
1 Introduction
In recent years, research community has faced growing

demands to merge the power of current computer technology
with the extensive knowledge acquired in engineering, math-
ematics, physics and other disciplines, and to exploit them
effectively in the design of new multi-functional materials and
structures.

Instead of sticking to traditional (usually very conserva-
tive) design code formulas and provisions, modern design
procedures should focus on optimizing the actual perfor-
mance, taking into account multiple objectives and criteria,
such as sufficiently low probability of failure, low cost, long-
-term durability, proper functionality and high utility, com-
patibility with the environment, aesthetic quality, etc. This
is not possible without powerful modeling, simulation and
optimization tools supporting the designer in the decision-
-making process. The behavior of structures, solids, and fluids
is governed by complicated systems of partial differential
equations with appropriate boundary conditions. A reliable
and accurate analysis of this behavior, necessary for practi-
cal decisions regarding design, optimization, risk assessment
etc., is frequently based on a numerical simulation and re-
quires the development of efficient computational tools.

These growing demands for realistic modeling that
typically includes state-of-the-art constitutive models, adap-
tive and multi-level solution techniques brings in new
software issues. A very important feature of any modern com-
putational code is its open nature, so that it should allow
straightforward and efficient implementation of new solution
methods, algorithms, material models, etc. An analyst or
researcher naturally wants to work with a code which is easily
extensible towards future demands, easily maintainable, but
still efficient and portable across many platforms. Object-ori-
ented modelling is a tool that has been successively used to
design and implement complex software systems meeting
the above criteria. It is based on the uniform application of
the principles for managing complexity – abstraction, inheri-
tance, association, and communication using messages. The
design of an object-oriented application consists in finding
classes and objects, identifying structures and attributes, and
defining the required services.

In recent years, a number of articles on applying an ob-
ject-oriented approach to finite element analysis have been
published. In 1990 Fenves [1] described the advantages of

an object-oriented approach for developing of engineering
software. Forde et al. [2] presented one of the first applica-
tions of object-oriented programming to finite elements.
Many authors have presented complete architectures of OO
finite element codes, notably, a coordinate free approach by
Miller [3], a non-anticipation principle by Zimmermann et al.
[4], Dubois-Pelerin et al. [5, 6, 7], and Commend [8]. Recent
contributions include the work of Mackie [9, 10, 11], Archer
et al. [12, 13], and Menetrey et al.[14].

This paper presents the design principles and structure of
object-oriented finite element code OOFEM [15]. This code
has been actively developed for several years and it is distrib-
uted as a free software under GNU public licence. The basic
intentions of OOFEM design include modularity, open na-
ture, extensibility, maintainability, portability, and last but not
least, computational performance. Although the primary fo-
cus has been given to research applications, the code has been
used several times for solving of industrial problems. In the
next section, the general structure of the code is presented
using the Coad-Yourdon methodology [16]. Such a represen-
tation allows to show class hierarchy as well as the mutual
relations between the classes, representing the generaliza-
tion/specialization, whole/part, or association relations. All
the fundamental abstract base classes, representing the basic
building blocks of finite element code, will be introduced and
their role will be discussed. Finally, the OOFEM features and
future development directions will be presented.

2 Design principles
The overall structure consists of several modules. The core

module is called OOFEMlib. It contains the definition of
fundamental top-level FE classes, that represent, for example,
degrees of freedom, nodes, elements, integration points,
boundary and initial conditions, constitutive models, numeri-
cal solvers, sparse matrices, and problems under consider-
ation. It also contains some utility classes that are of general
use and that can facilitate development, like representations
of vectors and matrices, etc. This module introduces the fun-
damental class hierarchy, which is intended to be general
enough to incorporate any FE problem and which is, at the
same time, problem independent. The primary role of these
core classes is to specify a general interface that defines the
services that are provided by each derived class. These ser-
vices are typically abstract ones, they are implemented by

54 © Czech Technical University Publishing House http://ctn.cvut.cz/ap/

Acta Polytechnica Vol. 44 No. 5–6/2004

OOFEM – An Object Oriented
Framework for Finite Element Analysis
B. Patzák, Z. Bittnar

This paper presents the design principles and structure of the object-oriented finite element software OOFEM, which has been under active
development for several years. The main advantages of the presented framework include modular design, extensibility, and robustness. The
code itself is freely available and is distributed under GNU public license. It provides tools for linear and nonlinear analysis of mechanical
and transport problems on sequential and parallel computers.

