
1 Introduction and motivation
Petri nets (PN) are a well established mechanism for sys-

tem modeling. They are a mathematically defined formal
model, and can be subjected to a large variety of systems.
PN based models have been widely used due to their ease of
understanding, declarative, logic based and modular model-
ing principles, and finally because they can be represented
graphically. Since Petri nets began to be exploited in the
1960s, many different types of models have been introduced
and used. The most popular models are presented in this
paper by their definitions and by specific models. Their main
advantages are shown and the differences between them
are mentioned.

Petri net based models have been used in our research on
digital design methodology: the design of a processor or con-
trol system architecture with special properties, e.g. fault-tol-
erant or fault-secure, hardware-software co-design, computer
networks architecture, etc. This has led to the development of
PN models in some Petri net design tools (Design/CPN, [1],
JARP, [2], CPN Tools, [3]), and analysis and simulation of the

model using these tools. After this high-level design has been
developed and validated it becomes possible, through auto-
matic translation to a VHDL description, to employ an FPGA
implementation that will enable a custom device to be rapidly
prototyped and tested (ASIC implementation is also possi-
ble). An FPGA version of a digital circuit is likely to be slower
than the equivalent ASIC version, due to the regularly struc-
tured FPGA wiring channels compared to the ASIC custom
logic. However, the easier custom design changes, the pos-
sibility of easy FPGA reconfiguration, and relatively easy
manipulation make FPGAs very good final implementation
bases for experiments.

Most models used in the hardware design process are
equivalent to the Finite State Machine (FSM), [4], [5], [6], [7].
It is said that the resulting hardware must be deterministic,
but we have found real models that are not equivalent to an
FSM and their real behavior was tested on the final FPGA
design kit platform [8]. Therefore we have concentrated on
those models with really concurrent actions, with various
types of dependencies (mutual exclusion, parallel, sched-
uled), and have studied their hardware implementation.

© Czech Technical University Publishing House http://ctn.cvut.cz/ap/ 5

Czech Technical University in Prague Acta Polytechnica Vol. 45 No. 2/2005

Modeling by Petri Nets
H. Kubátová

One specific model of a digital system in different types of Petri nets is presented. The formal definitions of the basic (black-and-white) Petri
net, a place/transition net (P/T net), an arc-constant coloured Petri net (ac-CPN) and a coloured Petri net (CPN) are presented and
explained on the basis of this example. Real models of dining philosophers, a producer-consumer system and railway tracks are described.

Keywords: Petri nets, formal models, hardware, digital design, Field Programmable Gate Array (FPGA), PNML, VHDL, Finite State
Machine (FSM)

Fig. 1: Design methodology block diagram with dark parts corresponding to possible use of Petri nets

Petri nets are a good platform and tool in the “multi-
ple-level” design process, see Fig. 1. They can serve as a
specification language on all levels of specifications, and as a
formal verification tool throughout these specification and
architectural description levels. The first problem to be solved
during the design process is the construction of a good
model, which will enable the specification and further han-
dling and verification of the different levels of this design.
Therefore this paper presents such model constructions on
the basis of a number of simple examples.

2 Petri net definitions and examples

Petri nets can be introduced in many ways, according to
their numerous features and various applications. This text
will focus on basic principles and modeling of actions. In this
section, a formal definition of place/transition nets and col-
oured Petri nets is given. They have been presented in many
books and publications, the definitions presented here being
taken from [9]. Many attempts have been made to define the
principles of basic types of Petri nets. The way chosen here
involves a brief introduction to the basic principles and to
the hierarchical construction of the most complicated and
widely used Petri net based models used in professional soft-
ware tools.

The essential features of Petri nets are the principles of
duality, locality, concurrency, graphical and algebraic repre-
sentation. These notions will be presented on a simple model
of a handshake used by printers communicating with a con-
trol unit that transmits data according to the handshake
scheme. The control unit uses the control signal STROBE to
signal “data valid” to the target units – printers, receivers.
The printers signal “data is printing” to the control unit by
ACK signals. After the falling edge of a STROBE signal, all
printers must react by the falling edges of ACK signals to
obtain the next portion of data (e.g., a byte). Our Petri net will
model cooperation between only two printers A, and B, with
one control unit C, see Fig. 2.

