
1 Introduction
Cellular solids can either be found in nature or manufac-

tured by foaming of polymers, metals and ceramics, or by
other technologies, e.g. by CVD-chemical vapor deposition,
or DMLS-Direct Metal Laser Sintering. They have a wide
range of applications namely in absorbing the kinetic en-
ergy from impacts, or as thermal and electrical insulators. To
exploit these properties fully and efficiently, suitable method-
ologies allowing a detailed characterization of the behavior of
the cellular solids are needed. In this paper we will examine
the upper bounds on homogenized linear elastic properties.

A cellular solid (a foam) is composed of an interconnected
network of solid beams and shell parts, which can be assigned
to cells that are repeated in the medium. Two essential fea-
tures characterize cellular media:
� The size of the voids is very small compared to the size of

the full medium, and thus homogenization techniques
(see Duvaut (1976), Bensoussan at al. (1978), Suquet
(1985), Bakhvalov and Panasenko (1989), Nemat-Nasser
and Hori (1993)) can be used in determining of the effec-
tive properties.

� The relative density is low, usually below 0.3 (Gibson and
Ashby (1988)). As a consequence, at least one dimension of
the solid phase (thickness) at the cell level is small com-
pared to the characteristic cell size. This condition justifies
the use of structural theories in homogenization calcula-
tions instead of the full 3D elasticity model.
Cellular solids may be classified as closed-cell, partly

open-cell and open-cell foams. In this work we will restrict
our analysis to open-cell foams, which consist solely of solid
beams. Then the name repetitive lattice structures can also be
adopted.

Several works deal with the effective elastic properties of
open-cell foams or repetitive lattice structures, but the upper
bounds on them are rarely analyzed. The main monograph
on cellular solids was published by Gibson and Ashby (1988).
Extensive work by Christensen has been dedicated to the

characterization of effectively isotropic open-cell microstruc-
tures, where the response is governed by bending or direct
(axial) resistance, (Christensen (1994, 1995)). In Christensen
(1995) the values of the upper bound on the effective bulk
and shear modulus are presented. The value of the bulk
modulus bound has also been addressed in several other
works, but only in the sense of an effective property of
some particular microstructure, (see e.g. Warren and Kraynik
(1988, 1997), Kraynik and Warren (1994), Zhu et al. (1997)).

Methodologies for determining effective properties can
be discrete or continuous. Discrete approaches are usually
based on micromechanics. They exploit either the periodicity
or the regularity of the medium under consideration. In the
former case, the calculations are performed on a unit or a ba-
sic cell, while in the latter case either a representative volume
element or a typical joint is used. For instance in Kraynik and
Warren (1994) and Warren and Kraynik (1997) the effective
properties are determined by considering a tetrahedral joint
(Kelvin foam) under the assumption of affine displacements.
Application of this methodology to a medium with randomly
placed basic cells of the regular cubic lattice yields also the
maximum shear response. In this context, we can also men-
tion the work of Dimitrovová (1999), where there is a detailed
discussion of applicability of the orientational averaging to
periodic cells. Among other works, Grenestedt (1998) and Li,
Gao and Roy (2003) should also be mentioned. Continuum
modeling of repetitive lattice structures is reviewed by Noor
(1988). The literature review in this paragraph is far from
complete, because it is not the aim of this paper to determine
homogenized properties, but their upper bounds.

The inverse problem of identifying microstructures that
achieve the prescribed effective properties has also been
extensively studied (see, e.g. Sigmund (1994), Neves et al.
(2000), Gibiansky and Sigmund (2000), Guedes et al. (2003)).
These methods exploit homogenization techniques, start-
ing with a basic cell, whose shape must be specified in ad-
vance, and then the available material is optimally distributed
within it.
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Cellular solids can be viewed as two-phase composites with
void and solid (generally non-homogeneous) phases. Deter-
mining the bounds on composite effective properties has
been the subject of considerable research for many years. It
may be argued, that there is no need for a new methodology,
since the bounds for foams can be obtained from the compos-
ite two-phase bounds, just by introducing zero void proper-
ties. This is true in 2D, but in 3D the optimal foams must con-
tain shell parts in some regimes of optimality (Allaire and
Kohn (1993)), therefore upper bounds on the homogenized
properties of open-cell foams are strictly lower than those for
general foams, and the development of a new methodology
addressing this issue is fully justified.

Only the upper bounds on effective elastic properties
will be examined, because the lower bounds for media with
one void phase are zero. Without loss of generality only open-
-cell foams with a periodic microstructure will be considered,
because in a medium with a random microstructure, a repre-
sentative volume element can be chosen so that a medium
created by its periodic repetition will have the same effective
properties as the original random one. The contribution of
this paper is that it extends of the methodology proposed by
Dimitrovová and Faria (1999) from 2D to 3D. The methodol-
ogy is based on homogenization theory and does not require
any restriction on the basic cell shape or arrangement. The
influence of the boundary layer is not accounted for and it is
assumed that the basic cell contains a finite number of struc-
tural members, i.e. beams or bars. The upper bounds are
derived by a bounding procedure using results from linear al-
gebra and the Voigt bound basic assumption (Hill (1963)).
The main advantage of the new methodology is that the nec-
essary and sufficient conditions characterizing the optimal
media will immediately follow from the bounding procedure.
These conditions are written in terms of generalized internal
forces and geometrical parameters. The proposed methodol-
ogy recovers the well known bounds for effectively isotropic
open-cell foams, though with a different proof. The main
contribution lies in identifying of new bounds on the effective
shear moduli of open-cell microstructures with effective cubic
symmetry. In such cases, dependence on internal forces in
maximality conditions can be replaced by geometrical ex-
pressions, implying that the optimality of the medium under
consideration can be verified directly from the microstruc-
ture, without any additional calculation. The approximations
inherent to the methodology are within the structural simpli-
fications commonly used. The limitations are based on the
assumption of a finite number of structural members in the
basic cell, allowing only the identification of single scale
microstructures, which implicitly excludes multiple rank lami-
nates (see e.g. Allaire and Aubry (1999)) and the Hashin
spheres medium (Hashin (1962)).

