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Abstract. In this paper, the results of an application of global and local optimization methods
to solve a problem of determination of strains in RC compressed structure members are presented.
Solutions of appropriate sets of nonlinear equations in the presence of box constraints have to be found.
The use of the least squares method leads to finding global solutions of optimization problems with box
constraints. Numerical examples illustrate the effects of the loading value and the loading eccentricity
on the strains in concrete and reinforcing steel in the cross-section.

Three different minimization methods were applied to compute them: trust region reflective,
genetic algorithm tailored to problems with real double variables and particle swarm method. Numerical
results on practical data are presented. In some cases, several solutions were found. Their existence
has been detected by the local search with multistart, while the genetic and particle swarm methods
failed to recognize their presence.

Keywords: Global optimization, nonlinear equations, least squares method, RC compressed structure
members.

1. Introduction
Our problem is to determine the normal strains in the
cross-sections of reinforced concrete structure mem-
bers subjected to compression. Mathematically, it
may be formulated as a task of solving sets of equa-
tions with box constraints. The unknown variables
are: ε′ – maximum strain in the cross section and ξ –
coordinate describing the location of the neutral axis.

The presence of the box constraints makes a direct
use of numerical methods for solving sets of nonlinear
equations impractical. Therefore, our task is reformu-
lated by means of the frequently used least squares
method. It leads to a nonlinear, nonconvex optimiza-
tion problem of finding a minimum of a nonlinear
function with the restricted scope of variables.

1.1. Motivation to study the strains in
RC compressed structure members

Reinforced concrete structure members subjected to
the compression are frequently encountered in the en-
gineering practice (columns, pillars, tower-like struc-
tures etc.). The determination of strains is very impor-
tant in the safety assessment of existing RC structures.
In order to solve this problem analytically, several
physical models of materials and methods were pro-
posed. Lechman and Lewiński [1] considered a general-
ized linear section model. A simplified approach based
on the rectangular stress distribution for concrete was
used by Knauff [2] and Knauff et al. [3]. Nieser and En-
gel [4] and CICIND [5] applied the parabola-rectangle
diagram for the design of cross-sections.

For reinforcing steel itself, both linear and nonlin-
ear models are used, see for instance Lechman and
Stachurski [6], Lechman [7–10], where the ring sec-
tions were investigated. The results of FE (finite
element) modelling of failure behaviour of RC com-
pressed columns were presented by Majewski et al. [11]
and Rodriguez et al. [12]. In Kim and Lee [13], a nu-
merical method for predicting the behaviour of RC
columns subjected to axial force and biaxial bend-
ing is proposed and verified in tests. Campione et
al. [14] experimentally investigated the behaviour of
compressed concrete columns subjected to the over-
coring technique, see also Campione et al. [15]. The
list of researchers working in various directions could
be continued. Let’s mention some of them: Lloyd and
Rangan [16], Bonet et al. [17], Ye et al. [18], Xu et
al. [19], Trapko and Musiał [20], Trapko [21], Hadi and
Le [22], El Maddawy et al. [23], Csuka and Kollar [24],
Elwan and Rashed [25], Sadeghian et al. [26], Eid
and Paultre [27], Wu and Jiang [28], Quiertant and
Clement [29], Lee et al. [30], Kumar and Patel [31]
and many others. Of course, the list is not complete.
Despite the variety of calculation methods and ex-

perimental investigations concerning this problem,
there are not any appropriate analytical solutions
based on the nonlinear material laws for determin-
ing the strains in RC externally compressed structure
members that considers concrete softening.

The aim of our paper is twofold. Firstly, to formu-
late equilibrium equations allowing to calculate the
strains. Secondly, to investigate the usefulness of some
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Figure 1. Distribution of strain ε, stresses in con-
crete σc and stresses in steel σs across the section

global optimization methods to solve the problem nu-
merically.

2. Formulation of the equilibrium
equations

To get the required equations, we started with the
integral equilibrium equations and integrated them.
The rectangular RC cross-section is subjected to the
axial force N and the bending moment M (see Fig. 1).
The content of the current section is an extension of
that presented in Lechman and Stachurski [32]. The
detailed way of deriving the formulas for the section
wholly in compression is included.