Following essential conditions and actions have been
identified:
� List of conditions:

p1: control unit C has a byte prepared for printing

p2: control unit C is waiting for signals ACK
p3: control unit C is sending a byte and a STROBE sig-

nal to printer A
p4: printer A is ready to print
p5: printer A is printing a byte
p6: printer A sends ACK signal
p7: control unit C sends STROBE = 0 to A
p8: control unit C is sending a byte and a STROBE sig-

nal to printer B
p9: printer B is ready to print
p10: printer B is printing a byte
p11: printer A sends ACK signal
p12: control unit C sends STROBE = 0 to B

� List of actions:
t1: control unit C sends STROBE = 1
t2: control unit C sends STROBE = 0
t3: printer A sends ACK = 1
t4: printer A sends ACK = 0
t5: printer B sends ACK = 1
t1: printer B sends ACK = 0

Separating or identifying passive elements (such as condi-
tions) from active elements (such as actions) is a very impor-
tant step in the design of systems. This duality is strongly sup-
ported by Petri nets. Whether an object is seen as active or
passive may depend on the context or the point of view of the
system. But it is always necessary to construct a correct Petri
net model according to Definitions 1 – 5. Basically, the edges
must connect only places with transitions, or vice-versa (Petri
nets are a bipartite graph). The following principles belong to
the essential features of Petri nets that express locality and
concurrency:
� The principle of duality for Petri nets: there are two disjoint

sets of elements: P-elements (places) and T-elements (transi-
tions). Entities of the real world, interpreted as passive ele-
ments, are represented by P-elements (conditions, places,
resources, waiting pools, channels etc.) Entities of the real
world, interpreted as active elements, are represented by
T-elements (events, transitions, actions, executions of state-
ments, transmissions of messages etc.).

6 © Czech Technical University Publishing House http://ctn.cvut.cz/ap/

Acta Polytechnica Vol. 45 No. 2/2005 Czech Technical University in Prague

Fig. 2: The Petri net model of two printers working in parallel

� The principle of locality for Petri nets: the behavior of
a transition depends exclusively on its locality, which is
defined as the totality of its input and output objects (pre-
and post- conditions, input and output places, …) together
with the element itself.

� The principle of concurrency for Petri nets: transitions hav-
ing a disjoint locality occur independently (concurrently).

� The principle of graphical representation for Petri nets: P-ele-
ments are represented by rounded graphical elements
(circles, ellipses, …), T-elements are represented by edged
graphical symbols (rectangles, bars, …). Arcs connect each
T-element with its locality, which is a set of P-elements.
Additionally, there may be inscriptions such as names,
tokens, expressions, guards.

� The principle of algebraic representation for Petri nets: For
each graphical representation there is an algebraic repre-
sentation containing equivalent information. It contains
the set of places, transitions and arcs, and additional in-
formation such as inscriptions.
In contrast to concurrency, there is the notion of conflict.

Some transitions can fire independently (e.g. t4 and t6 in
Fig. 2, only tokens must be inside the input places), but there
can be Petri nets that model mutual exclusion, see Fig. 3.
Concurrent transitions behave independently and should
not have any impact on each other. Sometimes this can
depend on the state of the net – these transitions can be-
have independently. Situations that show the sophisticated
interaction of concurrency and conflicts are called confu-

© Czech Technical University Publishing House http://ctn.cvut.cz/ap/ 7

Czech Technical University in Prague Acta Polytechnica Vol. 45 No. 2/2005

Fig. 3.: Initial state of the Petri net from Fig. 2

a)

b)

Fig. 4: Concurrency of t3 and t5 transitions a) after t1 firing both t3 and t5 are enabled, b) after t3 firing t5 still remains enabled

sions [9], [10]. Building hierarchies by abstraction or re-
finement is an important technique in system design. PN
supports such approaches by abstraction techniques that are
inherently compatible with the structure of the model, [9].

Definition 1: A net is a triple N = (P, T, F) where
� P is a set of places
� T is a set of transitions, disjoint from P, and
� F is a flow relation F P T T P� � �() ()� for the set

of arcs.
If P and T are finite, the net is said to be finite.

The state of the net is represented by tokens in places. The
tokens distributions in places are called markings. The hold-
ing of a condition (which is represented by a place) is repre-
sented by a token in the corresponding place. In our example,
in the initial state control system C is prepared to send data
(a token in place p1), printers A and B are ready to print
(token s in places p4 and p9), see Fig. 3. A state change or
marking change can be performed by firing a transition. A
transition “may occur” or “is activated” or “is enabled” or
“can fire” if all its input places are marked by a token. Transi-
tion firing (the occurrence of a transition) means that all
tokens are removed from the input places and are added
to the output places. The transitions can fire concurrently
(simultaneously – independently, e.g. t3 and t5 in Fig. 4, or in
conflict, see Fig. 5).

