication, see
Fig. 7, which deals with the contents of the memory of the
microprograms.

5.1.2 User interface (higher level)
The user interface enables users to use the following

functions:
� Testing of the connected device
� Editing of MAPROM memory and microprogram memory
� Saving and reopening of both memories
� Monitoring the state of the machine:

�Microprogram stepping, register state watching,
microinstruction address (RA) stack top and back-
ward counter DC.

�Microprogram running with possible stopping and
breakpoint address definition.

�Microinstruction address (RA) top of STCK and
backward counter DC value changing.

The whole application can be operated using a keyboard
and a mouse (like any application running in Windows), and
there are also shortcuts for majority operations.

After starting application atas.exe (main file application),
the basic application window is displayed (see Fig. 8). There is
a main menu in the upper part. The menu contains the fol-
lowing items: Project, Edit, Mode, Run, Window and Help.
Below the menu there are many buttons for quick choice:
Create new project, Open existing project, Save current pro-
ject, buttons for text editing (Cut, Copy, Paste), state machine
and Simulator. A detailed description of menu and buttons
can be found in [2].

42 © Czech Technical University Publishing House http://ctn.cvut.cz/ap/

Acta Polytechnica Vol. 45 No. 2/2005 Czech Technical University in Prague

User interface

(high level)

Comunication with device

(low level)

Serial or USB port

Fig. 6: Software architecture

Fig. 7: Low-level communication between devices

Fig. 8: Basic application window

After pushing button A in the main window or after click-
ing on the item State machine in menu Mode, the new,
so-called state machine window is opened (Fig. 8). This win-
dow is absolutely independent of the main window. In the
upper part there is the main menu with the following items:
File, Microprogram, Run, Device and Help. The specification
of other buttons listed in the main menu can be found in [1].

As indicated in Fig. 9, within this window it is possible to
input the individual microinstructions and to edit the content
of MAPROM. All this can be done without the necessity to
link the device. At the moment when you need to test the
microprogram, you must take the following steps:
� Connect the device to the computer
� Choose the communication interface
� Choose the communicating speed.

Then you must press the “Connect device”. At this mo-
ment, the application tests the device. If everything is correct,
three other buttons controlling the operation of the device
appear. These are the “Run”, “Step” and “Stop” buttons.
Fig. 10 describes the situation after the device is connected. If
the connection fails, an error message is displayed.

A detailed description of communication with the state
machine can be found in [1].

5.2 Simulator of a controlled system
The simulator window contains a text editor for recording

simulating programs (see Fig. 11). These programs are writ-
ten in a special simulating language: “S-language”.

In terms of control, the structure of the simulator is
simple, and it copies its hardware structure. All simulating
language commands, are related to specific basic elements
(control and data registers, stack, and so on). Commands are
divided into system, command, blocking, and information.
A detailed description is given in [2].

Simulating programs can be saved and reloaded by com-
mands from the File menu, or directly by pressing corre-
sponding icons from control panel. The saved programs
have a sim extension. Simulating programs are saved in text
mode in this file. Therefore they can be written simply in any
text editor, saved with a sim extension and then opened in
a simulator program window. An important choice is repre-
sented by the “Compile” button. This button begins the
compilation into internal form. During compilation, the cor-
rectness of the program from the semantic and syntactic point
of view is checked. The syntactic analyzer repeatedly calls
the lexical analyzer, which returns the appropriate lexical
elements. If there are lexical or syntactic errors, the compila-
tion is stopped and the error must be corrected.

It is necessary to connect the simulator device to start the
simulating program. When the “Connect device” button is
pressed, the program starts communication with the device.
After confirmation of the connection by the device, the items
for starting the simulation programs are made accessible.

© Czech Technical University Publishing House http://ctn.cvut.cz/ap/ 43

Czech Technical University in Prague Acta Polytechnica Vol. 45 No. 2/2005

Fig. 9: State machine – disconnected device

Fig. 10: State machine window – connected device Fig. 11: Window of simulator

It is possible to choose between continuous running or
stepping of the simulation program. The current program
line is highlighted on the screen. A special mode is stepping
with delay. This choice is suitable if it is necessary to debug the
application and to follow the processes running in the simula-
tor. The simulator or stepping program can be started from
both the menu and icons (tool panel). The “Stop” button
stops simulation. After starting or stepping simulation, a new
Display window appears (see Fig. 12).

The display window substitutes the simulator display and
other signaling elements. It clearly displays the stack register
contents and the data input and output logical values. The
command code or each single command can be sent directly
to simulator, irrespective of the executed program.

A detailed description of communication with the simula-
tor can be found in [2].

5.3 Intercommunication of devices
As indicated above, the microcode-controlled state ma-

chine device is connected to a controlled system simulator
device by flat cables. The input signal cable has 40 pins and
the output signal cable has 50 pins – micro operation sign
MOZ (command part-CP). The reason for using this cable is
that for each of signal wires it is also necessary to have a
ground wire. The signal input is 20 bits, 20 bits are the ground
wires – a 40 wire flat cable.

Mutual synchronization of the two devices has not been
explicitly solved. It is thus necessary to implement this syn-
chronization directly in the running application, which is
being tested on the devices. A possible solution is to reserve
one signal bit in both directions and control the running of
the whole state machine according to the state of this signal
wire. The second choice for mutual synchronization of the de-
vices, which is made possible due to common connection of
both devices to a single computer, is to control the running of
the state machine on the basis of the input of the control byte
from the PC. This would define the exact moment at which
the state machine would start operation. In addition to posi-
tive considerations accompanying this synchronization, there

would also be some negative considerations. An example is
the delay resulting from waiting for the input of a starting
byte.

