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Abstract. We have recently introduced a new cell-centered Lax-Wendroff HLL hybrid scheme for
Lagrangian hydrodynamics [Fridrich et al. J. Comp. Phys. 326 (2016) 878-892] with results presented
only on logical rectangular quadrilateral meshes. In this study we present an improved version on
unstructured meshes, including uniform triangular and hexagonal meshes and non-uniform triangular
and polygonal meshes. The performance of the scheme is verified on Noh and Sedov problems and its
second-order convergence is verified on a smooth expansion test.

Finally the choice of the scalar parameter controlling the amount of added artificial dissipation is
studied.
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1. Introduction
Lagrangian hydrodynamical methods are crucial for
simulations of high speed compressible fluid flows as
e.g. in astrophysics or inertial confinement fusion
(ICF). Lagrangian hydrodynamics solves Euler equa-
tions for compressible fluid flow on a computational
mesh moving with the fluid under the assumption of
no mass flux between the cells. Staggered Lagrangian
methods, e.g. [1–3], using an artificial viscosity (orig-
inally introduced by von Neumann and Richtmyer
[4]) as a dissipative mechanism, have been standard
for many years. Staggered methods define thermody-
namical quantities (density, pressure, internal energy)
in the cells, while velocity is defined at mesh nodes.
A class of high order staggered finite element methods
on meshes with curvilinear cells has been developed in
[5]. Another form of the dissipative mechanism, which
comes from an approximate Riemann solver, has been
developed in the cell-centered methods [6–12], which
assign both velocity and thermodynamical quantities
to the cells.

Our recently introduced Lax-Wendroff HLL hybrid
scheme [13] is also a cell-centered method. The artifi-
cial dissipation, in the form of dissipative part of the
HLL approximate Riemann solver flux [14], is added
to the momentum and energy equations. The original
method is improved by applying another weighting
in the predictor. The original paper [13] has pre-
sented numerical results only on logical rectangular,
quadrilateral meshes. Here we present results on un-
structured meshes, including uniform triangular and
hexagonal meshes and non-uniform triangular and
polygonal meshes.

2. Lagrangian Finite Volume
In Lagrangian coordinates we define the finite volume
method on a moving finite volume V with a surface
S. The mass mV , momentum Mv and total energy
EV of the moving volume V are given by

mV =
∫
V

ρ dV, MV =
∫
V

ρu dV, EV =
∫
V

ρE dV,

(1)
where ρ is density, u velocity and E total specific
energy (i.e., total energy per unit mass). From the
Reynolds transport theorem one can derive the finite
volume formulation of Lagrangian compressible gas
dynamics equations for conserved quantities WV =
(V,MV , EV )

dWV

d t
=
∫
S

F · n dS, (2)

where n is the outward normal to the surface S and
the flux F is given by

F = (u,−pI,−pu). (3)

Here I is the unit matrix and p is pressure, for which
we employ the ideal gas equation of state p = (γ −
1)ρ(E−u2/2). The system (2) is solved for all cells V
of the moving unstructured computational mesh. For
all nodes of the moving mesh one solves the ordinary
differential equations

dX
d t

= u = (u, v), (4)

where X = (x, y) are coordinates of a node of the
mesh and u is the velocity of the node.
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The specific quantities wV = WV /mV (i.e. quanti-
ties per unit mass)

ηV = V

mV
= 1
ρV

, uV = MV

mV
, EV = EV

mV
(5)

are the specific volume ηV , the velocity uV and the
specific total energy EV . The specific quantities wV =
(ηV ,uV , EV ) will be our variables in the Lagrangian
schemes.