In the derivation of the governing equations, the
following assumptions are made:
• plane cross-sections remain plane,
• elasto-plastic stress/strain relationships for concrete
and reinforcing steel are used,

• the tensile strength of concrete is ignored,
• the ultimate strains for concrete are determined as
εcu and for reinforcing steel as εsu.
In Fig. 1, the following notation is used: t, b -

the thickness and the width of the cross-section, re-
spectively, t1, t2 - coordinates describing the locations
of rebars, x, x′ - coordinates describing the location
of the neutral axis and the location of any point of

the section, respectively. In accordance with the Eu-
rocode 2 [33], the stress-strain relation for concrete σc
– εc in compression for a short term uniaxial loading
is assumed as

σc = kηc − η2
c

1 + (k − 2)ηc
fcm, (1)

where: ηc = εc/εc1, εc1 – the strain at peak stress
on the σc – εc diagram, k = 1.05 Ecm|εc1|/fcm, fcm
– the mean compressive strength of concrete, Ecm –
secant modulus of elasticity of concrete, εcu (εcu1) –
the ultimate strain for concrete.

The reinforcing steel is characterized by yield stress
fyk, Es – modulus of elasticity and Eh – coefficient of
steel hardening (linear elastic model with hardening).

2.1. Equations for strains in the
rectangular sections

In further considerations, the corresponding dimen-
sionless coordinates are used:

ξ = x/t, ξ
′

= x
′
/t, ξ1 = t1/t, ξ2 = t2/t. (2)

2.1.1. Equations for sections wholly in
compression

Let us consider the section wholly in compression.
The strain distribution can be expressed in the form

ε = ε1 + (ε2 − ε1)ξ
′
, (3)

where:
ε1 – maximum compressive strain

in the cross section,
ε2 – minimum compressive strain

in the cross section.
Thus, ηc occuring in (1) assumes the form

ηc = k2ξ
′
+ k1, (4)

after including in (3) the following assignements: k1 =
ε1
εc1

and k2 = ε2 − ε1
εc1

.
The equilibrium equation of the axial forces in the

cross-section takes the following form∫
Ac

σcdAc + σs1Fa1 + σs2Fa2 +N = 0, (5)

where: dAc - element of the concrete area Ac, Fa1,
Fa2 - areas of the steel in compression and in tension,
respectively.

The sectional equilibrium of the bending moments
about the symmetry axis of the rectangle can be ex-
pressed in the form∫

Ac

σc(0.5t− x
′
)dAc + σs1Fa1(0.5t− t1)+

σs2Fa2(0.5t− t2)−M = 0.

(6)

In order to obtain the final form of the equilibrium
equations, we integrated formulas in (5) and (6). The
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most difficult part was to find the antiderivatives of
the functions in the integral expressions in (5) and (6).
After substituting relations (3) and (4) in relation (1),
the function to be integrated in (5) is

fN (ξ′) = k(k2ξ
′ + k1)− (k2ξ

′ + k1)2

1 + (k − 2)(k2ξ
′ + k1) , (7)

and in (6) is

fM (ξ′) = k(k2ξ
′ + k1)− (k2ξ

′ + k1)2

1 + (k − 2)(k2ξ
′ + k1) (0.5− ξ

′
). (8)

Finally, the following equilibrium equations for
strains in the rectangular sections are found. The
first one concerns the equilibrium equation of the
axial forces

n+ 1
k−2

{
W1 + 0.5k2 + W2

W3
(lnW5 − lnW6)

}
+

µ1
fyk

fcm

{
δi1

[
−1 + Eh

fyk
(((ε2 − ε1) ξ1 + ε1) +

εss)] + δi1+1
(ε2 − ε1)ξ1 + ε1

εss

}
+

µ2
fyk

fcm

{
δi2

[
1 + Eh

fyk
[((ε2 − ε1) (1− ξ2) + ε1) −

εss]]

