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Abstract. In this paper, we present numerical results obtained by an in-house incompressible fluid
flow solver based on isogeometric analysis (IgA) for the standard benchmark problem for incompressible
fluid flow simulation – lid-driven cavity flow. The steady Navier-Stokes equations are solved in their
velocity-pressure formulation and we consider only inf-sup stable pairs of B-spline discretization spaces.
The main aim of the paper is to compare the results from our IgA-based flow solver with the results
obtained by a standard package based on finite element method with respect to degrees of freedom
and stability of the solution. Further, the effectiveness of the recently introduced rIgA method for the
steady Navier-Stokes equations is studied.
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1. Introduction
The fluid flow simulation is one of the fundamen-
tal problems solved in engineering practice. During
the history, many different numerical methods were
proposed to solve this extremely challenging prob-
lem, ranging from Finite Difference Methods (FDM),
through Finite Volume Methods (FVM) to Finite El-
ement Methods (FEM) with many variants of these
methods (see e.g. [1–3]). Relatively recently, Hughes
et al. (see [4, 5]) introduced a powerful numerical
method for solving partial differential equations called
isogeometric analysis (IgA). This method has many
features common with FEM and the main motiva-
tion is to bridge the gap between geometric modelling
(Computer-Aided Design – CAD) and numerical sim-
ulation (Finite Element Analysis – FEA). Optimally,
one would like to use directly the description of an
object in CAD system also for numerical simulations.
However, this is not possible with the standard ap-
proaches (FDM, FVM, FEM) since they require the
construction of some computational mesh (typically,
triangular/quadrilateral meshes for 2D problems and
tetrahedral/hexahedral for 3D problems) which is,
moreover, only an approximation of the original com-
putational domain.
The isogeometric analysis is based on an isopara-

metric framework, i.e., the same basis functions are
used for representation of the geometry and for the
solution space. Currently, the de facto industrial stan-
dard for representation of complex objects in CAD
systems are Non-Uniform Rational B-spline (NURBS)
objects (see [6]). This is the reason why isogeomet-
ric analysis was formulated specifically for this class
of objects. They allow for the exact representation

of a wide variety of complex shapes in a compact
form, i.e., by a small number of control points. Even
though the NURBS description of an object in CAD
system can be used directly for numerical simula-
tions only in case when IgA-BEM (the isogeometric
formulation of Boundary Element Method, see e.g.
[7]) is used, the exact NURBS representation is still
beneficial. Many methods providing geometrically
exact bivariate/trivariate NURBS representation of
planar/spatial domains, respectively, from its bound-
ary were proposed in the last years (see e.g. [8–13]).
Such NURBS representations then serve as computa-
tional meshes used in solvers based on isogeometric
analysis. Other advantages of the isogeometric analy-
sis include e.g. higher accuracy of the solution with
respect to a degree of freedom ([14]) or favourableness
of higher continuity of NURBS basis functions for
solving higher order PDEs ([15]). From a practical
point of view, a typical implementation of IgA-based
solver automatically allows for basis functions of the
geometry and the solution space of any degree and
continuity, without any additional effort needed for
implementing the solver. This is typically not the case
for codes based on FEM, where in p-version of FEM
each degree of the basis functions of the solution space
needs to be added/implemented individually. Because
of many advantages of the IgA, the method has been
successfully applied in various practical problems, like
linear elasticity, structural vibrations, phase transi-
tion phenomena, fluid flow simulation, plate and shell
analysis, heat transfer analysis, shape optimization,
etc., see e.g. [15–33].
On the other hand, several disadvantages of the

isogeometric analysis were identified during the ex-
tensive research in the last years. For example, the
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properties of NURBS objects induce that true local
refinement is not possible for this class of objects.
This drawback can be overcome by various generaliza-
tions of NURBS objects, like T-splines, THB-splines
or LR-splines (see e.g. [34]), which were recently stud-
ied in the context of isogeometric analysis. Among
other drawbacks belong e.g. time-consuming matrix
assembly in the construction of the matrix of linear
systems arising in Galerkin isogeometric methods (see
e.g. [35–37]), degraded performance of direct solvers
because of wide support of B-spline/NURBS basis
functions (see [38]) or the necessity to modify exist-
ing well-known stabilization techniques to suppress
spurious oscillations.

In this paper, we focus on one of the standard bench-
mark problems for incompressible fluid flow simulation
– lid-driven cavity flow. This problem is frequently
studied in the literature. A well-done overview of
the results for different Reynolds numbers obtained
by different methods can be found e.g. in the recent
paper [39], but even this extensive list is not complete.
As it can be seen from the summary of results for this
problem in [39], FDM is quite frequently used for ob-
taining very accurate results for this problem. To the
best of our knowledge, there exist also several papers
which solve the lid-driven cavity problem by isogeo-
metric analysis. The paper [15] applies isogeometric
analysis to solve the fourth order stream function for-
mulation of the Navier-Stokes equations and presents
the results for Reynolds numbers up to 5000. Further,
the paper [40] uses divergence-conforming B-splines
which may be interpreted as smooth generalizations of
Raviart-Thomas elements and presents the results for
Reynolds numbers up to 1000. Finally, the paper [33]
is based on velocity-pressure formulation of steady and
unsteady Navier-Stokes equations, uses LBB compati-
ble B-spline spaces which may be regarded as smooth
generalizations of Taylor-Hood pairs of finite element
spaces and presents the results for Reynolds numbers
up to 1000.