3. Meshes
For the computational mesh we follow the p-c notation
[15]. The unstructured computational mesh contains
cells c, points p and edges e. Each cell is a polygon.
A cell with n vertices can be split into n quadrilateral
subcells Spc by separators, which are the segments
connecting the cell center to the edge midpoints. The
edge e(ca) separates cells c and a. The outer normal
to the edge e(ca) (w.r.t. the cell c) is denoted by
ne(ca) and its length is equal to the length of the edge
e(ca). Around each node p, we construct a dual cell
as the union of the subcells Spc of all cells attached to
vertex p. The edges of the dual cell p which connect
the cell center and the edge centers are the separators
spc±. The outer normals nspc± to the separators spc±
have the same length as the separators spc±, see Fig. 1.
The corner vector

npc =
ne(ca) + ne(cb)

2 = −(nspc+ + nspc−) (6)

is the average of two neighboring edge normals ne(ca)
and ne(cb) (see Fig. 2) and is equal to minus the
sum of separator normals nspc+ and nspc− of the
corresponding subcell Spc.

We define the cell center Xc = (xc, yc) as the arith-
metic average of the cell nodes positions Xp. Each
subcell Spc is a quadrilateral with volume (area)

Vpc = 1
2

4∑
i=1

(yi+1 − yi)(xi+1 + xi),

where the subscript i denotes four nodes of subcell
Spc and X5 ≡ X1. The nodal volume Vp and the cell
volume Vc are given by sums of subcells having node
p or cell center c as their vertex, respectively:

Vp =
∑
c(p)

Vpc, Vc =
∑
p(c)

Vpc.

The subzonal mass mpc is defined by mpc = ρcVpc.
The mass of primary cell mc and the mass of dual cell
mp are defined similarly as volumes:

mc =
∑
p(c)

mpc, mp =
∑
c(p)

mpc.

The Lagrangian approach assumes no mass flux be-
tween subcells. Thus the subzonal masses, as well as
cell and nodal masses, remain constant.

4. Schemes
We employ Richtmyer’s finite volume formulation [16]
of the Lax-Wendroff method. Each step of the method
consists of a predictor and a corrector.

4.1. Predictor
The predictor computes the nodal estimates of con-
served quantities at time level n + 1

2 from cellular
quantities at time level n

wn+ 1
2

p =
∑
c(p) wn

c /Vpc∑
c(p) 1/Vpc

+ ∆t
2mp

∑
c(p)

Fnc ·(nnspc++nnspc−),

(7)
where the summation goes over c(p), which is the
set of all cells sharing the vertex p. In the original
paper [13] the conservative cell quantities in the first
term on the right hand side of (7) were weighted
by the Cartesian subzonal masses mpc, giving the
standard Lax-Friedrichs (LF) approximation. Here,
being inspired by Wendroff and White [17], we weight
them by the inverses of the subzonal volumes 1/Vpc.
The standard LF weighting on a 1D non-uniform
Eulerian mesh looks like

(∆xjwj + ∆xj+1wj+1)/(∆xj + ∆xj+1),

while Wendroff and White [17] proposed to use

(∆xj+1wj + ∆xjwj+1)/(∆xj + ∆xj+1),

which is the same as the linear interpolation from cell
centers to the nodes. We call this weighting Wendroff-
White (WW) weighting. On a 2D orthogonal mesh the
WW weighting can be generalized to the weighting
by the inverses of subzonal volumes, which is the
same as the bi-linear interpolation from cell centers to
nodes. In (7) we apply the same weighting to general
Lagrangian meshes.

4.2. Corrector
The nodal estimates from the predictor (7) are used
to compute the final LW cell values at time level n+ 1

mcwn+1
c = mcwn

c + ∆t
∑
e(ca)

Fn+ 1
2

e(ca) · n
n+ 1

2
e(ca), (8)

where the summation goes over e(c) which is the set of
all edges of cell c, the edge e(ca) is the edge between
cells c and a, and where Fn+ 1

2
e(ca) is the average of the

two nodal fluxes at the endpoints of the edge e(ca)

Fn+ 1
2

e(ca) =
Fn+ 1

2
pe(ca)+ + Fn+ 1

2
pe(ca)−

2 .

The corrector (8) can be rewritten as

mcwn+1
c = mcwn

c + ∆t
∑
p(c)

Fn+ 1
2

p · nn+ 1
2

pc (9)

using the summation over p(c), which is the set of all
points, i.e. vertices, of cell c and the corner vectors
nn+ 1

2
pc .
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Figure 1. The primary (here triangular) mesh drawn by solid segments with an edge normal to the primary edge
eca and one dual cell delineated by the separators (dotted segments), shown along with their normals.

