
1 Introduction

Utilization of an appropriate material model for realistic
modeling of concrete is essential in order to capture both
experimental results and real structures. Generally, the more
sophisticated the model we deal with, the greater the number
of model parameters that have to be considered. In better
cases, basic parameters such as compressive strength, modu-
lus of elasticity, etc. are known. In worse cases, practically
nothing is known. Some parameters can be estimated using
recommended formulas from the literature, but in most cases
these formulas can be used only as a first approximation of
the parameters. If an experimental load-deflection curve is to
be captured, e.g., by. a nonlinear fracture mechanics model,
the first calculation using an initial set of material model
parameters usually deviates from desired set. Then it is ne-
cessary to make some correction of the parameters using a
trial-and-error method. The parameters are changed step by
step, the numerical calculations have to repeated many times
and the numerical simulation results are compared with the
experimental results. Such a classical approach is not very
efficient, especially if a complex material model with many
parameters is used. That is why different alternatives of iden-
tification algorithms have been proposed in the literature,
and they are now becoming increasingly attractive (e.g. [1],
[2], [3]).

The aim of this paper is to present a new approach for
identifying material model parameters. The proposed ap-
proach is based on coupling stochastic nonlinear fracture
mechanics analysis and an artificial neural network. The
identification parameters play the role of basic random vari-
ables, with the scatter reflecting the physical range of possible
values. The efficient Monte Carlo type simulation method
Latin Hypercube Sampling (LHS) is used. The statistical sim-
ulation provides the set of data, “a bundle” of numerically
simulated load-deflection curves. The generated basic ran-
dom variables and the subsequently calculated load-deflec-
tion curves are used for training a suitable type of neural
network. Once the network is trained it represents an approx-
imation which can be utilized in a reverse way: for a given
experimental load-deflection curve to provide the best possi-
ble set of material model parameters.

Several software tools had to be combined in order to
make the identification possible. First, ATENA [4] nonline-
ar fracture mechanics softwaand FREET [5] probabilistic soft-
ware package – these can be combined under the SARA soft-
ware shell [6], [7]. Then DLNNET, new neural network soft-
ware was developed [8].

The results of the approach were recently presented [9].
The similar concept of using Latin Hypercube Sampling sta-
tistical simulation for stochastic training of a neural network
was used to estimate microplane model parameters [10].

The methodology is demonstrated on selected numerical
examples of identifyinf a material model for concrete, called
SBETA (the classical often used model available in ATENA
software): a notched specimen under three-point bending of
high-strength concrete used for railway sleepers and shear
wall experiments.

2 Fundamental difficulty of nonlinear
fracture mechanics modeling
For realistic modeling of structural failure from quasi-

brittle materials, an advanced computational analysis should
utilize nonlinear fracture mechanics. ATENA software [4]
is an efficient tool for analysis of concrete, reinforced con-
crete and prestressed structures. The software employs a set
of advanced material models for realistic calculation of the
structural response. The well-known SBETA material model
was verified during long development of the software, and it
reflects all important aspects of concrete behaviour in both
tension and compression. A fundamental difficulty naturally
exists when an experimental load-deflection curve is to be
captured by numerical simulation. Such a virtual experiment
needs good material data in order to reproduce the load-de-
flection curve properly. In the case of the SBETA material
model the main parameters are: modulus of elasticity E, ten-
sile strength ft, compressive strength fc, fracture energy GF,
critical compressive displacement wd, compressive strain in
the uniaxial compressive test �c. A typical situation is that a set
of preliminary parameters is first used for modeling, and
in most cases only poor agreement with the experimental
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data is achieved. A heuristic user-based iteration has to be
performed.

For illustration, Fig. 1 shows an experimental load-deflec-
tion curve and a result of numerical simulation with the first
set of preliminary parameters of a notched beam. This exam-
ple will be discussed later in this paper. Although most of the
material parameters were known (the relevant experiments
had been done), the disagreement between the two curves
is significant. It is clear that the parameters were not de-
termined satisfactorily (errors, assumptions, contaminated
experiments, influence of size effect, etc.), and the parameters
need to be modified.