The main goal of this paper is to extend the study
done in [33] for the lid-driven cavity problem to higher
Reynolds number, but in a slightly different manner.
We want to compare the solutions obtained by our in-
house fluid flow solver based on isogeometric analysis
(see [30, 31]) for different B-spline discretization spaces
with solutions obtained by finite element method with
respect to degrees of freedom and stability of the solu-
tion. Further, we want to study the potential “stabi-
lization effect” of high continuity B-spline discretiza-
tion spaces (see [41]), i.e., if high continuity B-spline
discretization spaces provide solutions with less oscilla-
tions than standard finite element spaces and B-spline
discretization spaces of low continuity (FEM-like) for
the similar number of degrees of freedom. Moreover,
we want to investigate if this potential stabilization
effect of the high continuity B-spline discretizations
dominates the effect of the SUPG stabilization for
the low continuity B-spline discretizations. Finally,

inspired by the recently introduced rIgA method (see
[42, 43]), we want to explore the effectiveness of rIgA
method for solving the Navier-Stokes equations, which
has not yet been studied.
The paper is organized as follows. Section 2 in-

troduces the steady Navier-Stokes equations, their
weak formulation and Galerkin discretization. In
Section 3, we overview the fundamentals of B-spline
objects and present the main ideas of isogeometric
analysis. Section 4 is devoted to a very brief overview
of Streamline Upwind/Petrov-Galerkin method used
for stabilization of a numerical solution of convection-
dominated problems typically for lower degree dis-
cretization spaces. In Section 5, we formulate the
benchmark problem studied in the paper – the lid-
driven cavity flow – and present the reference solutions
used for comparison with our results. Section 6 then
demonstrates the main results of the paper, i.e., the
results obtained by our in-house fluid flow solver based
on isogeometric analysis and their comparison with
reference solutions and other solutions obtained by a
standard FEM package. In Section 7, we conclude
the paper.

2. Navier-Stokes equations
The mathematical model of incompressible viscous
Newtonian flow is based on the incompressible Navier–
Stokes equations (NSE). Let Ω ⊂ Rd be a bounded
domain, d being the number of spatial dimensions,
with the boundary ∂Ω consisting of two complemen-
tary parts, Dirichlet ∂ΩD and Neumann ∂ΩN . The
steady-state incompressible Navier–Stokes problem
is given as a system of d + 1 differential equations
together with boundary conditions

−ν∆u + (u · ∇)u +∇p = 0 in Ω,
∇ · u = 0 in Ω,

u = gD on ∂ΩD,
ν ∂u
∂n − np = 0 on ∂ΩN ,

(1)

where u is the flow velocity, p is the kinematic pressure,
ν is the kinematic viscosity and gD is a given function.
If the velocity is specified everywhere on the boundary,
the pressure solution is only unique up to a hydrostatic
constant.
The laminar/turbulent behaviour of the fluid can

be predicted by the dimensionless Reynolds number
generally defined as the ratio of inertial forces to
viscous forces

Re = ûL

ν
, (2)

where û is the mean velocity of the fluid and L is the
characteristic linear dimension.

2.1. Galerkin discretization
In order to derive the weak formulation of the prob-
lem (1), we define velocity solution space V and test
function space V0 as follows

V = {u ∈ H1(Ω)d |u = gD on ∂ΩD},
V0 = {v ∈ H1(Ω)d |v = 0 on ∂ΩD},

(3)
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where the boundary equalities are understood in the
sense of traces and we assume that gD ∈ H1/2(∂Ω)d.
By multiplying the first line of (1) by a test func-
tion v ∈ V0 and the second line by a test function
q ∈ L2(Ω), integrating over Ω and using Green’s the-
orem, we obtain the weak formulation: find u =
(u1, . . . , ud) ∈ V and p ∈ L2(Ω) such that

ν

∫
Ω

∇u : ∇v +
∫
Ω

(u · ∇u) · v−
∫
Ω

p∇ · v = 0,∫
Ω

q∇ · u = 0

(4)
for all v = (v1, . . . , vd) ∈ V0 and q ∈ L2(Ω), where

∇u : ∇v =
d∑
i=1
∇ui · ∇vi =

d∑
i=1

d∑
j=1

∂ui
∂xj

∂vi
∂xj

,

(u · ∇u) · v =
d∑
i=1

d∑
j=1

uj
∂ui
∂xj

vi.

The idea of Galerkin discretization method is to
define finite dimensional subspaces V h ⊂ V , V h0 ⊂
V0, Wh ⊂ L2(Ω) together with their basis functions
and solve the problem projected into these subspaces.
Then, the discrete weak solutions uh ∈ V h and ph ∈
Wh are searched such that

ν

∫
Ω

∇uh : ∇vh +
∫
Ω

(uh · ∇uh) · vh−

−
∫
Ω

ph∇ · vh = 0,∫
Ω

qh∇ · uh = 0

(5)

for all vh ∈ V h0 and qh ∈Wh.
Because of the non-linearity in the convective term,

the problem needs to be linearized and solved iter-
atively. Using Picard’s iteration method, we search
un+1
h ∈ V h and pn+1

h ∈ Wh as a solution of the fol-
lowing Oseen problem

ν

∫
Ω

∇un+1
h : ∇vh +

∫
Ω

(unh · ∇un+1
h ) · vh − (6)

−
∫
Ω

pn+1
h ∇ · vh = 0,

∫
Ω

qh∇ · un+1
h = 0

for all vh ∈ V h0 and qh ∈ Wh. The initial guess u0

is often chosen to be zero, which means solving the
Stokes equations in the first Picard iteration.
Particular Galerkin-based discretization methods

are then defined by the choice of the subspaces and
their basis functions. Considering the basis of V h0
formed by vector functions

(Qui (x), 0, . . . , 0︸ ︷︷ ︸
d

), . . . , (0, . . . , 0, Qui (x)︸ ︷︷ ︸
d

), i = 1, . . . , nu

and the basis of Wh formed by functions Qpi (x),
i = 1, . . . , np, we obtain after discretization a non-
symmetric saddle-point linear system of the form[

F −BT

B 0

] [
u
p

]
=
[

f
g

]
, (7)

where F ∈ Rd·nu×d·nu is block diagonal with the di-
agonal blocks consisting of the discretization of the
viscous term and the linearized convective term, i.e.,

F = diag
(

A + N(unh), . . . ,A + N(unh)︸ ︷︷ ︸
d

)
and

A = [Aij ] =

ν ∫
Ω

∇Qui (x) · ∇Quj (x)dΩ

 ,
N(u) = [Nij(u)] =

∫
Ω

Qui (x)
(
u · ∇Quj (x)

)
dΩ

 ,
BT ∈ Rd·nu×np and B ∈ Rnp×d·nu consist of d blocks,
i.e.,

B =
[
B1, . . . ,Bd

]
and

Bm = [Bmij ] =

∫
Ω

Qpi (x)
(
∇Quj (x) · em

)
dΩ

 .
As the right-hand side of (4) is equal to zero, f and

g only reflect the given boundary conditions.