Figure 2. Averaging of the edge normals ne(ca) and ne(cb) of the cell c to define the corner vector npc.
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4.3. Mesh positions update
The node positions are updated using the nodal ve-
locity estimates from the predictor:

Xn+1
p = Xn

p + ∆tun+ 1
2

p , Xn+ 1
2

p = (Xn+1
p + Xn

p )/2

4.4. Artificial dissipation
The dissipative terms Dc are added to the corrector
(8)

mc
wn+1
c −wn

c

∆t =
∑
e(ca)

Fn+ 1
2

e(ca) · n
n+ 1

2
e(ca) + Dc,

so that the scheme can compute shock waves. We use
the dissipative parts of the HLL approximate Riemann
solver fluxes [14] as the artificial dissipation terms

Dc = Dτ ·
∑
e(c)

σcaσac
σca + σac

|nne(ca)|(wn
a −wn

c ), (10)

where the modified signal velocity is defined by

σca = ρnc

(
cs,nc +

|(unc − una) · nne(ca)|
|nne(ca)|

)
,

and

Dτ =


τη 0 0 0
0 τu 0 0
0 0 τu 0
0 0 0 τE

 (11)

is the diagonal matrix of dimensionless coefficients,
which control how much artificial dissipation is added.
We employ the method with τη = 0, which we call
LW+2 and which satisfies the geometric conservation
law [13]. In all these tests we use τη = 0 and τu =
τE = τ . In [13] we have used also the scheme LW+3
with τη 6= 0.

5. Numerical results
In the original paper [13], all 2D numerical results
were shown on a structured quadrilateral mesh, i.e.,
a logically rectangular (Cartesian) grid, although the
actual method was already formulated for general
polygonal meshes, using the p-c notation. Here we
present the results on a variety of general meshes. In
particular, the following topologies are used: First, we
consider a honeycomb mesh, that is, a tessellation of
the computational domain by regular hexagons. The
boundary cells are trimmed accordingly to preserve
the straight domain boundaries, which makes them
non-hexagonal. Below, we call this a regular hexag-
onal mesh. Splitting each hexagon into six triangles
meeting at the hexagon’s center, and similarly split-
ting the boundary cells, we obtain a structure which
we will refer to as a regular triangular mesh. Note
that the regular hexagonal (honeycomb) mesh can

be seen as a Voronoi tessellation with regularly dis-
tributed generators. Perturbing the positions of these
generators and generating a new Voronoi tessellation,
we obtain a mesh with cells being generally convex
polygons. At this point, the mesh may need cleaning
from too short edges and similar degeneracies. Fi-
nally, splitting each of these polygons of N vertices
into N triangles meeting at the polygon’s center, we
obtain an irregular triangular grid. Note that while in
the regular triangular grid each of the interior nodes
was connected to six neighbors, now the connectivity
varies and thus we have an unstructured triangular
mesh. In the process of generating these test grids,
we utilized the Voronoi tessellator ShaPo [18] and its
advanced tools.

5.1. Time step control
The time step ∆t is adaptively controlled by the CFL
condition and limited by the multiple of the previous
time step, so that it does not grow too fast. At time
level n we set

∆tn = min
(
CCFL min

c

√
V nc
cs,nc

, Cg∆tn−1

)
, (12)

where cs,nc is the sound speed and we use Cg = 1.05 to
limit the time step growth. In the numerical tests we
set CCFL = 0.15. The Noh problem on the triangular
mesh with CCFL = 0.5 generated small oscillations
on the plateau of the solution. The time step is
further constrained by the requirement that the cell
volumes do not change much during one time step. If
|V n+1
c /V nc −1| > Cv for some cell c, then the time step

is reduced to a half ∆tn = ∆tn/2 and recomputed. In
the tests we set Cv = 0.1.