Keywords: finite element software; object oriented FEM design.

inherited classes, which implement particular objects. The
role of abstract services is very important, since they declare
the general interface, which is implemented by derived clas-
ses. Thus any derived class is enforced to implement this
interface, which allows a high level of abstraction.

An important consequence of the abstract interface con-
cept is that it allows to implement some general services al-
ready at the abstract level. A typical example is stiffness matrix
computation, which can be done already at the abstract level,
provided that methods for computing the geometrical matrix
and material stiffness are declared in an interface specifica-
tion – they are only declared as abstract (virtual), and imple-
mentation is left to derived classes representing particular fi-
nite elements. Typical implementation of this procedure then
consists in a loop over finite element integration points, and
computation of the products of these matrices and summa-
tion of the contributions. Implementation of such general
services can significantly facilitate the development of new el-
ements. At the same time, such a default service can be over-

loaded (specialized) by a particular element implementation
to reflect the specific needs of particular element formulation,
if necessary.

Abstract interfaces allow to a developer to implement
high-level functionality using the general interface, without
regarding the details of each derived class. And on the other
hand, it allows to implement a particular class without deep
knowledge of the whole code structure; it is only necessary to
implement the required services that constitute the general
interface. Such an approach allows to write high level proce-
dures that will work even with classes added in the future.
Moreover, such a concept leads to a maintainable and extensi-
ble code structure which enables efficient team-work support.
However, it is necessary to carefully design the abstract inter-
faces declared by top-level classes to be general enough to in-
corporate future demands.

On the top of the core OOFEMlib module, specialized
modules are built (see Fig. 1 and 2). These modules contain
application-specific classes that implement the required func-
tionality. They typically contain implementation classes
representing problem – specific finite elements, constitutive
models, boundary conditions, and solution algorithms. A typ-
ical example is a structural analysis module (SM) or a trans-
port-problem module (TM). Modules may also represent an
interface to external libraries. Such a module then provides
“shell” classes that implement the required interface and
translate the messages to external library procedures. The
PETSc module providing an interface to Portable, Extensible
Toolkit for Scientific Computation (PETSC) [17] is a typical
example.

© Czech Technical University Publishing House http://ctn.cvut.cz/ap/ 55

Acta Polytechnica Vol. 44 No. 5–6/2004

Fig. 1: OOFEM modules

Fig. 2: OOFEM modules – problem independent core module OOFEMlib and problem specific SM module

3 General structure
The general structure of the OOFEM is shown in Fig. 3,

using the Coad-Yourdon representation. In short, abstract
classes are represented by single framed rectangles, classes
which have instances (so called class&objects) are represented
by double framed rectangles. The lines with a semi-circle
mark represent a generalization/specialization relation (in-
heritance), where the line from the semi-circle midpoint
points to the parent class. The lines with a triangle mark rep-
resent a whole/part relation, where the line starting from the
triangle vertex points to “whole” class possessing the “part”
class. An association is represented by a solid line drawn be-
tween the classes. Bold lines represent communication using
messages. The details can be found in [3].

Class DOF represents a single degree of freedom (DOF).
It maintains its physical meaning, an associated equation
number, and keeps a reference to the applied boundary and
initial conditions. The base class DOF manager represents an
abstraction for an entity possessing some DOFs. It manages
its DOF collection, a list of applied loadings and optionally its
local coordinate system. General services include methods
for gathering localization numbers from maintained DOFs,
computing the applied load vector, and computing transfor-
mation to its local coordinate system. Derived classes typically
represent a finite element node or an element side, possess-
ing some DOFs. Boundary and initial conditions are re-
presented by corresponding classes. Derived classes from
the base BoundaryCondition class, representing particular
boundary conditions, can be applied to DOFS (primary BC),

DOF managers (typically nodal load), or elements (surface
loads, Neumann, or Newton boundary conditions, etc.)