3 Identification of material model
parameters

3.1 General concept
The new identification technique is based on a combina-

tion of statistical simulation and training the neural network.
Several software tools had to be combined to make the iden-
tification possible. The whole procedure can be itemized
as follows (the software relevant to the individual steps is
referenced):
1. First, a computational model has to be developed using

the appropriate FEM software, which enables modeling
of both pre-peak and post-peak behaviour. The initial cal-
culation uses a set of initial material model parameters.
Software: ATENA [4].

2. The parameters of the material model to be identified are
considered as random variables described by a probability
distribution. Rectangular distribution is a “natural choice”
as the lower and upper limits represent the bounded
range of physical existence. However distributions can
also be used, e.g. Gaussian (in spite of the fact that it is
not bounded). These parameters are simulated random-
ly based on a Monte Carlo type simulation, and LHS
small-sample simulation is recommended. The statistical

correlation between some parameters can be taken into
account.
Software: FREET [5].

3. A multiple calculation of a deterministic computational
model using random realizations of the material model
parameters is performed, resulting in “a bundle” of load-
-deflection curves (usually overlapping experimental
curve).
Software: SARA [6], [7].

4. The random load-deflection curves serve as the basis for
training an appropriate neural network. Such training
can be called stochastic training, due to the stochastic
origin of the load-deflection curves. After training, the
neural network is ready to answer the referse task: to select
the material model parameters which can capture the ex-
perimental load-deflection curve as closely as possible.
Software: DLNNET [8].

5. The final calculation using the identified material model
parameters should verify how well the parameters were
identified (ATENA).

The complex program communication and the necessary
interfaces are schematically shown in Fig. 2.
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Fig. 2: Identification software communication scheme



3.2 Statistical simulation
In order to prepare the set of random load-deflection

curves for training the neural network, a proper efficient
Monte Carlo type simulation has to be performed. The SARA
system originally developed for statistical and reliability anal-
ysis of concrete structures consists of two major parts – the
FREET statistical and reliability package and the ATENA
nonlinear finite element simulation.

The stochastic part of the SARA system is the FREET –
Feasible Reliability Engineering Efficient Tool – probabilistic
program. This probabilistic software for statistical, sensitivity
and reliability analysis of engineering problems was designed
with its focus on computationally intensive problems, which
do not allow thousands of samples to be performed [5], [11].

A special type of numerical probabilistic simulation, LHS,
makes it possible to use only a small number of Monte Carlo
simulations for a good estimation of the first and second
moments of the response function. LHS uses stratification of
the theoretical cumulative probability distribution function
(CPDF) of the input random variables. CPDFs for all ran-
dom variables are divided into N equivalent no overlapping
intervals, where N is the number of simulations. The repre-
sentative parameters of the variables are selected randomly
on the basis of random permutations of integers 1, 2, …, j, …,
N. Every interval of each variable must be used only once
during the simulation.

ATENA nonlinear finite element software is well-estab-
lished for realistic computer simulation of damage and failure
of concrete and reinforced concrete structures in a determin-
istic way [12], [13]. The constitutive relation at a material
point (constitutive model) plays the most crucial role in the
finite element analysis and decides how the structural model
represents reality. Since concrete is a complex material with
a strongly nonlinear response even under service load con-
ditions, special constitutive models for the finite element
analysis of concrete structures are employed [4].

The SARA system can easily be used for stochastic training
of a neural network. The parameters for identification are
simulated as random variables with prescribed variability. The
resulting random load-deflection curves with random realiza-
tions of the parameters serve for training the network. Such a
“bundle” of curves is shown in Fig. 5.

3.3 Artificial neural networks
The basic idea of an artificial neural network was to pro-

vide a numerical model of processes in the brain. Nowadays
this approach is used in various fields of technical practice,
mainly for classification problems [14]. In our identification
technique a multilayered neural network is used. All neurons
in one layer are connected with all neurons in the following
layer. The connecting paths among the neurons are weighted,
which models their conductivity. At the level of the neuron,
the bias is added to the sum of the weighted impulses from
each neuron of the previous layer. Then the transfer function
is applied. Three types of transfer functions can be used:
hard-limit, linear and nonlinear (e.g. sigmoid) transfer func-
tions. The synaptic weights, biases and transfer functions
determine the behavior of neurons and the whole neural
network.