5.2. Noh problem
The Noh implosion test problem [19] is a spherical
infinite strength shock propagating out from the origin.
Its cylindrical version is modeled in the Cartesian
(x, y) plane as follows. Initially, the density is set to
unity and the pressure to zero everywhere, the velocity
has a magnitude of 1 and is directed toward the origin,
that is, u = −X/|X|, and the ideal polytropic gas
equation of a state with adiabatic index γ = 5/3 is
used. The exact solution at time t inside the shocked
region (|X| ≤ t/3) is density ρ = 16, pressure p =
16/3, zero velocity, while outside the shock (|X| > t/3)
we should have the exact density ρ = 1 + t/|X|, zero
pressure and the velocity should remain u = −X/|X|.
In our simulations, we approximate the zero initial
pressure by p = 10−6. The results are shown at the
usual final time tfinal = 0.6.

Figures 3 and 4 show the density color maps result-
ing from calculations, where the initial computational
domain [−1, 1]× [−1, 1] was covered by a regular tri-
angular mesh (described above) consisting of 10,108
cells, resp. by a regular hexagonal mesh of 10,083
cells. These meshes have a comparable numbers of
cells and both will be further referred to as “coarse”.
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Figure 3. Density and mesh for Noh problem on
coarse (10108-cell) regular triangular mesh with τ =
2.
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Figure 4. Density and mesh for Noh problem on
coarse (10083-cell) regular hexagonal mesh with τ =
1.25.

Note that for each mesh we are showing the results
with a different dissipation parameter τ . Indeed, as
we can see in Figs. 5 and 6, the optimal dissipation
coefficient, which prevents the oscillation near the
shock but still does not smooth it too much, seems to
depend on the mesh topology. For the regular trian-
gular mesh a reasonable choice seems to be around
τ = 2, while for hexagons it is about τ = 1.25. Let us
remark, that for a regular quadrilateral grid, which is
not shown here, the optimum is about τ = 1.5. This
is in good agreement with the results shown in [13],
which however used the default LF mass weighting in
the predictor instead of (7). This mesh dependence
of the optimal dissipation parameter deserves further
study.
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Figure 5. Scatter plot of density for Noh problem on
coarse regular triangular mesh with different values of
dissipation parameter τ .

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

2

4

6

8

10

12

14

16

Figure 6. Scatter plot of density for Noh problem on
coarse regular hexagonal mesh with different values of
dissipation parameter τ .

As for the symmetry and value of density on the
plateau (inside the shocked region), the contour plots
suggest that the regular hexagons in Fig. 8 do better
than regular triangles in Fig. 7. The comparison of
results of our LW+2 method and the standard stag-
gered method with tensor artificial viscosity on logical
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Figure 7. Contour plot of density for Noh problem
on coarse regular triangular mesh with τ = 2.
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Figure 8. Contour plot of density for Noh problem
on coarse regular hexagonal mesh with τ = 1.25.

rectangular quadrilateral mesh in [13] shows that our
method preserves polar symmetry much better.

Finally, to demonstrate the numerical convergence,
we show the sequence of density scatter plots on
meshes with the same topology and different reso-
lutions, referred to as “coarse”, “medium” and “fine”,
namely in Fig. 9 for the regular grid of 10,108, 40,280
and 160,816 triangles and in Fig. 10 for the regular
hexagonal grid of 10,083, 40,037 and 159,561 cells.
The mesh resolutions in both cases are chosen so that
the cell numbers approximately correspond to those of
regular quadrilateral meshes of 50×50, 100×100, resp.
200×200 initally square cells per quadrant, shown in
the original paper [13]. (But again, keep in mind
that the results shown there use the standard LF
weighting.)

A more thorough test of convergence will be pre-
sented in Sec. 5.4.

Note that we obtain decent results also on unstruc-
tured meshes of 9,914 triangles in Fig. 11 and of 10,083

Figure 9. Convergence of scatter plots of density for
Noh problem on regular triangular mesh with τ = 2.

Figure 10. Convergence of scatter plots of density
for Noh problem on regular hexagonal mesh with τ =
1.25.

general polygons (ranging from triangles to nonagons)
in Fig. 12.