+ δi2+1
(ε2 − ε1)(1− ξ2) + ε1

εss

}
= 0

(9)
and the second one represents the sectional equilib-
rium of the bending moments

−m+ 1
k−2

{
−k2

12 + 0.5W2
W6

(lnW5 − lnW6)

− W2
W3

[
1− W6

W4
(lnW5 − lnW6)

]}
+

µ1
fyk

fcm
(0.5− ξ1)

{
δi1

[
1 + Eh

fyk
(((ε2 − ε1) ξ1 + ε1) +

εss)] + δi1+1
(ε2 − ε1)ξ1 + ε1

εss

}
+

µ2
fyk

fcm
(0.5− ξ2)

{
δi2

[
1 + Eh

fyk
(((ε2 − ε1) (1− ξ2) +

ε1)− εss)] + δi2+1
(ε2 − ε1)(1− ξ2) + ε1

εss

}
= 0

(10)
where:

W1 = k1 − k −
1

k − 2 W2 = k(k − 2) + 1
W3 = (k − 2)(k − 2)k2 W4 = (k − 2)k2

W5 = 1 + k − 2
k2 + k1

n = N

btfcm

W6 = 1 + (k − 2)(k2 + k1) m = M

bt2fcm
δi = 0.5((−1i) + 1), i = 1, 2

and: µ1 – the reinforcement ratio of steel in compres-
sion, µ2 – the reinforcement ratio of steel in tension.
The unknown variables are: ε1, ε2.

2.1.2. Section under combined compression
with bending

Let us consider the section under combined compres-
sion and bending. Due to the Bernoulli assumption,

one obtains (see Fig. 1)

ε =
(

1− ξ
′

ξ

)
ε

′
, (11)

where: ε′ – the maximum compressive strain in con-
crete.
The resulting formulas are given below. Equa-

tion (12) (for axial forces)

n+ 1
k−2

{
W1ξ + 0.5k2ξ

2 − 1
k−2

[
W2
W3

lnW − ξ
]}

+

µ1
fyk
fcm

{
δi1

[
−1 + Eh

fyk

((
1− ξ1

ξ

)
ε

′
+ εss

)]
+ δi1+1

ε
′

εss

(
1− ξ1

ξ

)}
+

µ2
fyk
fcm

{
δi2

[
+1 + Eh

fyk

((
1− 1− ξ2

ξ

)
ε

′
− εss

)]
+ δi2+1

ε
′

εss

(
1− 1− ξ2

ξ

)}
= 0

(12)
and equation (13), representing the sectional equilib-
rium of the bending moments

−m+ 1
k−2

{
0.5
(
W1 + 1

k−2

)
ξ +

0.5
[
−W1 + 0.5k2 − 1

k−2

]
ξ2−

1
3k2ξ

3 − W2
(k−2)W3

[
0.5 lnW + ξ − W

W3
lnW

]}
+

µ1
fyk

fcm
(0.5− ξ1)

{
δi1

[
1 + Eh

fyk

((
1− ξ1

ξ

)
ε

′ + εss

)]
+ δi1+1

ε
′

εss

(
1− ξ1

ξ

)}
+

µ2
fyk

fcm
(0.5− ξ2)

{
δi2

[
+1 + Eh

fyk

((
1− 1−ξ2

ξ

)
ε

′ −

εss)] + δi2+1
ε

′

εss

(
1− 1− ξ2

ξ

)}
= 0,

(13)
where:

W1 = k − k2ξ W2 = k(k − 2) + 1
W3 = (k − 2)k2 W = 1 + (k − 2)k2ξ

δi = 0.5((−1)i + 1), i = 1, 2 k2 = ε
′

εc1ξ

The unknown variables are:
• ε

′ – maximum strain in the cross section,
• ξ – coordinate describing the location of the neutral
axis.