3.1 Problem representation
The problem under consideration is represented by a class

derived from the EngngModel class. Its role is to assemble the
governing equation and use a suitable numerical method
(represented by a class derived from the NumericalMethod
class), to solve the system of equations. The discretization of a
problem domain is represented by the class Domain, which
maintains lists of objects representing nodes, elements, mate-
rial models, boundary conditions, etc. The Domain class is an
attribute of the EngngModel class and, in general, it provides
services for accessing particular components. For each solu-
tion step, the EngngModel instance assembles the governing
equations by summing up the contributions from the domain
components. Since the governing equations are typically rep-
resented numerically in a matrix form, implementation is
based on vector and sparse matrix representations to ef-
ficiently store the components of these equations. Then a
suitable numerical method, represented by an instance of the
class derived from the NumericalMethod class, is used to
solve the problem. An important consequence of abstract
interfaces is that problem formulation can use any sparse ma-
trix representation and any suitable numerical method, even
added in the future, because they all implement the same
common interface.

An abstraction for the general field is provided. Fields
have the capability to represent any global field like displace-

56 © Czech Technical University Publishing House http://ctn.cvut.cz/ap/

Acta Polytechnica Vol. 44 No. 5–6/2004

Fig. 3: General structure of OOFEM

ment or temperature fields, described using nodal values, and
to evaluate the field values at any valid point of the problem
domain. A particular problem implementation can store its
solution in the form of field(s). This can help significantly,
when implementing adaptive or staggered solution tech-
niques, since transfers of solution fields between several grids
are provided by the field implementation.

High level numerical methods are represented as a hierar-
chy of classes derived from the base NumericalMethod class.
Classes directly derived from this base class define the
problem-specific interface for particular numerical problems
(for example, interfaces specific to an eigen value problem
or a linear system of equations). The derived classes then
implement particular algorithms. The methods forming
problem-specific interfaces accept parameters in the form of
abstract classes representing sparse matrices or vectors. Thus
there are no assumptions about a particular type of data
representation. As a consequence, numerical method imple-
mentation can work in principle with any sparse matrix,
provided that it uses only operations available in the general
interface of the basic SparseMatrix class. This is illustrated in
Fig. 4, where linear static analysis can use different solution
algorithms for a linear system of equations, since they all im-
plement the same interface (here represented by the method
“solve”). At the same time the iterative solver can work with
different sparse matrix representations, since in principle the
only required operation is the multiplication of the atrix by a
vector, which is a part of the general sparse matrix interface
(in reality, suitable preconditioning should also be applied,
but this is omitted here, for the sake of brevity).

The independent problem formulation and the numeri-
cal solution, together with independent data storage repre-
sentation on a numerical algorithm, are the key features that
characterize the design and structure of this frame.

3.2 Material-element frame
In this section, the structure of the material-element

frame will be described. The primary goal during the design
was to achieve straightforward extensibility and a high level of
modularity. To achieve these requirements in the context
of this frame, the following set of fundamental abstract classes
is introduced to represent finite elements (Element class),
cross section models (CrossSection class), constitutive mod-
els (Material class), integration rules (IntegrationRule class),
integration points (IntegrationPoint class), interpolation
functions (Interpolation class), and material mode specific
containers for storing history variables in integration points
(MaterialStatus class).

To reflect the needs of specific problems under consider-
ation, specialized abstract interfaces for particular problems
are needed. One should have, for example, a different mate-
rial model interface for structural mechanics problems and
for heat and mass transport problems. These problem –
specific interfaces are declared by corresponding problem-
-specific classes, derived from base classes representing a
finite element, a cross section, or a material model. Specific
finite elements, cross section models, and constitutive models
are then derived from these problem-specific base classes in a
frame of the corresponding module.

© Czech Technical University Publishing House http://ctn.cvut.cz/ap/ 57

Acta Polytechnica Vol. 44 No. 5–6/2004

Fig. 4: Independent problem formulation on data storage and numerical algorithm

Particular finite element implementations are repre-
sented by the classes derived from the corresponding prob-
lem – specific base class. Each finite element can have one or
more integration rules, which are abstractions for a set of inte-
gration points used to evaluate numerical integrals over an
element volume. An integration point maintains its local co-
ordinates and integration weights. Each integration point
can maintain one or more instances of MaterialStatus class
(the purpose of this feature will be explained later). For conve-
nience, a hierarchy of classes derived from the base Interpola-
tion class, representing FE interpolation, is provided. Derived
classes implement many interpolation schemes and can
be used to evaluate shape functions and their respective
derivatives.