5.3. Sedov problem
The Sedov blast wave test problem [20] describes the
evolution of a blast wave in a point-symmetric ex-
plosion. Again, we consider its cylindrical version in
Cartesian geometry. The ideal polytropic gas, this
time with the adiabatic index γ = 7/5, is initially at
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Figure 11. Density and mesh for Noh problem on
irregular triangular mesh of 9914 cells with τ = 2.
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Figure 12. Density and mesh for Noh problem on ir-
regular polygonal mesh of 10083 cells with τ = 1.25.

rest, its density is set to 1 everywhere and the total
energy E = 0.979264 is stored at the origin in the form
of internal energy. At the final time tfinal = 1.0 the
exact solution is a point-symmetric diverging shock
whose front is at radius |X| = 1 and has a density peak
ρ = 6. The exact solution shown in the scatter plots
as a reference was obtained by the code Cococubed
[21].

Note that while we are only showing one quadrant
of the computational domain, the calculation is per-
formed on the entire domain. This allows us to use a
general polygonal mesh which is, unlike the regular
meshes, non-symmetric. In the literature, one often
encounters this test set up on a quadrilateral mesh
with the calculation performed only on one quadrant,
so that the total energy E = 0.244816, one quarter
of ours, is stored in a single corner cell. In our im-
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Figure 13. Density and mesh for Sedov problem on
regular triangular mesh of 10108 cells with τ = 2.

plementation, all of the initial energy is stored is one
regular hexahedral cell centered at (0, 0) in the case
of the honeycomb and general polygonal meshes. Six
triangular cells are created by its subdivision for the
structured and unstructured triangular meshes.
The initial computational domain [−1.2, 1.2] ×

[−1.2, 1.2] was covered by the same meshes as ear-
lier for the Noh test, just now scaled to this bigger
domain.
In Fig. 13 we see the density color map on the

coarse regular triangular mesh, in Fig. 14 on the coarse
regular hexagonal grid, and in Fig. 17 on the same
number of general polygons.

The scatter plots in Fig. 15 show that with increas-
ing resolution on regular triangles (coarse mesh at left
and fine at right) we approach to the correct diverging
shock with the front at radius |X| = 1 and a density
peak ρ = 6 and to correct low density around the
origin. Similarly in Fig. 16 we again compare the
solutions of Sedov problem on the lowest and high-
est resolution meshes of regular hexagons introduced
earlier for the Noh test.

5.4. Smooth expansion problem
To check the numerical order of accuracy of the LW
scheme we define a smooth, radially symmetric, ex-
pansion problem for a gas with γ = 5/3 on the cir-
cular domain with the initial radius 3, centered at
the origin. The initial density has Gaussian profile
ρ0 = exp(−|X|2), the initial specific internal energy
is constant ε0 = E0 = 3/4 and the gas is initially at
rest. The final time was set to tfinal = 1.

This polar symmetric problem has been also solved
in 1D on a high resolution mesh with 5,000 cells. The
obtained high resolution solution is used as a reference
solution and instead of errors we are looking at the
deviations of the 2D numerical solutions from this
reference.
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Figure 14. Density and mesh for Sedov problem on
regular hexagonal mesh of 10083 cells with τ = 1.25.
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Figure 15. Density scatter plot for Sedov problem
on regular triangular meshes with τ = 2 on coarse (a)
and fine mesh (b).

The 2D solutions were calculated on honeycomb
meshes, which were constructed by the Voronoi tessel-
lation of the initial circular domain. Since the solution
is smooth, the calculations were performed by the pure
LW method without any artificial dissipation. At the
final time, the deviations from the linearly interpo-
lated 1D reference solution were compared at the cell
centers; i.e., for each cell we evaluate the radius of its
center and compare the 2D value at the center with
the value of the 1D reference solution linearly inter-
polated to this radius. Table 1 shows the maximum
deviations of density for consecutively refined meshes.
Each finer mesh has about four times as many cells as
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Figure 16. Density scatter plot for Sedov problem
on regular hexagonal meshes with τ = 1.25 on coarse
(a) and fine mesh (b).
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Figure 17. Density and mesh for Sedov problem
on irregular polygonal mesh of 10083 cells with τ =
1.25.

than the previous one, which amounts to doubling the
resolution in each direction. The ratio of the devia-
tions is about 4, which confirms that the LW method
is 2nd order accurate.