The paper is organized as follows. The methodology is
reviewed in Section 2, namely in Section 2.1 simplified as-
sumptions and basic relations are introduced, in Section 2.2 it
is shown that the optimal media can be initially searched
within a specific class of micro-trusses (this term will be ex-
plained later on), and in Section 2.3 the methodology is
reviewed within this restricted class. The bounds are proven in
Section 3, along with a specification of the optimal media
microstructures. The paper is concluded in Section 4 with a
discussion and an analysis of the developments.

2 Review of the new methodology

2. 1 Simplifying assumptions and basic
relations

The basic cell, �, defined as the (smallest) region of a pe-
riodic medium that can compose the full one by periodic
repetition, will be conveniently rescaled to V, where the
spatial microvariable y is introduced. It is assumed that V
contains a finite number of beams and that the solid phase is
homogeneous and isotropic. Therefore the term material
volume fraction can be used instead of relative density.

There are two extreme possibilities for the structural mod-
el of a joint between the beams composing the foam: (i) a pin
joint and (ii) a rigid joint. A pin joint cannot transmit bend-
ing moments, and therefore it allows rotations of the struc-
tural members connected to it. Consequently, a non-loaded
structural member with two pin joints can only support the
internal forces acting in the direction of the line connecting
the joints. On the other hand, a rigid joint preserves the
angles between the beams connected to it. If all joints are
rigid, the term micro-frame medium can be used; on the other
hand not necessarily straight structural members connected by
pin joints will be named as micro-truss media. Therefore any
micro-frame medium has its related micro-truss, which is
obtained by switching the behavior of rigid joints to pin joints.
In reality, joint behavior is somewhere between these two
extreme cases and should be represented by a flexible joint.
Pin joint behavior can be achieved either by special construc-
tion allowing for rotations of the connected members or as a
limit case: if the beams connected to a given joint have uni-
form cross sectional areas and the material volume fraction
tends to zero, then the flexible joint approaches pin joint
behavior.

In structural theories, beams are defined by their middle
axes and joints can be replaced by single points (joint “cen-
ters”) located in the intersection of the middle axes. The term
theoretical length will be used to identify the middle axis
length between the joint centers, and active length will be
usedto identify the same length shortened by the parts inside
the joints (Fig. 1). Small discrepancies when middle axes do
not intersect exactly at a single point will not be considered.
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Fig. 1: Introduction of theoretical and active lengths



We will address only open-cell foams with effective iso-
tropy or cubic symmetry. The tensor of the effective elastic
constants can thus be written in dimensionless matrix form
as:
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Here I stands for the unit 3 by 3 matrix and 0 for the zero
3 by 3 matrix. Effective engineering constants K, G1 and G2
are the homogenized bulk and two shear moduli, respec-
tively. Their dimensionless values with respect to the solid phase
Young’s modulus Es are identified as: K K Es

* � , G G E1 s1
* �

and G G E2 s2
* � . A medium is effectively isotropic when

G G G*
1 2
* *� � . The above matrix form of the fourth order ten-

sor of elastic constants (Lekhnitskii (1981)) in terms of the
engineering constants K*, G1

* and G2
* is presented in Hashin

and Shtrikman (1962).
At first, the aim is to determine each of the macroscopic

engineering constants in terms of the generalized internal
forces, which will form the initial relation for the bounding
procedure. The global strain energy density W can be ex-
pressed for isotropic media as:
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and for media with effective cubic symmetry as:
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where �M and �D are the volumetric and deviatoric parts
of the global stress tensor � and � �D D D,ij D,ij: � � � (the

summation convention is adopted). The test macroloads to be

applied on the medium and consequently on the basic cell
can be chosen so that only one effective engineering constant
will be left in (2) or (3), and can thus be expressed inde-
pendently of the others and in terms of � components and W.
Examples of these macroloads are specified in Table 1. It is
seen that the corresponding macrostrain E must fulfill similar
conditions. Macrostrain E is connected to Macrostress � by
� � �EsC E* , where

� �� � � � � � � �11 22 33 23 31 12, , , , , T,

� �E � E E E E E E11 2 2 2, , , , ,22 33 23 31 12
T

and “ � ” stands for matrix multiplication.

� and W can be expressed with the help of an averaging
operator applied on the local characteristics, � and w, (Suquet
(1985)):
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where �
i and wi are the local stress and the local strain energy

density corresponding to the ith beam (i-beam). The volume
of the full cell is V while the volume of the i-beam is Vi

# . Vi
#

is composed of the volume corresponding to the active length
plus the corresponding volume in the connected parts within
the joints, so that V V i ji

#
j
#� � � �0 and V Vi

#

i

#� � .

V# is the volume of the material part in the cell. Due to the
periodic repetition it is not necessary to treat separately the
case when the i-beam is cut by the boundary of the cell.

Next, it is necessary to express the contributions of each
i-beam, �

i and wi , in terms of generalized internal forces.

Looking at �
i , the formula from Nemat-Nasser and Hori

(1993)
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Macroload Property Specification of � Specification of E
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(# if the macrostress component is different from zero)

Table 1: Test macroloads and the corresponding specification of the macrostress and the macrostrain



can be exploited. In (6), b is the position vector of the points
on�Vi

# and t is the boundary traction. If t is self-equilibrated,

then �
i is symmetric and the integral in (6) does not depend

on the origin of the coordinate system for b. The expression
for wi can be, as usual, simplified by considering that gener-

alized internal forces act over theoretical lengths and that the
contribution of the joints is negligible.

2.2 Micro-trusses with straight bars of
constant cross sectional area versus
micro-frames

Optimal low-density micro-frame open-cell foams will be defined
as those for which the related micro-truss is optimal. Justification of
this definition and more details on optimal micro-trusses are
presented in this subsection, namely it will be proven that
optimal micro-trusses can only be composed of straight bars
with a constant cross section.