2.2. LBB condition
To get a stable Galerkin discretization of a saddle-
point problem, the so-called LBB (or inf-sup) condi-
tion (see [44])

inf
q∈Wh\{0}

sup
v∈V h\{0}

∫
Ω
q∇ · v

||v||H1(Ω)d ||q||L2(Ω)
≥ β > 0 (8)

has to be satisfied, where β is a constant indepen-
dent of the mesh. Here, we consider only the case of
so-called inf-sup stable combinations of velocity and
pressure spaces ensuring that the inf-sup condition
is satisfied. In standard finite elements, there are
several known types of stable elements. One of the
most popular is a Taylor–Hood element, where basis
functions of degree k are used to approximate the
pressure and basis functions of degree k + 1 are used
for the velocities.

3. Isogeometric analysis
In this section, we present fundamentals of isogeomet-
ric analysis with a special focus on the problem solved
in this paper – fluid flow simulation in a lid-driven
cavity.
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Figure 1. Comparison of 1D quadratic discretization
bases on a “mesh” with three elements: (A) finite
element basis, (B) isogeometric basis with C1 interele-
ment continuity, (C) isogeometric basis with C0 in-
terelement continuity.

B-spline and NURBS objects are described using
a B-spline basis. Its construction is based on a so-
called knot vector Ξ = (ξ1, ξ2, . . . , ξn+k+1), where
ξi ≤ ξi+1 are the knots, k is the basis degree and n is
the number of basis functions. Note that the knots
can be multiple. The i-th B-spline basis function of
degree k, Ni,k(ξ), is defined recursively by Cox-de
Boor formula as follows:

for k = 0 :

Ni,0(ξ) =
{

1, ξi ≤ ξ < ξi+1,
0, otherwise,

for k > 0 :

Ni,k(ξ) = si,k(ξ)Ni,k−1(ξ)+
+
(
1− si+1,k(ξ)

)
Ni+1,k−1(ξ),

where

si,k(ξ) :=


ξ − ξi

ξi+k − ξi
, ξi < ξi+k,

arbitrary, otherwise.

(9)

Note that Ni,k−1(ξ) = 0 if ξi = ξi+k.
One of the fundamental properties of B-spline basis

functions is that they are Ck−mi continuous at the
knot ξi, where mi is the multiplicity of the knot ξi.
Other properties include non-negativity, partition of
unity and local support.

Generally, IgA-based computations are based on B-
spline/NURBS surfaces (in 2D) or B-spline/NURBS
volumes (in 3D). Moreover, as it is well-known that
the tensor-product structure of B-spline/NURBS ob-
jects prevents the possibility to describe an arbitrary
computational domain by one B-spline/NURBS ob-
ject. This is the reason why so-called multi-patch
B-spline/NURBS meshes are typically used for the
description of computational domains in isogeometric
analysis. Our in-house solver used for obtaining results
in Section 6 works with general, free-form multi-patch
2D and 3D B-spline domains.

However, in this paper we focus on a geometrically
very simple domain – cavity – which allows (under
some other conditions mentioned bellow) to use only
a so-called B-spline function.
Let us consider a two-dimensional domain Ω =

〈0, 1〉 × 〈0, 1〉 ⊂ R2 representing the cavity (see Sec-
tions 5 and 6) and let us consider a B-spline function
f(ξ, ψ) of degree k and order of continuity r in both
parameters ξ and ψ in the form

f(ξ, ψ) =
n∑
i=1

m∑
j=1

ci,jNi,k(ξ)Nj,k(ψ)

=
n∑
i=1

m∑
j=1

ci,jQi,j(ξ, ψ),
(10)

where ci,j are coefficients of the B-spline function,
Ni,k(ξ) and Nj,k(ψ) are B-spline basis functions corre-
sponding to knot vectors Ξ = (ξ1, ξ2, . . . , ξn+k+1),Ψ =
(ψ1, ψ2, . . . , ψm+k+1), respectively, and the product of
two univariate B-spline basis functions Ni,k(ξ)Nj,k(ψ)
is denoted as one bivariate function Qi,j(ξ, ψ). As in
our experiments we use open knot vectors in the form

(0, . . . , 0︸ ︷︷ ︸
k+1

, tk+2, . . . , tn, 1, . . . , 1︸ ︷︷ ︸
k+1

),

where k is the degree of basis functions, the parametric
domain of the B-spline function f and the computa-
tional domain Ω coincide (both are represented by
the unit square). Moreover, various degrees and con-
tinuities of the B-spline computational meshes used
in experiments in Section 6 are obtained by degree
elevation and knot insertion (see [6]) starting from
bilinear B-spline description of Ω. This means that
for all used B-spline computational meshes a point
(ξ, ψ) in the parametric domain coincides with the
point (x, y) in the physical domain. Altogether, the
above mentioned facts allow us to limit to B-spline
functions, instead of more general B-spline surfaces.
Let us denote the tensor product B-spline space

spanned by the basis functions Qi,j(ξ, ψ) as

Skr = span{Qi,j}n,mi=1,j=1 (11)

36



vol. 61 Special Issue/2021 Numerical simulation of lid-driven cavity flow by isogeometric analysis

and the Cartesian product of these tensor product
B-spline spaces as

Sk
r = Skr × Skr .