The CrossSection class represents a geometrical model of
a cross section. Classes representing finite elements do not
communicate directly with a constitutive model. Instead, they
always use the CrossSection class interface, which performs
necessary integration over the cross section and invokes the
corresponding material model services. A cross section model
can introduce special integration points to account for a
layered description, for example. In such a case, these addi-
tional integration points (slaves) are created and stored at
every element integration point, but are hidden to element
formulation.

A material class represents a base abstract class for all
constitutive models. An associated MaterialStaus class is intro-
duced in order to account for extensibility and efficiency
requirements. In general, every material model must store its
unique history parameters at every integration point. The

amount, type, and meaning of these history variables vary
from one material model to another. Therefore, it is not possi-
ble to efficiently match all needs and reflect them in the
integration point data structure. The suggested remedy uses
the associated Material Status class, related to the corre-
sponding material model, in order to store the necessary
history variables. A unique copy of the corresponding mate-
rial model status is created and associated to every integration
point by the particular constitutive model. The developer of
a new constitutive model defines and implements the mate-
rial class representing the model and it has to define also
the associated material status class (derived from base
MaterialStatus), which contains the history variables related
to the model and corresponding services. Because the inte-
gration point is the compulsory parameter of all messages
sent to the material model, it can in turn access its related
material status from the given integration point, and there-
fore has access to the corresponding history variables. There
are typically two sets of history variables, one related to the
previous equilibrium state (needed to correctly evaluate the
evolving character of constitutive relations) and the working
set, which is changing during the equilibrium iterations (see
Fig.5). Once equilibrium is reached, the working set is copied
into the equilibrium set. On the other hand, when equi-
librium is not reached, the solution step can be restarted, and
in this case the working set is initialized from the set related
to the previous equilibrium.

Recalling the concept of abstract interfaces, introduction
of independent representations for a finite element, a cross
section description, and a constitutive model allows to com-

58 © Czech Technical University Publishing House http://ctn.cvut.cz/ap/

Acta Polytechnica Vol. 44 No. 5–6/2004

Fig. 5: Constitutive model and its history variables

bine particular a finite element representation with different
cross section and material models, see Fig. 6. This is fully
transparent, since all cross section and material models im-
plement the same interface, declared by the corresponding
abstract classes.

4 OOFEM features
OOFEM is an open source, free software finite element

system with object oriented architecture. It is distributed un-
der GNU public license. It is written in the C++ program-
ming language. It operates on various platforms, including
Unix (Linux) and Microsoft Windows platforms. A graphical
post-processor is available in X-Windows (UNIX).

The general features include staggered solution proce-
dures, a multiple domain concept, full restart support from
any saved state, and built-in support for parallel processing
(message passing). Many sparse matrix storage schemes are
available, as well as the corresponding iterative and direct
solvers.

The structural analysis module (SM) includes many analy-
sis procedures including serial and parallel nonlinear static
analyses with direct and indirect control, parallel nonlinear
explicit dynamics, linear dynamics (eigen value analysis, im-
plicit and explicit integration methods). A large material
library including state-of-the-art models for the nonlinear
fracture mechanics of quasi-brittle materials and a rich ele-
ment library are provided.

The transport problem module (TM) is capable of solving
a stationary and transient (linear and nonlinear) heat transfer
and coupled heat & mass transfer problems. The element

library includes axisymmetric, two and three dimensional
elements. Staggered analysis of heat transfer analysis and
mechanical analysis can be performed, where the tempera-
ture field generated by heat transfer analysis can be used
in mechanical analysis as temperature loading.

OOFEM interfaces to the following external software:
IML++ (template library for numerical iterative methods
[18]), PETSC – Portable, Extensible Toolkit for Scientific
Computation [17], and VTK (The Visualisation Toolkit [19]).

5 Conclusion
To summarize, a general object oriented environment for

finite element computations has been developed. The de-
scribed structure leads to a modular and extensible code
design. Special attention has been focused on important
aspects of material-element and analysis frame design. A
successful implementation using C++ language verifies the
designed program structure and provides a robust computa-
tional tool for finite element modeling.

6 Acknowledgment

This work was supported by the Grant Agency of the
Czech Republic, under Project No.: 103/04/1394.