In order to justify the definition stated above, it is neces-
sary to verify that a curved beam cannot from part of the opti-
mal low-density media. Let us suppose that the i-beam of a
micro-frame basic cell is curved. Then a local coordinate sys-
tem (z1, z2) can be introduced so that z1 connects the centers
of the joints (Fig. 2). The middle axis of the beam is given by
z2=a(z1) and r designates the curved coordinate. Let us sepa-
rate the beam of active length from the joints by the cuts
shown in Fig. 2. It is assumed that there exists a plane contain-
ing the i-beam middle curve and that the macroload acts in
such a way that the generalized internal forces in the beam
cuts are also contained in this plane. The geometrical param-

eters �(r), �0k, �0m, hk, hm, vk, vm, l, p, the generalized inter-
nal forces in the beam cuts F, B and D and other local auxiliary
coordinate systems (~ ,~z z1 2) and (� , �z z1 2) are specified in Fig. 2. l
and p are projections of the theoretical and the active lengths
on z1 and the bending moment along the beam is separated
into its (average) constant (D) and “antisymmetric” parts.

For the i-beam let us express the average quantities �
i

and wi in terms of the generalized internal forces and

discuss the possibility of its position in an optimal medium.
Superscript “i” will be omitted for the sake of simplicity, when-
ever no confusion is possible. It must be pointed out that local
stress averaging cannot be performed over the theoretical
length, because this would cause overlapping of the joints.
Thus the i-beam average stress � must be expressed as

� � � �� � �bm jk jm ,

where the contribution with subscript “bm” relates to the
beam with active length and thoses with “jk” and “jm” sub-
scripts relate to the left (k) and right (m) adjacent joint parts,
respectively. Strict application of (6), in the previous expres-
sion, would imply integration over the internal faces of the
joints, which is complicated. To overcome these difficulties
we can define

~ ~ ~� � � �� � �bm jk jm ,

where ~� jk and ~� jm stand only for the contribution of

the faces where the beam was cut. Then ~� jk and ~� jm are

coordinate system dependent and therefore their coordinate
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Fig. 2: Specification of the curved i-beam



Origins of the coordinate systems (z1, z2) and (~ ,~z z1 2) are
coincident, therefore only the face of joint (m) and the corre-
sponding face of the beam can be considered to obtain (10). It
is necessary to point out that the reason for non-symmetry of
~� is the omission of the contributions of the internal faces of
the joints in (8–9), as explained above. This does not mean
any inaccuracy, because after rotation of the contributions of
all beams to the cell coordinate system and after summation
over all the beams, the final expression for � will be complete
and symmetric.

When a general curved beam under a general macroload
is considered, the local coordinate system (z1, z2) connecting
the centers of the jointscan also be introduced. Then it is nec-
essary to replace internal force B by B1 and B2, bending mo-
ment D by D1 and D2, and to introduce torsion moment T.
Following the same procedure as above, we obtain:
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V
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0 0 0
0 0 0

1 2

. (11)

It is important to realize that (11) has the same form as it
would have for a related straight beam of theoretical length l,
arbitrary cross sectional area variation and with the same gen-
eralized internal forces in the cuts. Therefore there is no
distinction between the ��� contribution of a straight or a
curved beam to �. Moreover, (11) includes neither include
the constant part of bending moments D1 and D2 nor the
torsion moment T. If the i-were to have pin joints, then
from equilibrium B1 � B2 � 0. We point outd that in order to
express �, (11) should be rotated to the basic cell coordinates
and summed over all the beams.

Now the average �w� will be determined. For the sake of
simplicity it is again firstly assumed that a curved beam and
the generalized forces are contained in a plane. As usual, the
strain energy density corresponding to the shear forces can be
omitted. Then we can write:
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systems must be uniquely defined in a way applicable to any beam from the basic cell. Coordinate systems (~ ,~z z1 2) and(z z1 2� , � ) are
introduced as specified in Fig. 2. With respect to (z1, z2) this yields from (6):
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With respect to (~ ,~z z1 2) and (� , �z z1 2) we can obtain:
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which after rotation to (z1, z2) yields:
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which finally gives
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where A(r) and I(r) stand for cross sectional area and moment
of inertia, respectively, N(r) and M(r) are normal forces and
bending moments and (a) stands for the integration along the
curved theoretical length of the beam. It may be pointed out
that using theoretical lengths and overlapping in joints is an
allowable and common simplification in strain energy. In ac-
cordance with this approximation, the originally introduced
generalized forces F, B and D in the beam cuts do not have
to change.

A cross sectional area A0 of a related straight beam with
constant cross section and the same volume as the original
curved beam, can be introduced by (overlapping in the junc-
tions can also be neglected here):
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Because there is no distinction between the � contribu-
tion of a straight or a curved beam to �, let us minimize w
in order to discuss the position of the i-beam in an optimal
medium. This minimization must be performed over all pos-
sible shapes a(z1) and volume distributions along the middle
curve:
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Equality in (14) can be achieved, if the minimizing shape
and volume distribution are the same for both terms in the
last part of (14).

The distribution of the normal forces can be written as:
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Using the Schwarz inequality in the form of:
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gives the following inequality:
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Equality in (18 or 17) can only be achieved if
F+Ba (z

A(z a (z
1

1 1

�

	 �

)

) ( ))1 2

is constant with respect to z1, which implies that the beam
must be straight and with a constant cross sectional area.
Then contribution of the normal forces to w does not
include B.

The distribution of the bending moments can be ex-
pressed as:

M z D Fa z z( ) ( )1 1 12
� 	 	 
�

�


�
�
�B

l
. (19)

When minimizing conditions for normal forces contribu-
tion to w are used, it is sufficient to look at

D B z dz D +B1	 
�
�


�
�
�

�

�


�

�
� ��

l
l l

l

2
121

2

0

2 2 3 .

The optimal media require D � 0, because D does not appear
in (10). If moreover B � 0, as a consequence of constant cross
sectional area and the material volume fraction going to zero,
then the contribution of the bending moments is zero and the
last term in (14) reaches its trivial minimum. Extension of
this statement to a general curved beam under a general
macroload is clear, there would only be one more integral
in the form of (19) and a separate T contribution, which can
be required to be zero, because T does not appear in (11).