3. Computational solution and
numerical results

It is not our first work with models of the processes
in the RC structure members. We have already got
some experience with the circular RC structure mem-
bers [6]. This experience suggests that we have to
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expect many global and local solutions of the least
squares problem. Therefore, we decided to compare
three different algorithms: local search method (trust
region reflective) started many times from all points
from a net of points equally distributed on the fea-
sible box and genetic and particle swarm algorithms
designed for searching a global optimum.
For the verification of the obtained formulae, two

rectangular cross-sections 0.3 m × 0.3 m under the
compression have been considered: the unreinforced
one and that of reinforced (µfyk/fcm = 0.1). Both
sections had the following characteristics: the concrete
grade C20/25, the yield stress of steel fyk = 500MPa
(reinforced), reinforcement ratios of the steel in com-
pression and in tension µ1 = µ2 = µ, t1/t = t2/t = 0.1,
Eh = 0. It is assumed that the resistance of the
cross-section is reached when the compressive strain
in concrete εcu = −3.5‰ or the ultimate strain in
the reinforcing steel equals εsu = 10‰. After some
rearrangements and substituting ε′ = x and ξ = y,
the set of equations (12–13) takes the forms (14–15)
for the unreinforced and (16–17) for the reinforced
cross-sections, respectively.
Due to the appearance of the term y − x in the

denominator in some sets of equations, a danger
of the division by 0 occurs. For this reason, fmin-
con has been finally applied with the algorithm op-
tion set to ”interior point method”, that allowed
to include special constraints eliminating this dan-
ger. Moreover, the existence of multiple minima may
not be avoided. However, the least squares formu-
lation of the problem itself may, in general, involve
extra local solutions (such a counterexample may be
found in Stachurski [34]). This has been confirmed
through computational results. Many local minima
and sometimes several global minima that resulted
from the numerical properties of the optimization
problem were encountered. Therefore, the clusteriza-
tion idea imported from clusterization the methods
of the global optimization was incorporated (see, for
instance, Thorn and Żilinstas [35]). The size of the
problem and computation time were of secondary im-
portance. We have also tested the genetic and particle
swarm algorithms from the global optimization Mat-
lab’s toolbox, comparing them with a local search
method started from all points of the net covering the
whole set Ω of feasible points. For testing purposes,
the sets of equations were used that described the
reinforced or unreinforced concrete sections subjected
to the compression.

The equations for the concrete without the reinforce-
ment – the subject to the compression with bending
are

r1(x, y) = −a1 + (2.25 + 0.5x)y−
0.25xy−
4
[
−12.5y

x
ln(1− 0.125x)− y

]
= 0,

(14)

r2(x, y) = −a2 + (3.125 + 0.25x)y+[
−3.125 + 0.25x− 0.125x

y

]
y2+

0.16667xy2+
50y
x

[0.5 ln(1− 0.125x) + y +

8(1− 0.125x)y
x

ln(1− 0.125x)
]

= 0,

(15)

where:
x – maximum compressive x ∈ [−5,−10−10]

strain in concrete
y – coordinate specifying y ∈ [10−10, 1]

location of the neutral
axis of the cross-section

Different values of constants a1 and a2 correspond
to different axial forces N and bending moments M .
Parameters a are collected in table 1

The corresponding equations for the reinforced con-
crete section subjected to the compression with bend-
ing are given below

r1(x, y) = (2.25 + 0.5x)y − 0.25xy−
4
[
−12.5y

x
ln(1− 0.125x)− y

]
+

0.01x
(

1− 0.9
y

)
− a1 = 0,

(16)

r2(x, y) = (3.125 + 0.25x)y−[
3.125 + 0.25x+ 0.125x

y

]
y2+

0.16667xy2+
50y
x

[0.5 ln(1− 0.125x) + y +

8(1− 0.125x)y
x

ln(1− 0.125x)
]

+

0.004x(1− 0.9
y

)− a2 = 0,

(17)

where x and y have the same meaning and scope as
in equations (14) and (15).
We used two sets of constant parame-

ters a1 and a2 for that case specified below.
Set No. a1 a2

1 0.143445 0.0292155
2 0.129182 0.0348055

We have to solve sets of two nonlinear equations
with two unknowns x and y specified above{

r1(x, y) = 0
r2(x, y) = 0 where

[
x
y

]
∈ Ω

Ω =
{[

x
y

]
∈ R2

∣∣∣∣ xL ≤ x ≤ xU
yL ≤ y ≤ yU

} (18)

xL, xU are the lower bound and upper bound on
variable x and similarly yL, yU are the lower bound
and upper bound on variable y. Due to their presence,
a direct use of numerical methods for solving sets of
nonlinear equations seems to be impractical.
Therefore, our task was reformulated by means of

the frequently used the least squares method. It has
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Set No. a1 a2