For simplicity of notation, let us re-index the coeffi-
cients and the basis functions with one index ` such
that

f(ξ, ψ) =
N∑
`=1

c`Q`(ξ, ψ), N = n ·m. (12)

A B-spline mesh used in isogeometric analysis is al-
ready defined by the knot vectors Ξ,Ψ. If the subse-
quent knots are different from each other, i.e. ξi 6= ξi+1
and ψj 6= ψj+1, then [ξi, ξi+1]× [ψj , ψj+1] defines an
element of the computational mesh.

Let us now define the discrete spaces V h, V h0 ,Wh as
subspaces of V, V0,W generated by the basis functions
defining the geometry of Ω. The velocity and pressure
spaces must satisfy the condition (8). The inf-sup
stability of some combinations of the discrete solution
spaces in isogeometric analysis is addressed e.g. in
[45, 46]. As examples of stable pairs of B-spline dis-
cretization spaces, let us mention Taylor–Hood (TH)
pairs of B-spline spaces (an analogue of the Taylor–
Hood pairs of finite element spaces) which can be
defined by taking the pressure basis functions equal
to the geometry basis functions (i.e., Qp` (ξ, ψ) = Q`,
∀`) and the velocity basis functions {Quj (ξ, ψ)} as the
B-spline basis functions obtained by degree elevation
of the pressure basis functions {Qp` (ξ, ψ)}. Hence, the
velocity basis functions are of bi-degree (k + 1, k + 1),
both velocity and pressure bases are defined on the
same mesh and have the same order of continuity.
This yields the following definition

V h = {u : u ∈ Sk+1
r ∧ u = gD on ∂ΩD},

V h0 = {v : v ∈ Sk+1
r ∧ v = 0 on ∂ΩD}, (13)

Wh = {q : q ∈ Skr }.

The discrete velocity uh ∈ V h and pressure ph ∈
Wh can be written as linear combinations of the basis
functions, i.e.,

uh =
Nu

f∑
i=1

uiQui (x, y) +
Nu∑

i=Nu
f

+1
u∗iQui (x, y),(14)

ph =
Np∑
j=1

pjQ
p
j (x, y), (15)

where

Qui (x, y) = Qui (ξ, ψ),∀i, Qpj (x, y) = Qpj (ξ, ψ),∀j

(specifically in this case, see (10) and the discussion
below) and ui ∈ R2 and pj ∈ R are unknown coeffi-
cients, Nu, Np are number of velocity and pressure
basis functions, respectively, and Nu

f is the number of
"free" velocity basis functions whose coefficients are

not fixed due to Dirichlet boundary conditions. The
coefficients u∗i come from a B-spline representation of
the Dirichlet data at the boundary, which is assumed
as known.
After substituting (14) and (15) into the discrete

linearized weak formulation, we obtain a linear system
of the form (7) for the unknown coefficients ui and
pj . Similarly to the finite element method, the sys-
tem matrix is sparse thanks to local supports of the
B-spline basis functions. For degree k equal to 1 the
B-spline basis is the same as the corresponding finite
element basis. For higher degrees, however, they differ
from each other. For illustration, see the comparison
of quadratic FEM and IgA bases on a 1D “mesh”
consisting of three equal elements in Figure 1. Fig-
ure 1(a) shows the standard quadratic FEM basis and
Figure 1(b) shows a C1 continuous quadratic B-spline
basis for the open knot vector Ξ = (0, 0, 0, 1, 2, 3, 3, 3).
Obviously, we have less basis functions for the same
mesh in isogeometric analysis, they are all point-
wise non-negative and generally non-interpolatory, i.e.
their coefficients do not correspond to nodal values of
the IgA solution. Moreover, their values form partition
of unity for arbitrary ξ ∈ (ξ1, ξn+k+1) and the support
of most of the B-spline basis functions (except the
ones close to the boundary) is k+ 1 knot spans. Both
FEM and IgA bases result in the same bandwidth,
since the maximum number of basis functions that a
given basis function shares support with (including
itself) is 2k + 1 in both cases. However, the FEM
matrix is sparser since there are basis functions with
supports containing only one element, thus sharing
support with only k+ 1 basis functions. From the ma-
trix structure point of view, a B-spline analogue of the
FEM basis is the B-spline basis with C0 interelement
continuity displayed in Figure 1(c), which is obtained
for the knot vector Ξ = (0, 0, 0, 1, 1, 2, 2, 3, 3, 3).

4. Streamline
Upwind/Petrov-Galerkin
(SUPG) stabilization

Since the isogeometric analysis is continuous Galerkin-
based method, the numerical solution of convection
dominated problems (for high Reynolds numbers) is
usually polluted by spurious (unphysical) oscillations,
which cause a loss of accuracy and stability. Stabi-
lization techniques are investigated which improve
the stability, without degrading accuracy. There are
many linear and nonlinear stabilization techniques for
convection-dominated problems. Their overview can
be found, e.g., in [47]. In our case, we focused only
on the SUPG method. The SUPG method proposed
in [48] has become the most popular stabilization
method. The weighted element residual is added to
the Galerkin problem (5), i.e.,

nel∑
ie=1

∫
Qie

τSR(uh)uh · ∇vh, (16)
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where

R(uh) = uh · ∇uh − ν∆uh +∇ph (17)

is the element residual, nel is the number of elements
Qie , and τS is a non-negative SUPG stabilization
parameter (cf. e.g. [49, 50])

τS =
((

2 deg(uh) ‖uh‖
h

)2
+ 9

(
4ν
h2

)2
)− 1

2

, (18)

where deg(uh) is the degree of the velocity basis func-
tions and h is the characteristic size of the element.
Alternatives to the stabilization parameter τS are dis-
cussed e.g. in [51]. Note that the second derivatives
are not zero in the interior of the elements if higher
order B-spline basis functions are used.