This justifies the definition of optimal media stated at the
beginning of this subsection, and proves that optimal mi-
cro-trusses must be composed of straight bars with constant
cross sectional areas. Nevertheless the contribution of bend-
ing is not excluded from the optimal media, when behaving
as micro-frames.

In summary, optimal open-cell foams can be searched
within the class of micro-trusses with straight bars of constant
cross section. In this class the bound can be expressed as a lin-
ear function of the material volume fraction, s, as shown in
Dimitrovová and Faria (1999) and as clarified in Section 3. Re-
lated optimal micro-frames can develop non-zero bending
moments, but only in their antisymmetric form (in terms of
B1 and/or B2). If bending moments are presented, the corre-
sponding effective engineering constant, written as a Taylor’s
expansion in s, contains a quadratic term (a detailed dis-
cussion is provided in Dimitrovová and Faria (1999)). The
tangent at s � 0, i.e. the linearized bound, relates to the same
property of the corresponding micro-truss. Please note, how-
ever, (see Fig. 3) that for a particularly high material volume
fraction, s0, there can exist a micro-frame with a higher elas-
tic property than that which is obtained from the optimal
micro-truss. These cases are of no interest here since for
low-density media only the initial slope (linearized property) matters.
For the same reasons media with only a bending response are
strictly excluded from the class of optimal micro-frames,
because the corresponding micro-truss is a kinematic mecha-
nism and the linearized bound is zero.

176 ©  Czech Technical University Publishing House http://ctn.cvut.cz/ap/

Acta Polytechnica Vol. 44  No.5–6/2004



It was shown in Dimitrovová and Faria (1999) that if the
bulk modulus is under consideration, then the macrostress
components that are necessary to express this property do not
contain a contribution of B. Then bending moments are ex-
cluded from optimal media, not only in the limit at s � 0, but
in the full range of low-density s values. This result is readily
extendable to 3D.

In Section 3.2, optimal micro-trusses for shear modulus
G1

* of media with effective cubic symmetry will be fully geo-
metrically specified. In this case it will be seen that switching
to micro-frames will not develop bending moments. So also
here the upper bound is linear within the validity of structural
theories. The bending contribution is present only in isotro-
pic shear G* and in G2

*.

2.3 Review of the methodology in the class of
micro-truss media with straight bars of
constant cross section

In the class of micro-trusses, the normal force is the only
generalized internal force in the medium. Let an arbitrary ba-
sic cell consisting of n bars be assumed. The contributions
�

i and wi of each i-bar of theoretical length li , cross

sectional area Ai and normal force Ni can be specified in
the following way (compare with (11)):

�
i i i

i i i i i i i
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V

� �
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l
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,

(2

0)

where the two spherical angles �� �i � 0, and � �i � 0 2,
specify the i-bar position with respect to the cell coordinates
yj, j � 1, 2, 3, (Fig. 4); and (see (14) and (18))
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Let the following designation be introduced:
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then the vectors N, R, Q and L (compare with Dimitrovová
and Faria (1999)) can be defined as:
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(23)

In addition, let us denote:

P R R1 2 3� 
 , P R R2 3 1� 
 , P R R3 1 2� 
 . (24)

Thus:

� �P j j,1 1 1 j,2 2 2 j,n n nl A l A l A

j

�

�

� � �, , , ,

, ,

�

1 2 3
, (25)

and it holds:

P P P 0 R R R L
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, ,

,
(26)

where is the Euclidean norm. The material volume frac-
tion, s, can be approximated neglecting the higher order
terms as:

s
V

�
L 2

. (27)

©  Czech Technical University Publishing House http://ctn.cvut.cz/ap/ 177

Acta Polytechnica Vol. 44  No.5–6/2004

s0 s

elastic property under
consideration

optimal
micro-truss

micro-frame
corresponding

to optimal
micro-truss

micro-frame corresponding to
non-optimal micro-truss

non-optimal
micro-truss

Fig. 3: Specification of optimal media response

i

1y

2y

3y

iN

iN

i�

il

iA

bari 	

Fig. 4: Specification of the i-bar within the basic cell



Taking into account (22–23), (20) can be substituted into
(4) giving:

� �� � � � �
1 1

1 2 3 1 2 3V V
T T TS N R R R Q Q Q N, , , , , , (28)

and (21) into (5) as:

W
V Es

�
N 2

2
, (29)

where S will be named as the modified static matrix.

As written in Section 2.1, a particular engineering con-
stant can be expressed, from (2) or (3), independently of the
others, if the corresponding macroload from Table 1 is ap-
plied. Then expressions (28–29) can be introduced and the
initial expression for the bounding procedure, in terms of
normal forces and geometrical parameters, is obtained. The
bounding procedure is performed using basic knowledge
from linear algebra and the Voigt assumption for the upper
bound derivation (uniform local strain), and the bound is
finally expressed as a linear function of the material volume
fraction. The maximality conditions on possible normal forces
are then obtained as conditions that ensure equality with the
bound. The specifications in Tab. 1 provide the additional con-
straints on the possible normal forces that can be developed
in an optimal medium. Using the maximality conditions,
these additional constraints can be written in terms of micro-
structure geometrical parameters, as will be seen in Section 3.

For more details on the Voigt assumption and bound see
e.g. Hill (1963). We only remark that, when the local strains
are uniform throughout the medium, then they are equal to
the macroscopic strain and the global engineering constant
corresponding to such a macroload reaches its maximum.
Since micro-truss media are characterized by the middle axes
of the bars, which (except for the joints) correspond to the ”di-
rection” of the local strain, Voigt assumption implies that the
local displacements of middle axes of the bars, u, coincide
with the linear part of the displacements, i.e. u E yi ij j� (the
summation convention is adopted). This requirement states
the necessary maximality conditions on possible normal forces,
which can be written as:

S E
NT

T

sE
� � . (30)

Maximality conditions (30) are not sufficient, because the
requirement of uniform strain does not exclude bars with zero
normal force (zero bars). More facts about the relation between
optimal micro-frames and the Voigt bound are given in the
Appendix.