1 0.17157 0.01717
2 0.13345 0.02522
3 0.10918 0.026805
4 0.08579 0.02574
5 0.07065 0.02369
6 0.04448 0.01763
7 0.02571 0.01138

Table 1. Sets of parameters for unreinforced concrete subjected to compression with bending

lead to a nonlinear, nonconvex optimization problem

min
(x,y)

f(x, y) = 1
2
(
r2

1(x, y) + r2
2(x, y)

)
s.t. xL ≤ x ≤ xU

yL ≤ y ≤ yU

(19)

Below are given the results of the local search with
multiple starting points, genetic algorithm and the
particle swarm optimization method.

In the first approach, we selected the fmincon func-
tion from the MATLAB Optimization Toolbox as a
tool to solve the least squares problem (19), because
it allows the introduction of of the box constraints.

The steps of the procedure may be summarized as
follows:
Set S – set of solution clusters to be an empty set.
while (there are non used points in the net cover-

ing Ω)
• take a new point x0 ∈ Ω,
• solve the least squares problem by means of the

fmincon function from the MATLAB’s toolbox OP-
TIMIZATION starting from the point x0,

• denote the found solution by x,
• if f(x) < resTOL

if x belongs to some cluster in S
compare function value f(x) with the best
in the cluster and save the better of the
two points as the seed of the cluster

else
save the current point as the seed of
a new cluster

endif
endif

We assumed the threshold value resTOL = 1.0e− 20.
The only exception was the set of sample problems
for the reinforced concrete section subjected to the
compression with bending where resTOL = 1.0e −
10. In the clusterization, we treated a new point as
a structure member of the cluster if the following
inequality was verified

‖x̂− xseed‖ ≤ distTOL

where xseed is the seed point of the current cluster.
We assumed distTOL = 1.0e−10.

The need of the clusterization is fully justified by
the table 2 presented below.
We can evidently observe four different clusters in

the table.
First seven examples are connected with the con-

crete sections without reinforcement. They are sub-
jected to compression and bending. Parameters a are
collected in table 1 and the calculated solutions are
put to table 3.
Consecutive table 4 contains the solutions for two

sets associated with the situation, when the sections
are reinforced.
The results of calculations with the genetic algo-

rithm are summarized in table 5 (for the sections
without reinforcement) and in table 6 (for sections
with reinforcement). Unfortunately, the implementa-
tion of the genetic algorithm from the Matlab’s global
optimization toolbox has found only one global solu-
tion, even for sets where the local minimizer detected
more global solutions. Furthermore, the accuracy of
the ga solution is definitely poorer compared with
that found by the local minimizer.
Tables 7 and 8 summarize the results obtained by

means of the particle swarm algorithm implementation
in the Matlab’s global optimization toolbox. The same
comment as for the ga Matlab function is valid for
the particle swarm one.