5. Lid-Driven Cavity Flow
In this section, we introduce the standard benchmark
problem for incompressible fluid flow simulation – lid-
driven cavity flow – for which we present the results
of our numerical experiments in Section 6. One of the
reasons for this choice is a wide range of comparative
data available in the literature.

A thorough overview of results for lid-driven cavity
flow is done in [39]. The authors summarize the papers
dealing with this problem starting from 1966 up to
the most recent results in 2014. For comparisons, the
results presented in [52] are frequently used, where
the authors used FDM and solved the problem for
Reynolds numbers up to 10000. Other papers, which
are usually used for comparisons are e.g. [53, 54].
For comparison with our results we chose two ref-

erences. The first one is the above mentioned recent
paper [39], where the authors solve lid-driven cavity
flow by FVM for Reynolds numbers up to 5000. The
results can be considered as very accurate because a
very fine mesh with 1301×1301 grid points for the case
of Reynolds number equal to 5000 was used (compare
with [52], where FDM with 257× 257 grid points was
used). The results presented in [55] is another source
to which we compare our data. To the best of our
knowledge, these results are unpublished in a journal.
Here, the author uses FDM to solve the problem on
several very fine graded grids ranging from 1201×1201
to 1661× 1661 grid points. Then, Richardson extrap-
olation is used for improving the solutions’ accuracy
and the extrapolated result is projected onto the grid
of 1201× 1201 points. Comparing these results with
[39], they are also considered as very accurate. Fig-
ure 2 shows the comparison of the results presented in
[39] and [55] where ux- and uy-velocity profiles along
vertical/horizontal lines through the geometric center
of the cavity are compared.
The reason why we use also reference [55] is that

other available sources usually present velocity pro-
files only in the above mentioned two cross-sections
through the computational domain – ux-velocity pro-
files along a vertical line through the geometric center

of the cavity and uy-velocity profiles along a horizon-
tal line through the geometric center of the cavity.
However, [55] presents velocity profiles also for some
other horizontal and vertical cross-sections through
the computational domain, which we will also use for
the presentation of our results and for comparison in
Section 6.

The problem description is shown in Figure 3. Lid-
driven cavity flow represents a flow inside a square
container which is covered by a lid that slides sideways.
From the existing literature, it is commonly accepted
that there exists a steady solution of the problem
for Reynolds numbers up to 8000 (in 2D, see e.g.
[56, 57]). In our study presented in this paper, we
use the kinematic viscosity ν = 0.0002 which implies
Reynolds number equal to 5000.
Generally, homogeneous Dirichlet boundary condi-

tion for velocity is set on the left, right and bottom
boundaries of the computational domain and constant
velocity u = (1, 0) is prescribed on the lid part (top)
of the boundary. However, since gD is a discontinuous
function in this case, it does not lie in H1/2(∂Ω)d and
thus the velocity solution cannot be searched in the
space V defined in (3), see e.g. [58] for more details on
this issue. For discretizations of such singular problem,
slower convergence can be expected when refining the
mesh.
In order to ensure well-posedness of the problem,

a so-called regularization is often used, which means
that the discontinuous function gD is replaced by some
suitable function from H1/2(∂Ω)d. For instance, we
can define a function gεD such that its first component
changes linearly from 0 to 1 on a part of the boundary
of width ε near the upper corners as in [59].
However, in this paper, we discretize the original

singular problem, i.e., no regularization is used here.
Thus, we can compare our IgA solutions with the
results available in the references mentioned above,
where the singular lid-driven cavity is also considered.
In fact, after IgA discretization, the finite dimensional
problem is solved with a continuous boundary condi-
tion gDh defined as a B-spline approximation of gD
on the given mesh.
In principle, there are two ways to approximate

the discontinuous boundary condition, called “leaky”
and “non-leaky” cavity. The leaky cavity approach
considers the upper corners as part of the lid and the
first component of gDh goes from 0 to 1 on some part
of the vertical walls (dependent on the mesh) near
the upper corners. We consider the non-leaky cavity
approach, where, on the contrary, the upper corners
are considered as part of the vertical walls.
As Dirichlet boundary conditions for velocity are

imposed on the whole boundary of the computational
domain, the pressure is determined up to an arbitrary
constant. Thus, to have the discrete pressure field
uniquely defined, we fix the value of pressure to zero
at the bottom left corner.
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(a).

(b).

Figure 2. Comparison of reference solutions (Y. Papadopoulos stands for [55], T. A. AbdelMigid et al. for [39]):
ux-velocity profile along a vertical line at x = 0.5 (A), uy-velocity profile along a horizontal line at y = 0.5 (B).

Figure 3. Lid-driven cavity flow – the problem de-
scription.

6. Results
In this section, we present the numerical results ob-
tained by our in-house isogeometric fluid flow solver
for the model problem, lid-driven cavity flow, and
compare them with reference solutions and with the
numerical results obtained by standard package FEn-
iCS (see [60]), which is based on the finite element
method. Let us note that the simplicity of this bench-
mark example is in favor of FEM because it is possible
to represent the computational domain exactly also by
finite element meshes. On more complicated domains,
where finite element meshes only approximate the
domain boundary, isogeometric analysis have an ad-
vantage of exact representation of the computational
domain by a B-spline/NURBS mesh.

S2
0×S1

0 S4
0×S3

0 S4
2×S3

2

32× 32 9026 41666 9674
64× 64 36482 167298 37770

128× 128 146690 670466 149258

Table 1. Degrees of freedom (DOFs) for simulations
on different meshes in the in-house IgA-based flow
solver.