Obviously, upper bounds determined in the way described
in this subsection can be extremely large and unrealistic, be-
cause none of the restrictions, e.g., topological connectivity or
equilibrium of the joints, were considered. However, if a phys-
ical medium saturating the bound can be found, the bound
would be proven as optimal. This is actually achieved in all the
cases considered in this paper.

3 Linearized bounds on effective
properties

3.1 Bulk modulus K* (for effective isotropy or
cubic symmetry)

If the macroload �
K (Table 1) is imposed, then starting

with (2) and introducing (28–29), (26) and (27), the bulk
modulus K* can be expressed as:

K
E W

V (
V

V
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2

s
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�

�
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�

2 3

1
9

2
1 2 3

2

N

R R R N

L N 2

2 9N
�

s
,

, (31)

providing the maximality condition
N // L , (32)

(i.e. the local stresses are required to be constant all ever the
bars) and the bound K s	 �* 9. Using (32), additional con-
straints from Table 1 can be written in terms of geometrical
parameters as:
R L R L R L Q L1 2 3 1 2 3� � � � � % � �T T T

j j , ,& . (33)

Equation (30), which should also be implemented, does
not in this case bring anything new. It is seen that it cor-
responds directly to (32), after conditions from Table 1 have

been implemented, N L�
�

3K* . We can check that in this

case (30) ensures not only a necessary but also a sufficient
maximality condition, because zero bars are excluded as
N A ii i~ � �0 , where “~” means proportionality.

The conditions stated in (32–33) are the necessary and
sufficient conditions on K*-optimal media. (32) cannot be ex-
pressed only in terms of geometrical parameters, and there-
fore verification of the K*-optimality of some medium
requires the determination of the normal forces in N. The
bound is optimal, because several known media saturate it.
The simplest K*-optimal medium is a regular cubic lattice
(Fig. 5) (see Warren and Kraynik (1988), Dimitrovová (1999));
where it is easy to verify conditions (32–33). The class of peri-
odic K*-optimal media can be extended by the class of media
with a random microstructure, where a basic cell of some
K*-optimal medium appears in the representative volume
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element with all possible rotations with the same probability.
Because the bulk modulus is invariant under orientational
averaging, the bulk modulus of the new random medium will
be the same as for the corresponding periodic medium,
Dimitrovová (1999).

3.2 Shear modulus G1
* (for effective cubic

symmetry)
If macroload �

1G (see Table 1) is imposed, then one has:
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(34)

According to Table 1, additional constraints on possible N
are:

N L N Q% % � �& jj 1 2 3, , . (35)

If Q 0j j� � �1 2 3, , and N P/ / , ,j j� �1 2 3, then the maxi-
mum in (34) would be s/3. However none physical medium
could fulfill all these conditions, as will be shown in the follow-
ing. In order to determine the real maximum, it is necessary
to realize that any �

1G can be written as a linear combina-
tion of three basic cases � �22 33 1� 
 � , � �33 11 1� 
 � and
� �11 22 1� 
 � . In each of them local strains must be uniform
according to (30) and the value of the correspondingG1

* must
be the same, as specified in Table 2.

Using superposition, the necessary maximality condition
from Table 2 reads as:

N ( P P P P P P� 	 	 � 	 	
1

2 1
1 1 2 2 3 3 1 1 2 2 3 3

G* ) ,� � � � � � (36)

where the coefficients �i are expressing the particular basic
cases combination, corresponding to the imposed macroload.

Additional constraints from Table 2 must be satisfied
simultaneously, giving:

Q P R R R

R R R R
j k j,k% � � � �

� �

1 2 3 1 2 3

1 2 2 3

, , , ,

cos( , ) cos( , ) cos( , )R R3 1

(37)

and

P P P1 2 3 12� � � G V* . (38)

(38) could be obtained directly as the condition ensuring
the same G1

* in all basic cases. If (38) were to be derived first,
then using some statements about finite dimensional spaces,
condition (36) is the maximality condition for the sum:
cos ( , ) cos ( , ) cos ( , )2

1
2

2
2

3N P N P N P	 	 . Here it holds:

cos ( , ) cos ( , ) cos ( , )2
1

2
2

2
3

3
2

N P N P N P	 	 � . (39)

Then the bound G s1 6,
*
	 � can be obtained from (34) if

Q 0j j� � �1 2 3, , . Thus the proof of G s1 6,
*
	 � would be com-

pleted if at least one optimal medium can be found, i.e. if
there exists a medium in whichQ 0j j� � �1 2 3, , , expressions
(36–38) hold and no zero bars are contained in it.

In order to justify the existence of such a medium, first of
all, the spherical angles that will ensure Q 0j j� � �1 2 3, ,
must be found. This requirement is equivalent to the condi-
tion under which

& �max , , ,� � �1 2 3i i i	 	 (40)

is obtained for each i. Solution of problem (40) results in three
groups of angles, which predict the bars directions of the bars
in an optimal medium, as stated in Table 3. It is therefore
convenient to choose a rectangular basic cell with faces per-
pendicular to the directions of the bars. Due to the equilib-
rium in the joints, only continuous bars passing through the
cell can be present. From Table 3 it follows immediately that
R R R1 2 3% % , but in order to ensure R R R1 2 3� � , the
following condition must be satisfied:

l l li i
group

j j
group

k k
group

A A A
1 2 3. . .
� � �� � , (41)

i.e. in each of the three perpendicular directions in the cell,
the volume of the bars must be the same. It remains to ensure
(36) and impose conditions to eliminate zero bars. Let us take
for example one continuous bar from the first group. From
(36) it follows that all over the bar N Ai i � 
� �3 2 holds.
Therefore the normal forces between the respective joints
must be proportional to the cross sectional areas with the
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Basic case 1. 2. 3.