6. Conclusions
We have presented the cell-centered hybrid Lax-
Wendroff HLL Lagrangian scheme for compressible hy-
drodynamics on unstructured computational meshes.
The results of Noh and Sedov problems on uni-
form honeycomb hexagonal, uniform triangular, non-
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No. of cells Max. Ratio w. r. t.
in the mesh deviation prev. resol.

75 0.036
309 0.0088 4.1

1 251 0.0021 4.2
5 012 0.00051 4.1
20 094 0.00013 4.0

Table 1. Maximum density deviations of 2D solutions
from the interpolated 1D reference solution and the
ratios of the deviations.

uniform polygonal and non-uniform triangular meshes
confirm the quality of the approach. The method
preserves polar symmetry of the solution very well.

Acknowledgements
The first four authors have been supported by the Czech
Science Foundation project 18-20962S, by the project
CZ.02.1.01/0.0/0.0/16_019/0000778 from European Re-
gional Development Fund, by the Czech Technical Univer-
sity in Prague project SGS19/191/OHK4/3T/14 and by
the Czech Ministry of Education project RVO 68407700.

References
[1] E. J. Caramana, D. E. Burton, M. J. Shashkov, P. P.
Whalen. The construction of compatible hydrodynamics
algorithms utilizing conservation of total energy.
Journal of Computational Physics 146(1):227–262, 1998.
doi:10.1006/jcph.1998.6029.

[2] E. J. Caramana, M. J. Shashkov, P. P. Whalen.
Formulations of artificial viscosity for multi-dimensional
shock wave computations. Journal of Computational
Physics 144(1):70–97, 1998. doi:10.1006/jcph.1998.5989.

[3] E. J. Caramana, M. J. Shashkov. Elimination of
artificial grid distortion and hourglass-type motions by
means of Lagrangian subzonal masses and pressures.
Journal of Computational Physics 142(2):521–561, 1998.
doi:10.1006/jcph.1998.5952.

[4] J. vonNeumann, R. D. Richtmyer. A method for the
numerical calculation of hydrodynamic shocks. Journal
of Applied Physics 21(3):232–237, 1950.
doi:10.1063/1.1699639.

[5] V. A. Dobrev, Tz. V. Kolev, R. N. Rieben. High-order
curvilinear finite element methods for Lagrangian
hydrodynamics. SIAM Journal on Scientific Computing
34(5):B606–B641, 2012. doi:10.1137/120864672.

[6] B. Després, C. Mazeran. Lagrangian gas dynamics in
two dimensions and Lagrangian systems. Archive for
Rational Mechanics and Analysis 178(3):327–372, 2005.
doi:10.1007/s00205-005-0375-4.

[7] P.-H. Maire, R. Abgrall, J. Breil, J. Ovadia. A
cell-centered Lagrangian scheme for two-dimensional
compressible flow problems. SIAM Journal on Scientific
Computing 29(4):1781–1824, 2007.
doi:10.1137/050633019.

[8] P.-H. Maire. A high-order cell-centered Lagrangian
scheme for two-dimensional compressible fluid flows on
unstructured meshes. Journal of Computational Physics
228(7):2391–2425, 2009. doi:10.1016/j.jcp.2008.12.007.

[9] P.-H. Maire, B. Nkonga. Multi-scale Godunov-type
method for cell-centered discrete Lagrangian
hydrodynamics. Journal of Computational Physics
228(3):799–821, 2009. doi:10.1016/j.jcp.2008.10.012.

[10] D. E. Burton, N. R. Morgan, T. C. Carney, M. A.
Kenamond. Reduction of dissipation in Lagrange cell-
centered hydrodynamics (CCH) through corner gradient
reconstruction (CGR). Journal of Computational Physics
299:229–280, 2015. doi:10.1016/j.jcp.2015.06.041.

[11] J. Cheng, C.-W. Shu. Positivity-preserving
Lagrangian scheme for multi-material compressible flow.
Journal of Computational Physics 257(A):143–168,
2014. doi:10.1016/j.jcp.2013.09.047.