Our in-house isogeometric fluid flow solver is imple-
mented in C++ in the framework of G+Smo (Geom-
etry and Simulation modules) library (see [61]). For
all the simulations performed with our solver we used
the kinematic viscosity ν = 0.0002 yielding Re = 5000
and we compare them with the results obtained by
FEniCS and with the results of the reference solutions
presented in [39] or [55] for the same Reynolds num-
ber. Specifically, the results from [39] are used for
the comparison of ux- and uy-velocity profiles along
cross-sections of the computational domain at x = 0.5
and y = 0.5, respectively, and the results from [55] for
comparison of velocity profiles along all other cross-
sections of the computational domain.
We tested several different inf-sup stable pairs of

B-spline discretization spaces, i.e.,

• S2
0×S1

0 with linear basis functions for pressure and
quadratic for velocity, which is close to the standard
FEM,
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Figure 4. Stream function (top) and vorticity (bot-
tom) profiles obtained for S4

2 × S3
2 on the mesh com-

posed of 128× 128 elements. The contour ranges for
stream function and vorticity are ψiso ∈ [−0.12, 0.003]
and ωiso ∈ [−10, 20], respectively.

• S4
0×S3

0 with cubic basis functions for pressure and
quartic for velocity, with C0 continuity across the
elements, and

• S4
2×S3

2 with cubic basis functions for pressure and
quartic for velocity, with C2 continuity across the
elements.

For all these pairs of B-spline discretization spaces,
we run the simulations on three different uniform B-
spline meshes obtained in consecutive uniform mesh
refinement levels, i.e., on B-spline meshes composed
of 32× 32, 64× 64 and 128× 128 B-spline elements.
The corresponding numbers of degrees of freedom for
all these simulations are demonstrated in Table 1.
Similarly, we tested different finite element dis-

cretization spaces in FEniCS, i.e.,

• P2/P1 with linear basis functions for pressure and
quadratic for velocity, and

• P4/P3 with cubic basis functions for pressure and
quartic for velocity.

P2/P1 P4/P3

32× 32 9539 42691
64× 64 37507 169347

128× 128 148739 674563
256× 256 592387 2692611

Table 2. Degrees of freedom (DOFs) for simulations
on different meshes in FEniCS.

Let us emphasize that FEniCS is based on triangular
meshes. The advantage of FEniCS is that it allows
to choose higher degree finite element discretization
spaces which can be compared with higher degree
B-spline discretization spaces used in our isogeometric
fluid flow solver. Further, for these pairs of finite
elements discretization spaces, we run the simulations
on four different meshes obtained in consecutive re-
finement levels. The triangular meshes are composed
of 32 × 32, 64 × 64, 128 × 128 and 256 × 256 quads
divided into two triangles by a diagonal. The corre-
sponding numbers of degrees of freedom for all these
simulations are demonstrated in Table 2.

In Figure 4, we present stream function and vorticity
profiles which were obtained for B-spline discretization
space pair S4

2×S3
2 (see [33] for details on stream func-

tion and vorticity computation). We do not present
stream function and vorticity profiles for other cases
in this study because the figures are very similar and
presenting these figures would not add value. Let us
only note that visually both profiles match the corre-
sponding profiles available in the literature very well
(see e.g. [54]).

Further, we present the comparison of ux-velocity
profiles along vertical cross-sections of the computa-
tional domain at x = 0.1, x = 0.5, x = 0.95 and uy-
velocity profiles along horizontal cross-sections of the
computational domain at y = 0.1, y = 0.5, y = 0.99
obtained for selected discretization spaces in study
in Figures 5 and 6. Let us emphasize that except
the velocity profiles along cross-sections at x = 0.5,
y = 0.5, which are quite commonly presented in the
literature, we demonstrate the results also for other
cross-sections. The reason is that we want to com-
pare the solutions obtained for different discretization
spaces more thoroughly in the whole domain and the
cross-sections near the boundary of the computational
domain intersect the problematic parts of the solution.
From Figures 5 and 6, we can conclude that most

of the solutions obtained for selected discretization
space pairs and selected meshes match the reference
solution well, or even very well. The best solutions
(the closest to the reference solution) are provided by
discretization space pairs and meshes S4

2×S3
2 (64×64),

P4/P3 (64× 64) and P2/P1 (128× 128). However, let
us emphasize that the latter two cases have about
four times more degrees of freedom (DOFs) than the
former one which indicates the advantage of B-spline
discretization spaces and isogeometric analysis in this
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(a).

(b).

(c).

Figure 5. Comparison ux-velocity profiles for vertical cross-sections of the computational domain at x = 0.1 (A),
x = 0.5 (B), x = 0.95 (C) obtained for different discretization spaces, where S20S10 stands for S2

0 × S1
0 , S40S30 for

S4
0 × S3

0 and S42S32 for S4
2 × S3

2 .
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(a).

(b).

(c).

Figure 6. Comparison uy-velocity profiles for horizontal cross-sections of the computational domain at y = 0.1 (A),
y = 0.5 (B), y = 0.99 (C) obtained for different discretization spaces, where S20S10 stands for S2

0 × S1
0 , S40S30 for

S4
0 × S3

0 and S42S32 for S4
2 × S3

2 .
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ux at x = 0.1 ux at x = 0.5 uy at y = 0.1 uy at y = 0.5