The arc in the sense of Definition 1 can be only simple –
only one token can be transmitted (removed or added) from
or to places by transition firings. Place/transition nets are nets
in the sense of Definition 1, together with a definition of arc
weights. This can be seen as an abstraction obtained from
more powerful coloured Petri nets by removing the individu-
ality of the tokens, see below. The example derived from
the Petri net from Fig. 2 is shown in Fig. 6. Here more (two)
printers are expressed only by two tokens in one place p4. The
condition “all printers are ready” expressed by two tokens in
place p4 and fulfilled by multiply edge from place p4 to
transition t3.
Definition 2: A place/transition net (P/T net) is defined as a tuple
N P TPT �� �, , ,Pre Post where

� P is a finite set (the set of places of NPT),
� T is a finite set (the set of transitions of NPT), disjoint from

P, and

� Pre, Post � N
|P|×|T| are matrices (the backward and

forward incidence matrices of NPT). C � Pre � Post is
called the incidence matrix of NPT.

The set of these arcs is
	
 	
F p t P T p t t p T P p t: (,) [,] (,) [,] .� � � � � � �Pre Post0 0�

This interpretation leads to the alternative definition, which is
closer to the graphical representation.

Definition 3: A place/transition net (P/T net) is defined as a tuple
NPT=<P, T, F, W>, where

� (P, T, F) is a net (see Definition 5.1) with finite sets P and
T, and

� W : F � N \ {0} is a function (weight function).

NPT together with an initial marking (m0) is called a P/T
net system S �< NPT, m0> or S �<P, T, F, W, m0>. For a net sys-
tem S �< NPT, m0> the set

	
RS S m w T m mw(): ,*� � � �0 , where T* is the sequence

of transitions and w � T* and t � T, is the reachability set.

	
FS S w T m m mw(): ,*� � � �0 is a set of occurrence-tran-

sition sequences (or a firing-sequence set) of S. It is sometimes
convenient to define the set Occ(S) of occurrence sequences
to be the set of all sequences of the form

m m m mn0 0 1 1 2 2 1 1, , , , , , , , ()t t t t nn� �

such that m mi
ti

i+ i n� � �1 0 1for { , , }� .

8 © Czech Technical University Publishing House http://ctn.cvut.cz/ap/

Acta Polytechnica Vol. 45 No. 2/2005 Czech Technical University in Prague

a) b)

Fig. 5: Mutual exclusion of places p5 and p10, transition t3 and t5 in conflict, a) initial state where t3 and t5 are both enabled, b) the state
after t3 firing, where t5 is not enabled

Fig. 6: Place/transition net

The tokens in Figs. 2–5 are not distinguished from each
other. The tokens representing printers A and B are distin-
guished by their places p4 and p9. A more compact and more
natural way is to represent them in one place p4&p9 by
individual tokens A and B. Distinguishable tokens are said
to be coloured. Colours can be thought of as data types.
For each place p, colour set cd(p) is defined. In our case
cd p p A B(&) { , }4 9 � . For a coloured net we have to specify
the colours, and for all places and transitions, particular col-
our sets (color domains). Since arc inscriptions may contain
different elements or multiple copies of an element, multisets
(bags) are used, ‘bg’. A bag over a non-empty set A is a
function bg A: � N, sometimes denoted as a formal sum

bg a a
a A

()�
�� . Extending set operations sum and difference to

Bag(A) are defined [9].

Definition 4. An arc-constant coloured Petri net (ac-CPN) is de-
fined as a tuple NaC�<P, T, Pre, Post, C, cd> where

� P is a finite set (the set of places of NaC),
� T is a finite set (the set of transitions of NaC), disjoint

from P,
� C is the set of colour classes,
� cd P C: � is the colour domain mapping, and

� Pre Post, �
�B P T are matrices (the backward and

forward incidence matrices of NaC) such that
� �Pre p t cd p, (())�Bag and � �Post p t cd p, (())�Bag

for each (,)p t P T� � . C � Pre � Post is called inci-
dence matrix of NaC.

In this definition B is taken as the set Bag(A), where A is
the union of all colour sets from C. The difference operator in
C � Post � Pre is a formal one here, i.e. the difference is not
computed as a value. A marking is a vector m such that
m[p] � Bag(cd(p)) for each p � P. The reachability set, firing
sequence, net system and occurrence have the same meaning
as for P/T nets.