Synchronization could also be achieved by creating a
clock – a cycle on the device of a microprogrammable state
machine. ”Clocks” generated in this way would enable us to
control the running of the whole state machine, and at same
time the ”clocks” could be joined to the top of the output con-
nector. This would ensure control of the simulator from a
single time base. Such a generator would use for instance a
counter with a preset initial value. In the event of downward
counting, an interruption would occur and thus a clock pulse
would be generated. It is obvious that the value set in the
counter would have to correspond to the longest executed
part of the program. However, if speed is emphasized, this
method would cause a delay in the running of machine.

6 Example
Let us assume we have a reservoir with two pumps and an

outflow in our house. The reservoir supplies the whole house
with drinking water. There are three sensors in the reservoir.
If the water level is between sensors H1 and H2, both pumps
are inactive. If the level sinks below sensor H1, pump no. 1
begins to fill the reservoir. When the level is above sensor H2,
pump no.1 is stopped. Conversely, if the level sinks below the
sensor H0, the pump no. 2 also begins to fill the reservoir. If
the level is above sensor H2, both pumps are stopped.

Buttons no. 1 and no. 2 simulate the requirements on
the amount of water. The whole reservoir with pumps and
buttons is depicted in Fig. 13.

The microprogram and a model of the controlled system
are shown in Fig.14 and Fig.15. The simulator program with
a detailed description is shown in Table 3. Information on the

44 © Czech Technical University Publishing House http://ctn.cvut.cz/ap/

Acta Polytechnica Vol. 45 No. 2/2005 Czech Technical University in Prague

Fig. 12: Display window

Fig. 13: A reservoir with pumps and sensors

Address JT CC JmpAdr CP

000 CJP 4 000 0x000000

001 CJP 5 000 0x000001

002 CJP 5 001 0x000001

003 CJP 5 000 0x000003

004 JP 0 003 0x000003

Fig. 14: Microprogram of the reservoir

amount of water is stored in register A and it is shown on the
PC monitor.

7 Conclusions
A complete design environment for microcode develop-

ment and debugging is a demonstration of systems imple-
mentation in AVR microcontrollers by Atmel Company. This
design environment is suitable both for the construction of
simulator of controlled object and for the design of the
microprogram of a state machine. The final behavior of the
designed state machine can be tested.

All the components are freely available on the market
and thus this environment can be mass-produced. The uni-
versality of the environment offers the possibility of further
experimentation in programming and the design of various
structures with AVR microcontrollers.

© Czech Technical University Publishing House http://ctn.cvut.cz/ap/ 45

Czech Technical University in Prague Acta Polytechnica Vol. 45 No. 2/2005

Fig. 15: The state machine model

;Program ”The water reservoir”
Define M1 1 ;the pump no.1
Define M2 2 ;the pump no.2
Define HL_top 10 ;the sensor H2
Define HL_bottom 1 ;the sensor H0
Define HL_middle 5 ;the sensor H1
HW_reset
LCD_Clr
Disp_Txt 1 ‘The simulation of the reservoir’
Init_All 0 0 ;initialization
Init_A 10 ;the level of water

Loop: If_LT_A HL_Top T2 ;if the level of water is below the sensor H2 then jump to T2
Set_HIGH 11100000b ;set all sensors to 1
Disp_TXT 21 ‘The reservoir is full !’
Go_to Test1

T2: If_LT_A HL_middle T3 ;if the level of water is below the sensor H1 then jump to T3
Set_HIGH 01100000b ;the level of water is between sensors H1 and H2
Clr_HIGH 10000000b ;set the sensor H2 to 0
Go_to Test1

T3: If_LT_A HL_bottom T4 ;if the level of water is below the sensor H0 then jump to T4
Set_HIGH 00100000b ;the level of water is between sensors H0 and H1
Clr_HIGH 11000000b ;set the sensors H1 and H2 to 0
Go_to Test1

T4: Clr_HIGH 0ffH ;the level of water level is below the sensor H0
Init_A 0
Disp_TXT 21 ‘The reservoir is empty !’

Test1: If_CLR_IN M1 Test2 ;if the pump no.1= 0 then jump
Inc A ;the level of water level is raised

Test2: If_CLR_IN M2 TestTL ;if the pump no.2 = 0 then jump
Inc A ;the level of water level is raised

TestTL: If_CLR_TL1 Tlac2 ;the test of pressing button no.1
Dec_A ;the level of water level is reduced

Tlac2: if_CLR_TL2 Loop ;the test of pressing button no.2
Dec_A ;the button no.2 is pressed
Dec_A ;fast draining
Go_to Loop

END

Table 3: The simulator program of the water reservoir

References

[1] Korbel, S.: Design and Implementation of a Microcode-Con-
trolled State Machine. Diploma thesis, FEE CTU Prague
2003 (in Czech).

[2] Klíma, D.: Controlled System Simulator. Diploma thesis,
FEE CTU Prague 2003 (in Czech).

[3] Atmel: http://www.atmel.com/

[4] ATmega103: http://www.atmel.com/dyn/products/devic
es.asp?family_id=607#760

[5] AVR Studio: http://www.atmel.com/dyn/products/tools_c
ard.asp?tool_id=2725

[6] ATmega128:
http://www.atmel.com/dyn/products/produ
ct_card.asp?part_id=2018

Ing. Stanislav Korbel
e-mail: korbels@fel.cvut.cz

Doc. Ing. Vlastimil Jáneš, CSc.
e-mail: janes@fel.cvut.cz

Department of Computer Science and Engineering

Czech Technical University
Karlovo nám. 13,
121 35 Prague 2, Czech Republic

46 © Czech Technical University Publishing House http://ctn.cvut.cz/ap/

Acta Polytechnica Vol. 45 No. 2/2005 Czech Technical University in Prague