S2
0×S1

0 (64× 64) 2.1 · 10−2 2.3 · 10−4 4.1 · 10−5 2.9 · 10−4

S2
0×S1

0 SUPG (64× 64) 6.8 · 10−3 3.9 · 10−5 1.2 · 10−5 6.5 · 10−5

S4
0 × S3

0 (32× 32) 2.4 · 10−3 3.4 · 10−5 6.9 · 10−7 1.2 · 10−5

S4
2 × S3

2 (64× 64) 5.1 · 10−6 3.8 · 10−5 6.5 · 10−8 2.4 · 10−6

P2/P1 (64× 64) 2.0 · 10−4 3.1 · 10−4 8.3 · 10−4 4.9 · 10−4

P2/P1 (128× 128) 2.5 · 10−5 1.2 · 10−6 9.0 · 10−8 1.3 · 10−6

P4/P3 (32× 32) 1.2 · 10−4 4.1 · 10−4 2.7 · 10−5 6.4 · 10−4

P4/P3 (64× 64) 3.1 · 10−6 1.7 · 10−6 8.8 · 10−8 1.9 · 10−6

Table 3. Residual sum of squares obtained for studied discretization space pairs and the corresponding reference
solution at selected cross-sections through the computational domain.

studied case. To have a fair comparison of higher
degree finite element discretization space pairs with
B-spline discretization space pairs, S4

2 × S3
2 (64× 64)

has to be compared with P4/P3 (32×32) because they
have the similar number of DOFs (see Table 1 and
2). Looking at these two cases, P4/P3 (32× 32) gives
a significantly worse solution (more distant from the
reference solution) than S4

2 × S3
2 (64× 64). Further,

S4
0 × S3

0 (32× 32), which is similar to the case P4/P3
(32×32) regarding the number of DOFs, degree of dis-
cretization spaces and continuity of the basis functions,
behaves better than P4/P3 (32× 32) but worse than
S4

2 ×S3
2 (64× 64), which has also the similar number

of DOFs. To quantify these conclusions, we also com-
puted residual sum of squares (RSS) of the obtained
solutions and the reference solutions. For selected
cross-sections, the results of RSS are demonstrated
in Table 3 and they confirm the above mentioned
conclusions.
The only exception of the discussion presented in

the previous paragraph is the uy-velocity profile along
a horizontal cross-section at y = 0.99, see Figure 6(C).
Near the upper right corner of the computational
domain (right part of Figure 6(C)), the solutions ob-
tained for B-spline discretization space pairs strongly
oscillate. As the above mentioned cross-section is very
close to the lid part of the boundary, these oscilla-
tions are caused by a sudden change in the boundary
condition near the upper corner of the computational
domain and also by the fluid flow striking the wall
of the cavity. Because of that, oscillations can be
expected in this part of the computational domain.
One can see that oscillations of the solution for S4

2×S3
2

are smaller in amplitude than for S4
0×S3

0 , but on a
wider domain (which is caused by a wider support
of B-spline basis functions of high continuity). Note
that this behaviour can be also improved and the os-
cillations reduced by considering finer computational
meshes (at least 128×128 for S4

2×S3
2 ), by local refine-

ment near the walls of the cavity or by stabilization of
the numerical solution by SUPG method. It is also in-
teresting that the FEM solutions obtained by FEniCS
are less oscillative for comparable discretization spaces.
On the other hand, near the upper left corner of the
computational domain (left part of Figure 6(C)) the

Initial mesh of S4
2×S3

2

Macro-elements size 64× 64 128× 128
128× 128 – 149258
64× 64 37770 151850
32× 32 39082 157106
16× 16 41778 167906
8× 8 47458 190658
4× 4 59970 240770
2× 2 89602 359426
1× 1 167298 670466

Table 4. Degrees of freedom (DOFs) for simulations
in an in-house IgA-based flow solver with rIgA dis-
cretization space pairs arising from S4

2×S3
2 .

behaviour of the solutions significantly differs from the
behaviour near the upper right corner. The solutions
obtained by FEniCS oscillate. The solutions obtained
for low continuity B-spline discretization space pairs
(S2

0×S1
0 , S4

0×S3
0 ) also oscillate but less than FEniCS

solutions. Even stabilization of the numerical solu-
tion by SUPG method does not help to completely
eliminate the oscillations in the case of B-spline dis-
cretization space pair S2

0×S1
0 . The best solution in

this part is the solution obtained for B-spline dis-
cretization space pair S4

2×S3
2 which is without any

oscillations and very close to the reference solution.
Note that oscillations in the solution in this part of
the computational domain are mainly caused by a
sudden change in the boundary condition. The above
mentioned observations indicate a small stabilization
effect of B-spline discretization space pairs of higher
continuity.

Further, motivated by the recent results on the so-
called rIgA (refined Isogeometric Analysis, see [42, 43])
we performed several experiments whether this ap-
proach can speed up the time-consuming computa-
tions also in the case of the Navier-Stokes equations.
The main idea of rIgA approach lies in reduction of the
continuity of highly continuous isogeometric discretiza-
tion spaces over specific inter-element boundaries (C0

separators). The continuity reduction weakens the
interconnection between the subdomains since it re-
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duces the number of basis functions with support over
the corresponding inter-element boundary, which im-
proves the performance of the factorization using a
multifrontal direct solver (see [62]).
In our experiments, we start with the high conti-

nuity isogeometric discretization space pair S4
2 × S3

2
and successively increase the number of C0 separators
(and concurrently decrease the macro-element size).
Insertion of C0 separator means inserting a multiple
knot into the knot vector determining isogeometric
discretization space which leads to the increase of the
number of basis functions, and also degrees of freedom.
Table 4 shows the numbers of degrees of freedom for
rIgA discretization space pairs with decreasing macro-
elements size arising from S4

2 × S3
2 considered on two

different meshes 64 × 64 and 128 × 128. Note that
macro-elements size 1×1 corresponds to discretization
space pair S4

0×S3
0 used above.