Macrostress � �22 33 1� 
 � � �33 11 1� 
 � � �11 22 1� 
 �

Macrostrain
E E

G Es

22 33

11 2

� 
 �

� ( )*

E E

G Es

33 11

11 2

� 
 �

� ( )*

E E

G Es

11 22

11 2

� 
 �

� ( )*

Maximality condition from
Eq. (30)

N P�
1

2 1
1

G* N P�
1

2 1
2

G* N P�
1

2 1
3

G*

Additional constraints R R R P2 3 1 1� %, ,

Q Pj 1 j% � �1 2 3, ,

R R R P3 1 2 2� %, ,

Q Pj 2 j% � �1 2 3, ,

R R R P1 2 3 3� %, ,

Q Pj 3 j% � �1 2 3, ,

Table 2: Basic load cases in �
1 G



same coefficient of proportionality in each group. Due to the
equilibrium in the joints, the normal forces must be the same
within each continuous bar, which implies that the cross sec-
tional areas are also constant within the continuous bar, as
well.

Let us now summarize the results. G s1 6,
*
	 � and all G1

*-

-optimal media can be fully geometrically specified in the follow-
ing way:

G1
*-optimal media are continuous lattices for which:

� a rectangular basic cell (with dimensions Li in yi-directions,
i � 1, 2, 3) can be found, consisting only of continuous or-
thogonal bars in yi-directions,

� each bar has a constant cross sectional area within the basic

cell and the condition L A L A L Ai
i

n

j
j

n

k
k

n

1
1

2
1

3
1

1 2 3

� � �
� � �� � is

satisfied (ni is the number of bars in the yi-direction, i � 1,
2, 3).

The group of media specified above is the only group of
G1

*-optimal media. They are in fact a 3D extension of UPL
(the uniform perpendicular lattices) introduced in Dimitro-
vová and Faria (1999). The simplest example from this group
is the regular cubic lattice (Fig. 5). The value of its G1

* (not the
proof of maximality) can be obtained directly from G1

* of its
2D analog: the regular square lattice. If we denote by s2D and
s3D the material volume fractions of 2D and 3D regular lat-
tices, respectively, it holds s sD D2 32 3� , and consequently

G s sD D1 2 3
1
4

1
6

* � � . (42)

3.3 Shear modulus G2
* (for effective cubic

symmetry)
First of all, we point out that in 3D there exists no such ro-

tation of the global coordinates that would interchange the
positions ofG1

* andG2
* in C*, as it does in 2D (see Dimitrovová

and Faria (1999)). Thus G2
*-optimal media cannot be derived

from G1
*-optimal media. For macroload �2G we can obtain:
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(43)

Additional constraints on possible N are:

N R% � �j j 1 2 3, , . (44)

The obvious maximum s/3 cannot be achieved by any
medium, similarly as in Section 3.2. Also, combining the 2D
results (unlike to (42)) would lead to a wrong conclusion, as
can be demonstrated: let only �23 0� in �

2G, then an optimal
medium should have bars in the directions of the unit square
diagonals in (2, 3)-planes, according to Dimitrovová and Faria
(1999). By analogy, the other load cases �12 0� and �13 0�
imply directions of the bars in (1, 2) and (1, 3)-planes,
respectively. The 2D result G s D2 2 4,

*
	 � and the fact that

s sD D2 3 3� thus yield G s3D2 12* � , because the directions of
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Group 1. 2. 3.

Spherical angles � � 1 12 0� �, � �  �2 22 2� �, �3 0�

Values of �1, �2, �3 0, 	1, 1 1, 0, 	1 	1, 1, 0

Values of �1, �2, �3 1, 0, 0 0, 1, 0 0, 0, 1

Table 3: Characterization of G1
*-optimal media

Basic case 1. 2. 3.

Macrostress �23 1� �13 1� �12 1�

Macrostrain �23 21 2� ( )*G Es �13 21 2� ( )*G Es �12 21 2� ( )*G Es

Maximality condition from
Eq. (30)

N Q�
1

2 1
G* N Q�

1
2 2
G* N Q�

1
2 3
G*

Additional constraints

1 2 1 3

1

1 2 2

Q Q Q Q

Q R
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i i

G V

2 1 2 3

2
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Q Q Q Q

Q R
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i i

G V

3 1 3 2

3

3 2 2

Q Q Q Q

Q R

Q

% %

% �

�

&

*

i i

G V

Table 4: Basic load cases in �
2G



the bars stated previously do not coincide. However, it will be
proven that G s2 9,

*
	 � .

An arbitrary �
2G can be expressed as a linear combination

of three basic cases (Table 4). Using superposition, the neces-
sary maximality condition reads as:

N � 	 	 � 	 	
1

2
1 1 2 2 3 3 1 1 2 2 3 3

G* )( Q Q Q Q Q Q� � � � � � , (45)

where the coefficients �i express a combination of the specific
basic cases, corresponding to the imposed macroload. Addi-
tional constraints are:

Q R Q Q Qj k 1 3j, k &% � � % %1 2 3 2, , (46)
and

Q Q Q1 2 3 2� � � G V* (47)

If (47) were to be derived first, then using some state-
ments about finite dimensional spaces, (45) is the maximality
condition for the sum of cosines from (43), similarly as in Sec-
tion 3.2. Now, due to the orthogonality of Qj, the sum of the
cosines is equal to 1, therefore G s2 9,

*
	 � , if at least one opti-

mal medium exists, i.e. if there can be found a medium in
which P 0j j� � �1 2 3, , , (45–47) hold and no zero bars are
contained in it. The requirement P 0j j� � �1 2 3, , is equiva-
lent to the condition under which

& �max � � �1,i 2,i 3,i	 	 (48)

is obtained for each i. Solutions of (48) yield four groups of
angles, as specified in Table 5, corresponding to the main di-
agonals of the unit cube. It is not convenient to choose a basic
cell with eight faces (perpendicular to the directions of the
bars), because a regular octahedron does not fill the space. It
is better to assume a rectangular cell according to Fig. 6. Con-
ditions Q Rj k j, k 1, 2, 3% � � imply, again, the same vol-
ume constraint of the bars within each group:

l l l li i
1.group

j j
2.group

k k
3.group

r r
4.group

A A A A� � �� � � � , (49)

which, in a sequel, guarantees the mutual perpendicularity of
Q j j 1,2,3, � , while (47) is satisfied directly.