The example for constructing Coloured Petri nets (CPN)
is discussed in several following examples and figures derived
from our original model of parallel printers. Arc-constant
CPN in Fig. 7 is simply derived from the initial example, with
the same meaning of all places and transitions. Places p4 and
p9 (and p5 and p10) originally used for distinguishing two
printers are connected (“folded”) to one place here named
p4&p9 (p5&p10). For a transition t, it is necessary to indicate
which of the individual tokens should be removed (with re-
spect to its input places). This is done by the inscriptions on
the corresponding arcs in Fig. 7. Transition t3 can fire if there
is an object A in place p4&p9 (and an indistinguishable token
in the place p3). When it fires, token A is removed from place
p4&p9 and is added to place p5&p10, and an (indistinguish-
able) token is added to p6. Places p4&p9 and p5&p10
have the colour domain printers � {A, B} denoting printer
A and printer B. The control process is modeled by token s
(STROBE). Colour domains are represented by lower case
italics near the place symbols in Fig. 7. Places p3, p6, p7,
p8, p11 and p12 are assumed to hold an indistinguishable
token and therefore have the colour domain token � { �},
which is assumed to hold by default. The net from Fig. 2
(ordinary or black-and-white PN) and the net from Fig. 7 (col-
oured PN) contain the same information and have similar
behavior. Only two places are “safe”. This CPN is called arc-
-constant, since the inscriptions on the arcs are constants and
not variables.

The next step will be to simplify the graph structure of
ac-CPN. We will represent the messages “STROBE signal sent
to printer A” (stA) and “STROBE signal sent to printer B”
(stB), ACK signal sent from printer A (ackA) and ACK signal
sent from printer B (ackB). We can connect places p3 and p8,
p6 and p11, p7 and p12, in Fig. 8 they are named by the first
name of the connected places. The behaviour of the net is
the same. As a new feature of this net, transition t2 has
to remove both signals ackA and ackB from place p6. The
expression ackA � ackB denotes the set {ackA, ackB}. Transi-

© Czech Technical University Publishing House http://ctn.cvut.cz/ap/ 9

Czech Technical University in Prague Acta Polytechnica Vol. 45 No. 2/2005

colour sets:
control = {s}
printers = {A, B}

constants:
s, A, B

Fig. 7: Arc-constant CPN

tion t3 is enabled if both ackA and ackB are in place p4 and by
t3 firing both tokens are removed. Therefore in the general
case, bags (multisets) will be used instead of sets. The transi-
tion firing rule for arc-constant CPN can be expressed as: all
input places must contain at least as many individual tokens as
specified by the corresponding arcs. The transition firing
means that these tokens are removed and added to the output
places as indicated by arc inscriptions.

The firing rule for ac-CPN is sketched in Fig. 9.
In a coloured Petri net the incidence matrices cannot be

defined over B � Bag(A) as for arc-constant CPNs. The differ-
ent modes or bindings of a transition have to be represented.
These are called colours, and are denoted by cd(t). Therefore
the colour domain mapping cd is extended from P to P T� .
In the entries of the incidence matrices for each transition col-
our, a multiset has to be specified. This is formalized by a
mapping from cd(t) into the bags of colour sets over cd(p) for
each (p, t) � P×T.

Our example expressed by CPN is shown in Fig. 11. The
number of places and transitions corresponds to the P/T net
in Fig. 6, but the expression power is greater. For each transi-
tion a finite set of variables is defined which is strictly local to

this transition. These variables have types or colour domains
which are usually the colours of the places connected to
the transition. In Fig. 11 the set of variables of transition
t3 is {x, y}. The types of x and y are dom(x) � printers and
dom(y) � ack, respectively. An assignment of values to vari-
ables is called a binding. Not all possible bindings can be
allowed for a correctly behaving net. The appropriate re-
striction is defined by a predicate at the transition, which
is called a guard. Now the occurrence (firing) rule is as
follows, see Fig. 10, where all places have the colour set
cd(p) � objects � {a, b, c}, and the colour domain of all vari-
ables is also objects:

1. Select a binding such that the guard holds (associate with
each variable a value of its colour), Fig. 10b.

2. Temporarily replace variables by associated constants,
Fig. 10c.

3. Apply the firing rule from ac-CPN from Fig. 9 as shown in
Fig. 10d (remove all appropriate tokens from input and
add to output places according the arc inscriptions).