The output from a single neuron (Fig. 3a) can be calcu-
lated as:
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where: k – number of input impulses (1, …, K), wk – synaptic
weight of the connecting path from the k-th neuron of the
previous layer, pk – impulses from the k-th neuron of the
previous layer, b – bias of the neuron and f – transfer function
of the neuron.

If the output vector of the whole neural network is re-
quired, the output vectors have to be calculated layer by layer
from the input layer to the output layer of the network. Out-
put of the u-th layer of the network is:
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where: k – number of components in the output vector in the
u-th layer (1, …, K � number of neurons in the u-th layer), j –
number of components in the output vector in the (u�1)-th
layer (1, …, J � number of neurons in the (u�1)-th layer), yk

u –

one component of the output vector, wkj
u – synaptic weight –

this connects the k-th neuron of the u-th layer with the j-th in
the (u�1)-th layer, y j

u�1 – one component of the output vector

in the previous layer, bk
u – bias of the k-th neuron in the u-th

layer and f u – transfer function of the neurons in the u-th
layer. If u is the number of the last layer, thenyu is the output
vector of the network.

An artificial neural network works in two phases – active
and adaptive. In the active phase the signal passes through
the connecting paths from the input layer to the output layer
of the network. To obtain correct results of that process, the
weights and biases must have appropriate values. To assign
these values, an adaptive phase must be used. This process is
called training the neural network. For network training a set
of training parameters is needed. This set consists of ordered
pairs [pi, yi], where yi are the expected output vectors (in our
case random realizations of the model parameters selected
for identification), which are yielded by simulation of the net-
work with input vectors pi (in our case points on the load-de-
flection curves). The main aim during training is to minimize
the following criterion:
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Fig. 3: a) Scheme of single neuron, b) scheme of neural network
with two layers



where: N – number of ordered pairs input – output in the
training set, yik

* – required output value of the k-th output

neuron at the i-th input and yik
� – real output value (at the

same input).
In order to minimize criterion E some optimization tech-

nique is used. A description of these techniques can be found
in, e.g. [15], [8].

4 Numerical examples

4.1 Notched specimen of high-strength concrete
used for railway sleepers

A classical experiment involving three-point bending of
a notched plane concrete beam was performed in order to
determine fracture parameters of concrete for mass produc-
tion of railway sleepers. Six specimens 80×80×480 mm were
tested with a notch 25 mm in depth. The fracture-mechanical
parameters were determined on the basis of the recom-
mendation of RILEM [16] and improvements according to

Elices [17], Stibor [18] and Veselý [19]. Based on this ex-
periment, the following parameters were obtained: modulus
of elasticity Ec � 32.4 GPa, fracture energy GF � 188.7 N/m,
compressive strength fc � 75.0 MPa and estimation of tensile
strength ft � 4.0 MPa.

The mean values of the parameters used for stochastic
simulation and consequent identification are as follows: mod-
ulus of elasticity Ec � 60 GPa, tensile strength ft � 5 MPa, com-
pressive strength fc � 75 MPa, fracture energy GF � 170 N/m
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Fig. 5: Random load-deflection curve realizations – 20 simulations of LHS
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and compressive strain at compressive strength in the uniaxial
compressive test �c � 0.003.

For stochastic training, randomness was introduced using
the same coefficient of variation 0.15 and rectangular proba-
bility distribution for all random variables. Twenty simula-
tions of LHS resulted in the load-deflection curves presented
in Fig. 5. Note that none of these random curves captured the
experiment well. This input-output information serves for
training the selected neural network: a network with 20 in-
puts (20 points on the load-deflection curve for each simula-
tion is utilized for training), one hidden layer consisting of 15
neurons with a nonlinear transfer function and one output
layer of 5 neurons with a linear transfer function. Instead of 5
neurons, a second alternative with only 3 output neurons was
also used. The original number of parameters (5) could be de-
creased (to 3) as the sensitivity analysis showed the dominat-
ing and nondominating random variables. The trained neu-
ral network provided the material model parameters (for 3 or
5 considered parameters): Ec � 70.3 and 73.2 GPa, ft � 5.5 and
5.3 MPa, fc � 75 (mean value) and 103.22 MPa, GF � 128 and
141 N/m, �c � 0.003 (mean value) and 0.004.