It remains to ensure (45) and impose conditions to elimi-
nate zero bars. Let us take one bar from the first group. From
(45) it directly follows that in each part between the joints of

this bar N Ai i � 
 	 
( )� � �1 2 3 3 holds. Thus the normal
forces must be proportional to the cross sectional areas with
the same coefficient of proportionality in each group, in other
words, in the bars of each group the local stresses must be the
same: �1, �2, �3, �4, respectively. Because four possible direc-
tions of the bars exist, it cannot be directly concluded that due
to the equilibrium in the joints only continuous bars are in-
cluded in the cell. However, this statement can be justified in
the following way. Obviously

� � � �

� � � �

� � � �

�

1 1 2 3

2 1 2 3

3 1 2 3

3
3

3

� 
 	 


� 
 


� 
 
 	

( ) ,
( ) ,
( ) and

4 1 2 3 3� 	 	( )� � �

(50)

hold. Let us take a joint and suppose that a member from
each group is presented there as continuous. Contributions to
the cell coordinate directions are given in Table 6. Conse-
quently, the equilibrium in the joint reads as:

� �

� �

1 2

3

( ) ( )

( )

A A A A

A A
1,m 1,m 1 2,n 2,n 1

3,r 3,r 1


 	 
 



 
 


 



 4

1 2

0( ) ,

( ) ( )

A A

A A A A
4,s 4,s 1

1,m 1,m 1 2,n 2,n 1


 �


 	 
 	

	





 
� �

� �

�

3 4

1

0( ) ( ) ,

( )

A A A A

A A
3,r 3,r 1 4,s 4,s 1

1,m 1,m 1


 	 
 �


 


 



 �

� �

2

3 4 0

( )

( ) ( )

A A

A A A A
2,n 2,n 1

3,r 3,r 1 4,s 4,s 1


 	

	 
 
 
 �




 
 ,

(51)

©  Czech Technical University Publishing House http://ctn.cvut.cz/ap/ 181

Acta Polytechnica Vol. 44  No.5–6/2004

Group 1. 2. 3. 4.
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Values of �1, �2, �3 1/3, 1/3, 1/3 	1/3, 	1/3, 1/3 1/3, 	1/3, 	1/3 	1/3, 1/3, 	1/3

Values of �1, �2, �3 1/3, 1/3, 1/3 1/3, 1/3, 1/3 1/3, 1/3, 1/3 1/3, 1/3, 1/3

Table 5: Characterization of G2
* -optimal media

1y

2y

3y

groups.2and.1

ofdirections
groups.4and.3

ofdirections

Fig. 6: Rectangular cell for G2
* -optimal media, top view



where the first subscript at the cross sectional areas denotes
the group and the second one expresses the order number
within the group. (51) must be satisfied for any �i i, , , ,�1 2 3 4,
consequently the cross sectional areas must be either the same
(resulting in a continuous bar with a constant cross sectional
area) or zero (the group is not contained in the joint), which
completes the justification.

In summary, G s2 9,
*
	 � and all G2

*-optimal media can be

fully geometrically specified in the following way:
G2

*-optimal media are continuous lattices for which:

� a rectangular basic cell, according to Fig. 6, can be found,
where only continuous bars in the four directions specified
by Table 5 are present,

� each continuous bar has a constant cross sectional area and
(49) holds.
The group of media described above is the only group of

G2
*-optimal media. The name for such media was introduced

in Dimitrovová and Faria (1999) as UDL (Uniform Diagonal
Lattices). The simplest example from this group is the regular
cube-diagonal lattice in Fig. 7.

3.4 Shear modulus G* (for effective isotropy)
In this case, the conclusions from the two previous sections

can be exploited. Let us assume that we already have a G*-op-
timal medium. Macroloads �

1G and �
2G can be imposed

separately on it and the same bounding procedure as in
Sections 3.3–4 can be performed. It is only necessary to
prevent a geometrical specification which would enter in

contradiction with the possibility of effective isotropy of the
medium. Thus:

G
s* � �
4

2

2
P

L
and G

s* � �
6

2

2
Q

L
, (52)

where the subscripts in P and Q are omitted for the sake of
simplicity. Since the maximum in both relations of (52) must
be the same, P Q2 22 3� and taking into account the last

expression of (26), G* � s/15 can finally be obtained. There-
fore G s	 �* 15, if at least one optimal medium exists. The
necessary maximality and additional constraints can be ex-
pressed by analogy with Sections 3.2–3 as:

N P Q� 	 �� �j j k k j k, , , ,1 2 3 (53)
and
R R R

R R R R R R
Q R

1 2 3

1 2 2 3 3 1

� �

� �

% �

,
cos( , ) cos( , ) cos( , ) ;

j k j, k

1 3

�

% % � �

1 2 3

2 1 2 3

, , ;

; .Q Q Q Q Q Q

(54)

Unfortunately, no full geometrical characterization of
G*-optimal media is possible. The existence of at least one
optimal medium can be proven by superposition of the re-
sults, namely by combining of the cells of the simplestG1

*- and
G2

*-optimal media, see Dimitrovová and Faria (1999) for the
conditions under which such a superposition can be per-
formed. Let us denote the material volume fractions of the
simplest G1

*- and G2
*-optimal media as s1G and s2G, respec-

tively. It can be written:

G
s s

9
1G 2G* � �
6

, (55)

yielding s s1G 2G�2 3 and consequently (s =s s1G 2G	 be-
cause the bars of the original media do not coincide)G s* � 15
for the combined medium. As a consequence, the relation be-
tween the cross sectional areas can be derived as
A A 91G 2G�8 3 , where, A1G and A2G stand for the cross
sections of the original G1

*- and G2
*-optimal media, respec-

tively (Figs. 5 and 7). It can be verified that also in this case the
bending effect can be superposed directly, as in the 2D ana-
log, as shown in Dimitrovová and Faria (1999).