Figure 7 displays speed-up in solving the linear sys-
tem (by a direct solver in PARDISO library) obtained
from discretization of the steady Navier-Stokes equa-
tions for lid-driven cavity problem in one Picard’s
iteration. This speed-up is plotted with respect to
the macro-elements size and the values on the y-axis
correspond to the ratio of time obtained for standard
high continuity isogeometric discretization space pair
S4

2 × S3
2 and time for rIgA discretization for the par-

ticular macro-elements size. All times are averages
of 100 Picard’s iterations. For example, in the case
of the mesh of 128× 128 elements solving the linear
system obtained for macro-elements size 4×4 is 3.76×
faster than solving the linear system without any C0

separators. Similarly, Figure 8 shows the reduction in
the numbers of floating point operations needed for
factorization during solving the linear system obtained
by rIgA method for various macro-elements sizes by
a direct solver (in PARDISO library) with respect to
high continuity isogeometric discretization space pair
S4

2 × S3
2 .

It can be seen that our results for the steady Navier-
Stokes equations are in a good agreement with results
presented in [43] for the Stokes equations and they
confirm the positive effect of rIgA for solving linear
systems also in the case of the steady Navier-Stokes
equations. Speed-up indicated by the reduction of
floating point operations is not fully reached, as one
can see by comparing Figure 7 and Figure 8, but this
is also in an agreement with the results presented
in [43]. Further, Figures 7 and 8 indicate that one
can expect higher speed-up for finer meshes. The
reason for this lies in the fact that we are not in a
fully asymptotic regime with our computational grids
where theoretical speed-up in FLOPs reaches O(p2)
for the Stokes problem (see [43]). However, larger
grid sizes are too time-consuming because we solve
non-linear problem with many iterations required for
convergence of the steady Navier-Stokes equations.
As an assembly of matrices is considered as one of

the major drawbacks of IgA frequently studied in the

literature (see e.g. [35–37]), one could ask if increasing
the number of degrees of freedom by insertion of C0

separators leads to more time-consuming assembly of
matrices for the resulting linear system. If matrices
are assembled element-wise, which is still frequently
done in IgA-based solvers and which is also done in
our case, and if an assembly of matrices only requires
evaluation of B-spline basis functions and their deriva-
tives for computation of local element matrices and
assembling of local matrices to a global matrix (as
in the case of mass matrix or stiffness matrix), the
cost of an assembly of matrices in high continuity IgA
and rIgA is identical. The reason lies in the fact that
the number of basis functions per element is the same
for high continuity IgA and rIgA. Moreover, during
assembling of local matrices to the global matrix, the
local matrices highly overlap in high continuity IgA
and overlapping of the local matrices reduces in rIgA
with decreasing macro-element size. This means that
assembly time for rIGA with various macro-elements
sizes is at most the same as for high continuity IgA.
Figure 9 shows speed-up in assembly of matrices

for the linear system in one Picard’s iteration of the
steady Navier-Stokes equations discretized by rIgA
method with various macro-elements sizes. It is seen
that for small macro-elements sizes the time needed
for assembly of matrices slightly increases. The rea-
sons lies in the fact that we construct the velocity
solution in each Picard’s iteration which is used in
the construction of the matrix N(u) (see (7)). As the
construction of the velocity solution depends on the
number of degrees of freedom, which rapidly grows for
smaller macro-element sizes (see Table 4), this leads
to a small increase in the computational cost of an
assembly of matrices. However, this behaviour does
not significantly affect the overall effectiveness of the
rIgA method.
Finally, our experience with solving the Navier-

Stokes and RANS (Reynolds-Averaged Navier-Stokes)
equations by IgA have shown that decreased conti-
nuity to only C0 inside the computational domain
can lead to spurious oscillations along this C0 sepa-
rator, especially for high Reynolds number fluid flow
simulations in complex computational domains. This
can be considered as a disadvantage of rIgA method,
specifically in its usage for fluid flow simulation.

7. Conclusions
In this paper, we have presented numerical results ob-
tained by our in-house incompressible fluid flow solver
based on isogeometric analysis and we have compared
our results with the results obtained by a standard
package based on finite element method FEniCS and
with the selected reference solutions. For this compari-
son, we have chosen the standard benchmark problem
for incompressible fluid flow simulation – lid-driven
cavity flow.
Our experiments on uniform meshes have shown

that even for coarse grids and low numbers of degrees
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Figure 7. Time to solve the linear system arising from rIgA discretizations of the Navier-Stokes equation with a
direct solver (PARDISO library) presented as speed-up gained by decreasing the macro-elements size.

Figure 8. Floating point operations needed for factorization during solving the linear system arising from rIgA
discretizations of the Navier-Stokes equation with a direct solver (PARDISO library) presented as speed-up (reduction
of FLOPs) gained by decreasing the macro-elements size.

Figure 9. Time needed for assembly of matrices in one Picard’s iteration in rIgA discretizations of the Navier-Stokes
equation presented as speed-up gained by decreasing the macro-elements size.
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of freedom, isogeometric analysis based on inf-sup
stable B-spline discretization space pairs of higher de-
gree and continuity can provide results which match
reference solutions available in the literature very well.
Further, comparing these results with results obtained
by FEniCS (based on inf-sup stable finite element dis-
cretization space pairs), isogeometric analysis has pro-
duced the solutions with higher accuracy for meshes
with the approximately same number of degrees of
freedom. As the best case of the tested cases, we have
identified B-spline discretization space pair S4

2 × S3
2

which produces an accurate solution even for a low
number of degrees of freedom (about 40000 DOFs)
and which corresponds to the solutions in FEniCS
on the meshes with four times more degrees of free-
dom. Moreover, the solutions obtained for S4

2 × S3
2

are superior to the solutions obtained for S4
0 × S3

0 for
the similar number of degrees of freedom, which con-
firms the superiority of B-spline discretization spaces
of high continuity. Further, our experiments have
indicated a small stabilization effect of high continuity
B-spline discretization space pairs. However, this ef-
fect is much smaller than the effect of stabilization by
SUPG method. Finally, we have shown numerically
that the idea of rIgA method is also valid for the
steady Navier-Stokes equations, i.e., inserting suitable
C0 separators helps to decrease the time needed for
solving linear system using a direct solver.
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