4. Comparison of experimental and
numerical results

In order to verify the calculated results, 175 mm ×
175 mm × 1680 mm (the height) column specimens
under eccentric compression were considered, the re-
sults of which were presented in detail by Lloyd at
al. [16]. The longitudinal steel reinforcement of the
columns consisted of three rebars φ12 mm, fyk = 430
MPa, Es = 200 GPa and they were made of concrete
fcm = 44.78 MPa, Ecm = 32 GPa. The static diagram
and test specimen are shown in Fig. 2. In the above
mentioned tests, the following failure loads and corre-
sponding eccentricities were measured: P1 = 1476 kN,
e1 = 15 mm; P2 = 830 kN, e2 = 50 mm; P3 = 660
kN, e3 = 65 mm. The ultimate strain in concrete at
failure was assumed in calculations as −2.4 ‰, which
corresponds to the peak stress on the σc − εc diagram
(Fig. 1). The values collected in table 9 confirm a good
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x(1) x(2) f(x)
-2.7790923390672915e+00 -3.0371456600817055e+00 9.8607613152626476e-32
-2.7790923390376046e+00 -3.0371456601087723e+00 2.2186712959340957e-29
-3.5000157890703703e+00 -4.9999510298477368e-01 1.2325951644078309e-29
-2.7790923390051390e+00 -3.0371456601383064e+00 9.1507865005637369e-29
-2.7790923391531197e+00 -3.0371456600033153e+00 1.9721522630525295e-29
-2.7790923392382747e+00 -3.0371456599104514e+00 8.4692264556708872e-25
-1.2763043306571440e+00 -1.0595130305186657e+00 4.9303806576313238e-31
-1.2763043306472746e+00 -1.0595130305290790e+00 6.9364539396083568e-27
-2.7790923389334106e+00 -3.0371456602237172e+00 5.7569619331116098e-25
-1.2763043307376327e+00 -1.0595130304452089e+00 4.7302072029314920e-28
-1.2763043305691497e+00 -1.0595130306000431e+00 2.0523202525456148e-27
-6.2452876553920056e-01 -3.6491369858491312e+00 3.6484816866471796e-30

Table 2. Sample table of results without clusterization

x(1) x(2) f
Set 1

a(1) = 1.7157000000000000e-01 a(2) = 1.7170000000000001e-02
-3.5001760272980009e+00 8.9999746818148496e-01 1.6308774769071113e-29

Set 2
a(1) = 1.3345000000000001e-01 a(2) = 2.5219999999999999e-02

-3.4992749633586557e+00 6.9999666861370502e-01 1.9772367181057118e-29
-1.7538910914819157e+00 8.3132002867829691e-01 4.3364238627823002e-29

Set 3
a(1) = 1.0918000000000000e-01 a(2) = 2.6804999999999999e-02

-3.5000264028206489e+00 5.7271595174704082e-01 8.1807341061747740e-29
-1.7532806514095229e+00 6.8025870700809510e-01 2.0954117794933126e-29

Set 4
a(1) = 8.5790000000000005e-02 a(2) = 2.5739999999999999e-02

-3.4999421856987043e+00 4.5001889527019823e-01 2.6437933681383566e-28
-1.7533490610068840e+00 5.3451336316461950e-01 2.9496002284279395e-29

Set 5
a(1) = 7.0650000000000004e-02 a(2) = 2.3689999999999999e-02

-3.5002461261714624e+00 3.7060720525856033e-01 6.1800472650662032e-28
-1.7531021761012342e+00 4.4021717424283136e-01 4.8915539099524771e-29

Set 6
a(1) = 4.4479999999999999e-02 a(2) = 1.7630000000000000e-02

-3.4981410371676795e+00 2.3329954055348942e-01 3.9372571632525573e-27
-1.7548124428383809e+00 2.7700765058540189e-01 8.0396019598500773e-29

Set 7
a(1) = 2.5710000000000000e-02 a(2) = 1.1379999999999999e-02

-3.2265678368900650e+00 1.3352149291135310e-01 4.2148274638856933e-26
-1.9823327248432530e+00 1.5060554010027433e-01 2.5005850693336105e-28

Table 3. Results for non-reinforced concrete subjected to compression with bending
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x(1) x(2) f
Set 1

a(1) = 1.4344499999999999e-01 a(2) = 2.9215499999999998e-02
-2.2782425251491150e+00 7.7232501367591999e-01 2.2709743058168710e-29
-3.4999345396782120e+00 6.9999699585013297e-01 3.2106687592596898e-29
-3.4997710707333067e+00 6.9999415656504049e-01 6.6164575189148840e-13