References
[1] Fenves G. L.: “Object-oriented programming for engi-

neering software development.” Engineering with Com-
puters, Vol. 6 (1990), p. 1–15.

© Czech Technical University Publishing House http://ctn.cvut.cz/ap/ 59

Acta Polytechnica Vol. 44 No. 5–6/2004

Fig. 6: Cross section and material models interface concept

[2] Forde B. W. R, Foschi R. O., Stiemer S. F.: “Object-ori-
ented finite element analysis.” Computer and Structures,
Vol. 6 (1990), p. 1–15.

[3] Miller G. R.: “An object-oriented approach to structural
analysis and design.” Computers and Structures, Vol. 40
(1991), p. 75–82.

[4] Zimmermann T., Dubois-Pelerin Y., Bomme P.: “Ob-
ject-oriented finite element programming Part I. Gov-
erning principles.” Comp. Meth. in Appl. Mech. Engng.,
Vol. 98 (1992), No. 3, p. 291–303.

[5] Dubois-Pelerin Y., Zimmermann T., Bomme P.: “Ob-
ject-oriented finite element programming Part II: A
prototype program in Smalltalk.” Comp. Meth. in Appl.
Mech. Engng., Vol. 98 (1992), No. 3, p. 261–397.

[6] Dubois-Pelerin Y., Zimmermann T.: “Object-oriented fi-
nite element programming Part III: An Efficient Imple-
mentation in C++.” Comp. Meth. in Appl. Mech. Engng.,
Vol. 108 (1993), p. 165–183.

[7] Dubois-Pelerin Y., Pegon P.: “Object-oriented program-
ming in nonlinear finite element analysis.” Computers and
Structures, Vol. 67 (1998), p. 225–241.

[8] Commend S., Zimmermann T.: “Object-oriented non-
linear finite element programming: a primer.” Advances
in Engineering Software, Vol. 32 (2001), p. 611–628.

[9] Mackie R. I.: “Object-oriented programming of the fi-
nite element method.” International Journal For Numeri-
cal Methods In Engineering, Vol. 35 (1992), p. 425–436.

[10] Mackie R. I.: “Using objects to handle calculation con-
trol in finite element modelling.” Computers & Structures,
Vol. 80 (2002), p. 2001–2009.

[11] Mackie R. I.: “Object oriented methods and fnite ele-
ment analysis.” Saxe-Coburg Publications, Stirling, UK,
2001.

[12] Archer G. C.: “Object-oriented Finite Element analysis.”
PhD thesis, University of California at Berkeley, Apr.
1996.

[13] Archer G. C., Fenves G., Thewalt C.: “A new object-ori-
ented finite element analysis program architecture.”
Computers and Structures, Vol. 70 (1999), p. 63–75.

[14] Menetrey P., Zimmermann T.: “Object-oriented non-
-linear finite element analysis – application to J2 plastic-
ity.” Computers and Structures, Vol. 49 (1993), p. 767–777.

[15] Patzák B.: OOFEM home page, http://www.oofem.org,
2004.

[16] Coad P., Yourdon E.: “Object-Oriented Analysis.” Pren-
tice-Hall, 1991.

[17] Balay S., Buschelman K., Gropp W. D., Kaushik D.,
Knepley M., McInnes L. C., Smith B. F., Zhang, H.:
PETSc home page, http://www.mcs.anl.gov/petsc, 2001.

[18] Iterative Methods Library, http://math.nist.gov/iml++/.
[19] Schroeder W., Martin K., Lorensen B.: “The Visual-

ization Toolkit An Object-Oriented Approach To 3D
Graphics.” 3rd Edition, Kitware, Inc. publishers, 2003.

Doc. Dr. Ing. Bořek Patzák
phone: +420 224 354 369
e-mail: borek.patzak@fsv.cvut.cz

Prof. Ing. Zdeněk Bittnar, DrSc.
phone: +420 224 354 493
e-mail: bittnar@fsv.cvut.cz

Czech Technical University in Prague
Faculty of Civil Engineering
Thákurova 7
166 29 Prague, Czech Republic

60 © Czech Technical University Publishing House http://ctn.cvut.cz/ap/

Acta Polytechnica Vol. 44 No. 5–6/2004