The final calculation using ATENA resulted in a very good
agreement with the experimental load-deflection curve for
both alternatives, Fig. 6.

4.2 Shear wall failure
The shear wall shown in Fig. 7 was tested by Maier and

Thürliman [20]. The square panel was orthogonally rein-
forced and provided with stiffening flanges. Loading by a ver-
tical force was first applied representing a dead load. Then a
horizontal force was applied and increased to failure. During
the experiment there was extensive diagonal cracking prior to
failure, followed by explosive crushing of the concrete under
maximum load. The experimental failure pattern is shown in
Fig. 7(a).

The analysis was done by ATENA using plane-stress iso-
parametric finite elements with the composite reinforced
concrete material. All 10 shear wall parameters of the mate-
rial models (both concrete and steel reinforcement) were

identified here. The mean values of the parameters used
for stochastic simulation and consequent identification are
as follows: for concrete (SBETA model) – modulus of elas-
ticity Ec � 30 GPa, compressive strength fc � 35 MPa, tensile
strength ft � 2.5 MPa, fracture energy GF � 75 N/m, compres-
sive strain in the uniaxial compressive test �c � 0.0025, critical
compressive displacement wd � 0.003 m; for steel (bilinear
law) – yield strain x1 � 0.0027, yield stress fx1 � 574 MPa, ulti-
mate strain x2 � 0.015 and ultimate stress fx2 � 764 MPa.

For stochastic training, randomness was intuitively intro-
duced using coefficient of variation 0.10 for Ec, ft and fc, 0.2
for GF and �c, 0.3 for wd and 0.1 for all steel parameters.
A rectangular probability distribution for all random variables
is used. The experimental load-deflection curve and 20 simu-
lations of LHS are presented in Fig. 8. This input-output
information serves for training the selected neural network:
network with 24 inputs (24 points on load-deflection curve for
every simulation is utilized for training), two hidden layer
consisting of 12 and 10 neurons with nonlinear transfer func-
tions and one output layer of 10 neurons with a linear transfer
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Fig. 8: Random load-deflection curve realizations – 20 simulations of LHS
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Fig. 7: Shear wall experimental failure and its ATENA simula-
tion: (a) experimental failure, (b) failure simulated by
ATENA



function. The trained neural network provided the material
model parameters: Ec � 33 GPa, fc � 35.3 MPa, ft � 2.47 MPa,
GF � 77.85 N/m, �c � 0.0026, wd � 0.0031 m, x1 � 0.0028,
fx1 � 570.7 MPa, x2 � 0.0147 and fx2 � 768.8 MPa.

The final calculation using ATENA resulted in a very good
agreement with experimental load-deflection curve, Fig. 9.

5 Conclusion
Determining the material model parameters generally

presents a great problem when using nonlinear analysis and
sophisticated material constitutive laws. A methodology for
efficient numerical identification of material model para-
meters is suggested. This approach utilizes stochastic com-
putational analysis in combination with an artificial neural
network. Small-sample simulation techniques are employed,
which enables analysis of computationally intensive problems
of nonlinear fracture mechanics. The feasibility of the ap-
proach is documented by numerical examples. Application of
the concept to problems, where the experimental load-deflec-
tion curve is known could result in much better identification
of the material model parameters than with a heuristic “trial
and error” approach. Such well-identified parameters based
on experiment can then be used for calculating a real struc-
ture. Very good results have been achieved, which indicates
that efficient techniques have been combined at all three basic
levels: deterministic nonlinear modeling, probabilistic strati-
fied simulation and neural network approximation.
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