4 Concluding remarks
It was proven that G1

*- and G2
*-optimal media can be geo-

metrically fully specified. They are UPL and UDL, respec-
tively. Neither for K*-optimal nor for G*-optimal media can a
full geometrical specification of their microstructure be given.
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1y

2y

3y

G2A

Fig. 7: The regular cube-diagonal lattice

�1 �2 �3 �4

y1 1 3 1 3 
1 3 
1 3

y2 1 3 1 3 1 3 1 3

y3 1 3 
1 3 1 3 
1 3

Table 6: Contributions of the local stresses to the coordinate directions



It is easy to verify that G1
*- and K*-optimal media, assumed

either as micro-trusses or as micro-frames, respond only axi-
ally, while in G2

*- and G*-optimal micro-frames, a bending
response is always presented. The bending contribution is
different for different G2

*- and G*-optimal media, therefore
the non-linear part is rather difficult to define. However, it
can be stated that for low-density media this non-linear part is
not important. The bending contribution can be increased
by putting more material close to the joints, because the bend-
ing moment distribution is antisymmetric within each beam
(Section 2.2). However, this change would decrease the axial
contribution (17–18), and the corresponding linearized
bound would decrease. Then the medium would no longer be
optimal according to the definition from Section 2.2.

It is useful to remark that the directions of the bars in opti-
mal micro-trusses should be related to the principal directions
of the applied macroload according to the theory of Michell
trusses. This is directly related to the impossibility of full geo-
metrical characterization of K*- and G*-optimal media. For
�

K each direction is a principal direction. �
G can be deter-

mined by five non-zero and independent parameters, and
therefore each direction can also be assumed as a principal
one. The directions of the bars are precisely specified in G1

*-
and G2

*-optimal media. In the former case they coincide with
the principal directions of the macroload, which are in this
case unique for any �

1G, but in the latter case the directions of
the bars can hardly be determined in such a way.

Another remark yields from a comparison of the addi-
tional constraints (geometrical requirements) for K*- and
G*-optimal media, (33) and (54), respectively. It can be
shown, with the help of (24) and the second relation in (26),
that the group of media satisfying (54) forms a subgroup
of microstructures for which (33) holds. Therefore each
K*-optimal medium already fulfills additional constraints for
G*-optimal media, so that it is hard to find a G*-optimal
medium which is not K*-optimal.

It is straightforward to derive bounds for Young’s modulus
for media with effective isotropy and cubic symmetry, respec-
tively, in the forms of

E
K G

K G

s s

s s
s

is,	
	 	

	 	

�
	

�
�

	
�*

* *

* * ,
4 4

9 15

9 15
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(56a)
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s ,cs,	
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�

	
�*

*
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*

*
,

*
4 4

9 6

9 6
15

1

1
(56b)

but no conclusions can be reached on the upper bounds on ef-
fective Poisson’s ratios. It is only easy to verify that UPL have
zero effective Poisson’s ratio. K*- & G*-optimal micro-trusses
have an effective Poisson’s ratio equal to 1/4, as shown by
Bakhvalov and Panasenko (1989).

In optimal micro-trusses it is interesting to see what the
other elastic properties are. A summary is given in Table 7.
Furthermore, in Table 8 the bounds for open-cell foams
proven in this paper are compared with the composite ones.
The composite bounds for effectively isotropic media are
taken from Hashin and Shtrikman (1963) and Hashin (1970,
1983) and for media with effective cubic symmetry they are
taken from Avellaneda (1987). They are specified to one void
phase and linearized with respect to the material volume frac-
tion. It can be seen that the solid phase Poisson’s ratio �s
naturally appears in the linearized composite bounds (unlike
the 2D case shown in Dimitrovová and Faria (1999)). This is
because shell or plate parts must be included in optimal
3D media. � and � stand for coefficients of the bending
contribution.

Finally, let us make some remarks about the simplified as-
sumptions adopted for the strain energy contribution. It is
known that assuming the micro-frame medium with theoreti-
cal lengths makes the medium softer than it really is. It is thus
better to use active lengths of the beam and include the defor-
mation of the joints. Moreover, the strain energy density cor-
responding to the shear forces can be included in W. Obvi-
ously, such improvements do not change the linearized
bounds since they do not influence expressions for the axial
response of the media. If, e.g., the strain energy density corre-
sponding to the shear forces were to be included, parameters
� and � from Tab. 8 would decrease. In this case the solid
phase Poisson’s ratio would appear in the final result.

Appendix
Admitting a more general solid material behavior it can be

shown that open-cell foam bounds coincide with the Voigt
bound. For the sake of simplicity let us assume a 2D medium,
the regular lattice, which is k*- & G1

*-optimal (Dimitrovová
and Faria (1999)). k* stands for 2D bulk modulus and has the
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Macro-load Optimal micro-trusses Other elastic properties

K* 1G* 2G* G*

�K UPL, UDL, other media, which cannot
be fully geometrically specified

K	
* not uniquely

defined
not uniquely

defined
not uniquely

defined

�1G only UPL K	
* 1G	

* 0 –

�2G only UDL K	
* 0 2G	

* –

�G
media, which cannot be fully

geometrically specified, but neither
UPL nor UDL

not
uniquely
defined

G	
* G	

* G	
*

Table 7: Other elastic properties in optimal micro-trusses



same meaning as before. Voigt bounds kV
* and G1,V

* for one

void phase are (see Hill (1963)):

k
s

G
s

V
*

s
1,V
*

s
�



�

	2 1 2 1( )
,

( )
,

� �

where �s is the solid phase Poisson’s ratio. Now deformation
of joints cannot be neglected, due to the presence of �s, which
is restricted to the interval [	1,1]. It is obvious that the strain
field inside the cell of the regular lattice would be fully
uniform for �

k macroload only if �s � 
1 giving k sV
* � 4 and

for �
1G macroload only if �s �1 yielding G s1,V

* � 4, which

are the upper bounds on the properties of 2D cellular media.
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