Set 2
a(1) = 1.2918199999999999e-01 a(2) = 3.4805500000000003e-02

-2.8855483058111950e+00 5.9743506676707159e-01 5.7336006495255961e-30
-3.4999204514197872e+00 5.7272335751221370e-01 3.6503587461192280e-28
-2.8894696731050842e+00 5.9713482908132576e-01 4.5482057578604896e-11
-2.8850298075074248e+00 5.9747474535630740e-01 8.0528227557234545e-13
-2.8819290341073800e+00 5.9771169963840232e-01 3.9597006753181514e-11

Table 4. Results for reinforced concrete subjected to compression with bending

x(1) x(2) f
Set 1

a(1) = 1.7157000000000000e-01 a(2) = 1.7170000000000001e-02
-2.0055257755736533e+00 9.9999993722360547e-01 4.9367829047643648e-06

Set 2
a(1) = 1.3345000000000001e-01 a(2) = 2.5219999999999999e-02

-1.7533927171625709e+00 8.3145002503412480e-01 1.1683502858156642e-11
Set 3

a(1) = 1.0918000000000000e-01 a(2) = 2.6804999999999999e-02
-3.5000168287943323e+00 5.7271604685964617e-01 4.2733490746564677e-15

Set 4
a(1) = 8.5790000000000005e-02 a(2) = 2.5739999999999999e-02

-3.5000605612775848e+00 4.5002358354890987e-01 1.0830715796115672e-13
Set 5

a(1) = 7.0650000000000004e-02 a(2) = 2.3689999999999999e-02
-1.7531661968763803e+00 4.4020811931145998e-01 1.4944588897123600e-14

Set 6
a(1) = 4.4479999999999999e-02 a(2) = 1.7630000000000000e-02

-3.4974023122097648e+00 2.3328811178613765e-01 1.9405016478273012e-13
Set 7

a(1) = 2.5710000000000000e-02 a(2) = 1.1379999999999999e-02
-3.8846165545827720e+00 1.3993640821435832e-01 1.8945631674275027e-08

Table 5. Results for non-reinforced concrete subjected to compression with bending obtained by Matlab’s genetic
algorithm function

x(1) x(2) f
Set 1

a(1) = 1.4344499999999999e-01 a(2) = 2.9215499999999998e-02
-2.2782188146226554e+00 7.7232945260092078e-01 1.9240836428670515e-14

Set 2
a(1) = 1.2918199999999999e-01 a(2) = 3.4805500000000003e-02

-2.8837525833446813e+00 5.9758208926874357e-01 1.0366597163520163e-11

Table 6. Results for reinforced concrete subjected to compression with bending obtained by Matlab’s genetic
algorithm function
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x(1) x(2) f
Set 1

a(1) = 1.7157000000000000e-01 a(2) = 1.7170000000000001e-02
-3.5002095622539371e+00 8.9992251419894265e-01 1.1469551926718323e-10

Set 2
a(1) = 1.3345000000000001e-01 a(2) = 2.5219999999999999e-02

-3.4988243017354601e+00 6.9999134440783828e-01 8.0833419633913090e-12
Set 3

a(1) = 1.0918000000000000e-01 a(2) = 2.6804999999999999e-02
-3.5005599263496445e+00 5.7271548379815385e-01 9.7034824624575985e-12

Set 4
a(1) = 8.5790000000000005e-02 a(2) = 2.5739999999999999e-02

-3.4996043294305919e+00 4.5005795509525537e-01 4.3542554256757773e-11
Set 5

a(1) = 7.0650000000000004e-02 a(2) = 2.3689999999999999e-02
-3.5287486517409783e+00 3.7098837709011562e-01 3.6828714611703899e-09

Set 6
a(1) = 4.4479999999999999e-02 a(2) = 1.7630000000000000e-02

-1.8974393623306212e+00 2.6652417435303338e-01 1.4855280597896296e-08
Set 7

a(1) = 2.5710000000000000e-02 a(2) = 1.1379999999999999e-02
-3.2244553544557881e+00 1.3346506124150329e-01 5.6375712128260839e-11

Table 7. Results for non-reinforced concrete subjected to compression with bending obtained by Matlab’s particle
swarm function

x(1) x(2) f
Set 1

a(1) = 1.4344499999999999e-01 a(2) = 2.9215499999999998e-02
-3.5011205692965111e+00 6.9993319470774185e-01 1.0180508409446182e-10