[12] W. Boscheri, M. Dumbser, R. Loubere, P.-H. Maire.
A second-order cell-centered Lagrangian ADER-MOOD
finite volume scheme on multidimensional unstructured
meshes for hydrodynamics. Journal of Computational
Physics 358:103–129, 2018.
doi:10.1016/j.jcp.2017.12.040.

[13] D. Fridrich, R. Liska, B. Wendroff. Some
cell-centered Lagrangian Lax-Wendroff HLL hybrid
schemes. Journal of Computational Physics
326:878–892, 2016. doi:10.1016/j.jcp.2016.09.022.

[14] A. Harten, P. D. Lax, B. van Leer. On upstream
differencing and Godunov-type schemes for hyperbolic
conservation laws. SIAM Review 25(1):35–61, 1983.
doi:10.1137/1025002.

[15] R. Loubère, M. Shashkov. A subcell remapping
method on staggered polygonal grids for
arbitrary-Lagrangian-Eulerian methods. Journal of
Computational Physics 209(1):105–138, 2005.
doi:10.1016/j.jcp.2005.03.019.

[16] R. D. Richtmyer. A survey of difference methods for
non-steady fluid dynamics. NCAR Technical Notes 63-2,
National Center for Atmospheric Research, Boulder,
Colorado, 1962. doi:10.5065/D67P8WCQ.

[17] B. Wendroff, A. B. White. A supraconvergent scheme
for nonlinear hyperbolic systems. Computers &
Mathematics with Applications 18(8):761–767, 1989.
doi:10.1016/0898-1221(89)90232-0.

[18] J. Pouderoux, F. Chevassu, M. Kenamond,
M. Shashkov. ShaPo - Recent advances on the Voronoi
mesh generation toolkit. Presented at the 9-th
International Conference on Numerical Methods for
Multi-Material Fluid Flow (MULTIMAT 2019), Trento,
Italy, September 9-13, 2019.

[19] W. F. Noh. Errors for calculations of strong shocks
using an artificial viscosity and artificial heat flux.
Journal of Computational Physics 72(1):78–120, 1987.
doi:10.1016/0021-9991(87)90074-X.

[20] L. I. Sedov. Similarity and Dimensional Methods in
Mechanics. Academic Press, New York, 1959.

[21] J. R. Kamm, F. X. Timmes. Cococubed. Sedov
verification code. LA-CC-07-020, 2007. http:
//cococubed.asu.edu/research_pages/sedov.shtml.

76

http://dx.doi.org/10.1006/jcph.1998.6029
http://dx.doi.org/10.1006/jcph.1998.5989
http://dx.doi.org/10.1006/jcph.1998.5952
http://dx.doi.org/10.1063/1.1699639
http://dx.doi.org/10.1137/120864672
http://dx.doi.org/10.1007/s00205-005-0375-4
http://dx.doi.org/10.1137/050633019
http://dx.doi.org/10.1016/j.jcp.2008.12.007
http://dx.doi.org/10.1016/j.jcp.2008.10.012
http://dx.doi.org/10.1016/j.jcp.2015.06.041
http://dx.doi.org/10.1016/j.jcp.2013.09.047
http://dx.doi.org/{10.1016/j.jcp.2017.12.040}
http://dx.doi.org/10.1016/j.jcp.2016.09.022
http://dx.doi.org/10.1137/1025002
http://dx.doi.org/10.1016/j.jcp.2005.03.019
http://dx.doi.org/10.5065/D67P8WCQ
http://dx.doi.org/10.1016/0898-1221(89)90232-0
http://dx.doi.org/10.1016/0021-9991(87)90074-X
http://cococubed.asu.edu/research_pages/sedov.shtml
http://cococubed.asu.edu/research_pages/sedov.shtml

	Acta Polytechnica 61(SI):68–76, 2021
	1 Introduction
	2 Lagrangian Finite Volume
	3 Meshes
	4 Schemes
	4.1 Predictor
	4.2 Corrector
	4.3 Mesh positions update
	4.4 Artificial dissipation

	5 Numerical results
	5.1 Time step control
	5.2 Noh problem
	5.3 Sedov problem
	5.4 Smooth expansion problem

	6 Conclusions
	Acknowledgements
	References