The firing rule should be understood as a single step from
Fig. 10a to d. If the binding x � a, y � b, z � c is selected, then

10 © Czech Technical University Publishing House http://ctn.cvut.cz/ap/

Acta Polytechnica Vol. 45 No. 2/2005 Czech Technical University in Prague

colour sets:
control = {s}
printers = {A, B}
ack = {ackA, ackB}
strobe = {stA, stB}

constants:

s, A, B, ackA, ackB, stA, stB

Fig. 8: Arc-constant CPN without three places

Fig. 9: Firing rule for ac-CPN

the transition is not enabled in this binding, since the guard is
not satisfied. The selection of a binding is local to a transition.

Definition 5. A coloured Petri net (CPN) is defined by a tuple
NCPN

�<P, T, Pre, Post, C, cd> where

� P is a finite set (the set of places of NCPN),
� T is a finite set (the set of transitions of NCPN), disjoint

from P,
� C is the set of colour classes,
� cd: P T C� � is the colour domain mapping, and
� Pre, Post � B |P|×|T| are matrices (the backward and

forward incidence matrices of NCPN) such that
Pre [p, t] : cd(t) � Bag(cd(p)) and
Post [p, t] : cd(t) � Bag(cd(p)) are mappings for each
pair (p, t) � P×T.

B can be taken as the set of mappings of the form
f : cd(t) � Bag(cd(p)).
C � Post � Pre is called incidence matrix.

The mapping Pre [,]: () (())p t cd t cd p� Bag defines for
each transition the colour (occurrence mode) � � cd t() of t a
bag Pre [,]() (())p t cd p� �Bag denoting the token bag to be
removed from p when t occurs (fires) in colour �. In a similar
way, Post[,]()p t � specifies the bag to be added to p when t
occurs (fires) in colour �. The overall effect of the action per-
formed on the transition firing is given by a tuple correspond-
ing to the arcs connected with t.

The colours of the transition can be seen as particular sub-
sets of tuples cd t cd p cd p P() (()) (())� � �Bag Bag1 � ,
i.e., vectors having an entry for each place. But this can be an
arbitrary set as well. Effective representations of this set are

© Czech Technical University Publishing House http://ctn.cvut.cz/ap/ 11

Czech Technical University in Prague Acta Polytechnica Vol. 45 No. 2/2005

Select a binding, such that
the guard holds, e.g.:

x a

y b

z b

�

�

�

Fig. 10: Firing rule for CPN

colour sets:
control = {s}
printers = {A, B}
ack = {ackA, ackB}
strobe = {st}

variables: x, y, z, st
constants:

ackA, ackB, stA, stB

x y z st, , ,

Fig. 11: CPN model of printers

necessary. The mappings Pre [,]p t and Post [,]p t can be de-
noted by vectors, projections, functions and terms with func-
tions and variables.

3 Experiments with hardware
implementation
We performed several experiments with direct implemen-

tation of the Petri nets model in hardware (FPGA). The results
were presented in [14], [15] and [16].These models are briefly
described here. They were constructed in software tools (De-
sign/CPN or JARP editor) and from these tools their unified
description in PNML language [11], [12], was directly trans-
formed into the FPGA bitstream.

We have modeled 5 philosophers, who are dining to-
gether, Fig. 12. The philosophers each have two forks next
to them, both of which they need in order to eat. As there are
only five forks it is not possible for all 5 philosophers to be
eating at the same time. The Petri net shown here models a
philosopher who takes both forks simultaneously, thus pre-
venting the situation where some philosophers may have only
one fork but are not able to pick up the second fork as their
neighbors have already done so. The token in the fork place
(places P1, P2, …, P5) means that this fork is free. The to-
ken in the eat place (places P6, P7, …, P10) means that this
philosopher is eating.

We also performed experiments with a “producer-con-
sumer” system, Fig. 13. Our FPGA implementation used
59 CLB blocks, 47 flip-flops with maximum working fre-

quency 24.4 MHz. The maximum input capacity parameter
for places (the size of the counter) was set to the value 3. The
average buffer occupation during 120 cycles (transition fir-
ings) was 1.43, [13], [14].

Our real application experiment modeled a railway with
one common critical part – a rail, see Fig. 14. The PN model,
Fig. 15, has the initial marking where tokens are in places
“1T” and “3T” (two trains are on rails 1 and 3, respectively),
“4F” (a critical rail is free) and “2F” (rail 2 is free). This
model has eight places, two places T (train) and F (free) for
each rail: a token in the first place means that the train is in
this rail (T-places), and the second means that this rail is
free (F-places). This was described and simulated in the De-
sign/CPN system and then it was implemented in the real
FPGA design kit (ProMoX, [15]).