Set 2
a(1) = 1.2918199999999999e-01 a(2) = 3.4805500000000003e-02

-3.5003741045884293e+00 5.7271843442355697e-01 8.6633784199345278e-13

Table 8. Results for reinforced concrete subjected to compression with bending obtained by Matlab’s particle swarm
function

Experimental Numerical

Failure load Pi [kN] εcu = εc1 ε
′

ξ strain in ε1/ε2 [‰]
eccentricity ei [mm] [‰] [‰] steel

εs [‰]
P1 = 1476; e1 = 15 -2.4 -2.20 -2.20 / -0.35
P2 = 830; e2 = 50 -2.4 -2.20 0.63 0.92
P3 = 660; e3 = 65 -2.4 -2.20 0.49 1.85

Table 9. Comparison of the experimental and numerical results – 1
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Experimental Numerical
Failure load Pi [kN] εcu = εc1 ε1 ε2
eccentricity ei [mm] [‰] [‰] [‰]
P1 = 1548; e1 = 0 -2.1 -2.1 -2.1
P2 = 1386; e2 = 16 -2.1 -1.95 -0.31
P3 = 1098; e3 = 32 -2.1 -1.95 -0.12

Table 10. Comparison of the experimental and numerical results

Figure 2. Static diagram and test specimen

conformity between the numerical solution and the ex-
perimental data given by Lloyd and Rangan [16]. It is
worth noting that the theoretical values are lower than
those obtained from the experiment due to neglecting
the effect of confinement of the column.

As the next example, the results of tests conducted
by Trapko at al. [20] on unstrenghtened column spec-
imens 200 mm × 200 mm × 1500 mm (the height)
under eccentric compression were analyzed. The lon-
gitudinal reinforcement of the column consisted of
two rebars φ12 mm, steel grade A-IIIN, fyk = 608
MPa, Es = 224 GPa and the transverse reinforce-
ment consisted of stirrups φ6 mm, steel grade A-I.
The columns were made of concrete fcm = 31.9 MPa.
Ecm = 31 GPa. The failure loads and the correspond-
ing eccentricities were determined in these tests as:
P1 = 1548 kN, e1 = 0 mm; P2 = 1386 kN, e2 = 16
mm; P3 = 1098 kN, e3 = 32 mm. The ultimate strain

in concrete at failure was assumed in calculations as
−2.1 ‰. The characteristic failure mechanisms of the
tested specimens occurred in the form of crushing the
concrete in the upper part of the structure members
and yielding the longitudinal reinforcing steel. A good
conformity between the calculated and experimental
results are confirmed by the values collected in Ta-
ble 10. In author’s opinion, further experimental work
is needed concerning the post-critical behaviour of RC
columns under eccentric compression.

5. Conclusions and comments
Our numerical results have confirmed that the elab-
orated analytical deformation model (taking into ac-
count the effect of concrete softening) may be used to
determine the strains in rectangular cross-sections of
RC compressed structure members. It can be applied
to predict the behaviour of such structure members.

The current Matlab’s implementations of the global
optimization algorithms (ga and particle swarm) do
not seem to be suitable for our application. In genetic
algorithm (ga), elitism is used (part of the previous
population survives to the next one). But it does
not ensure finding the correct solution. The particle
swarm procedure also does not guarantee the compu-
tation of the correct solution. Of course, we may tune
some of their parameters, but we do not expect to
gain much from that. Our experiments with the local
search method have frequently shown the existence of
several global minima. All of them are almost equally
good from the point of view of a numerical calcula-
tions specialist. We decided to select them by means
of the Hamilton minimum energy principle. In our
opinion, from the existing global optimization meth-
ods, the most promising may be the clusterization
methods (see for instance Törn and Żilinskas [35]).
The calculated results conform to the experimental
ones. The proposed approach enables to evaluate the
structural safety of tower-like structures with rectan-
gular sections without testing the drilling-out cores
taken from the structure. It may also be useful in the
structural design and maintenance.
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