Conclusions
This paper deals with the practical use of Petri nets and

modeling by Petri nets. Different levels and types, practical
and concrete styles of modeling are presented on the basis of
a simple and clear example. The practical results obtained for

12 © Czech Technical University Publishing House http://ctn.cvut.cz/ap/

Acta Polytechnica Vol. 45 No. 2/2005 Czech Technical University in Prague

Fig. 12: The dining philosophers PN model

Buffer

ConsumerProducer

Fig. 13: Producer – consumer model

Fig. 14: Railway semaphore model

Fig. 15: The PN model of 4 rails

specific FPGA implementations have been published and can
be found in [14], [15], [16]. The specific Petri net models are
shown here. The example presented here in which parallel
printers are served by a controlling process, was chosen due
its practical presentation and practical iterative construction
during the teaching process at the Department of Computer
Science and Engineering (DSCE) of the Czech Technical
University in Prague.

Future work will involve optimizing the direct implemen-
tation of Petri nets with respect to space, time, power and
reliability.

Acknowledgment
This research was in part supported by a grant

102/04/0737 of the Czech Grant Agency (GAČR) and by the
MSM 212300014 research program.

References
[1] http://www.daimi.au.dk/designCPN/
[2] Home Page, 2002: http://jarp.sourceforge.net/
[3] http://wiki.daimi.au.dk/cpntools/cpntools.wiki
[4] Adamski, M.: “A Rigorous Design Methodology for Re-

programmable Logic Controllers.” Proc. DESDes ’01
Zielona Gora, Poland, 2001, p. 53–60.

[5] Erhard, W., Reinsch, A. Schober, T.: “Modeling and
Verification of Sequential Control Path Using Petri
Nets.” Proc. DES Des ’01 Zielona Gora, Poland, 2001,
p. 41–46.

[6] Gomes, L., Barros, J-P.: “Using Hierarchical Structuring
Mechanism with Petri Nets for PLD Based System De-
sign.” Proc. DESDes ’01 Zielona Gora, Poland, 2001,
p. 47–52.

[7] Uzam, M., Avci, M. Kürsat, M.: “Digital Hardware Im-
plementation of Petri Nets Based Specification: Direct
Translation from Safe Automation Petri Nets to Circuit
Elements.” Proc. DESDes ’01, Zielona Gora, Poland,
2001, p. 25–33.

[8] Projects (2003): http://service.felk.cvut.cz/courses/36APZ
/archives/2002-2003/W/prj/36APZ124/

[9] Girault, C., Valk, R.: Petri Nets for Systems Engineering.
Berlin, Heidelberg: Springer-Verlag, 2003, 607 p.

[10] Češka, M.: Petriho sítě. Brno: Akademické nakladatelství
CERM, 1994, 95 p. (in Czech)

[11] Humboldt-Universität Berlin:
http://www.informatik.hu-berlin.de/top/pnml

[12] Kindler, E., ed.: “Definition, Implementation and Appli-
cation of a Standard Interchange Format for Petri Nets.”
Proceedings of the Workshop of the satellite event of
the 25th International Conf. on Application and Theory
of Petri Nets, Bologna, Italy, June 2004, 85 p.

[13] Koblížek, M.: “Hardware Implementation of Petri
Nets.” Diploma thesis, CTU, Prague, 2002, 51 p. (in
Czech).

[14] Kubátová, H.: “Direct Implementation of Petri Net
Based model in FPGA.” Proceedings of the Interna-
tional Workshop on Discrete-Event System Design –
DESDes ’04. Zielona Gora: University of Zielona Gora,
2004, p. 31-36.

[15] Kubátová, H.: Petri Net Models in Hardware. ECMS 2003,
Technical University, Liberec, 2003, p. 158–162.

[16] Kubátová, H.: “Direct Hardware Implementation of
Petri Net based Models.” Proceedings of the Work in
Progress Session of EUROMICRO 2003, Linz: J. Kepler
University – FAW. 2003, p. 56–57.

Ing. Hana Kubátová, CSc.
e-mail: kubatova@fel.cvut.cz

Department of Computer Science and Engineering

Czech Technical University in Prague
Faculty of Electrical Engineering
Karlovo nám. 13
121 35 Prague, Czech Republic

© Czech Technical University Publishing House http://ctn.cvut.cz/ap/ 13

Czech Technical University in Prague Acta Polytechnica Vol. 45 No. 2/2005

