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Abstract. The endeavour to increase the power output of steam turbines results in the design of
low-pressure stages with large diameters. Such designs, featuring long and thin blades, are increasingly
susceptible to unfavourable aeroelastic effects. The interaction of structure and flow may induce blade
vibrations, known as flutter, which act detrimentally on the operational life of the machine. The
present work employs a time-marching numerical simulation to investigate the flutter behaviour of
a low-pressure transonic turbine cascade. Its blades are subject to a harmonic motion based on the
results of a structural analysis and its susceptibility to flutter is evaluated via the energy method. The
computations are performed with an in-house Finite Volume Method code. The flow model is based
on 2D Euler equations in Arbitrary Lagrangian-Eulerian formulation with the AUSM+-up scheme for
inviscid flux discretization. A higher-order spatial accuracy is achieved by using a MUSCL approach,
for which both the gradient reconstruction and the slope limiting are given a careful examination-by
comparing the convergence and accuracy of multiple methods. The computational model is validated
by experimental data on the Fourth Standard Configuration turbine cascade.
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1. Introduction
The interaction of flow and structure leading to vi-
brations has long been recognised as one of the most
essential problems faced by turbine blade designers.
Uncontrolled oscillations may induce high-cycle fa-
tigue or even a complete failure of the machine, caus-
ing extensive damage. The demand for the higher
power of industrial steam turbines leads to large ex-
haust areas of the last low-pressure (LP) stages with
blades typically over 1 meter in length [1]. The aerody-
namic requirements, especially in the near-tip region
with highly supersonic flow, dictate that the thickness
of the blades is reduced. As a result, the last-stage
blades become increasingly susceptible to aeroelastic
effects.
Two types of aeroelastic phenomena are usually

investigated in turbomachinery: forced response and
flutter ([2, 3]). The former is a result of multiple blade
row interaction, where the inlet of a downstream blade
row is subjected to a circumferentially distorted flow
field coming from the upstream blade row. The present
aerodynamic or mechanical damping is sufficient to
keep the vibrations stable and the danger of a struc-
tural failure is not imminent. However, the oscillations
may lead to a low or high-cycle fatigue and reduce
considerably the operational life of the turbine. In
contrast to a forced response, the flutter phenomenon
investigated in this work represents self-excited un-

stable oscillations whose magnitude grows with every
cycle. The fluid-structure interaction mechanism is
similar to the infamous wing flutter encountered in
aeronautics, but with an added degree of complexity
due to the interaction of other blades within the blade
row. Aside from the danger of a fatal structural fail-
ure, flutter has been reported to cause problems such
as the cracking of the blade root [4].

The modelling of flutter is complicated by the num-
ber of effects which need to be considered, such as the
non-linear behaviour of both flow and elastic structure,
change of domain and mesh in time, flow viscosity
and turbulence [5]. Efforts to restrict the model to
include only the most essential effects have therefore
been made, such as the assumption of a potential flow
and zero wing thickness in the analytical model of
Theodorsen [6]. The advent of Computational Fluid
Dynamics (CFD) and the rise in computational power
allows for treating aeroelasticity problems with numer-
ical approaches. In order to keep the computational
demands reasonable, flutter was first modelled by su-
perimposing linear perturbations to a steady-state
non-linear solution and casting the equations to the
frequency domain. However, the consideration of non-
linear effects, such as large amplitudes of blade motion
or strong unsteady shocks, may be crucial for the ac-
curacy of the solution ([7, 8]), which was addressed by
the non-linear harmonics (NLH) method introduced
by Ning and He [9].
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The inherent limitation of the frequency-domain
based methods is the inclusion of only a few select
harmonics in the unsteady solution. The unsteady
fluid-structure interaction may be resolved fully by
time-marching methods, employing often the Arbi-
trary Lagrangian-Eulerian (ALE) formulation to allow
a deformation of the physical domain independent of
the fluid particle motion ([10–12]). The solution of the
complete fluid-structure problem is complicated by
the incompatibility of approaches used traditionally
for the treatment of isolated structure and fluid dy-
namics problems. Typically, CFD is solved with Finite
Volume Methods (FVM) and Computational Struc-
tural Mechanics (CSM) with Finite Element Meth-
ods (FEM), differing in solution and discretization
techniques [13]. Therefore, it is often simplified by
imposing only a one-way coupling between the fluid
and structural dynamics. It is assumed that the effect
of aerodynamic forces on the change of the structural
dynamic properties can be neglected in turbomachin-
ery thanks to the large density ratio between fluid
and structure. The blade eigenmodes and eigenfre-
quencies are determined in advance in a structural
solver and they are used to prescribe its motion in an
unsteady fluid dynamics solver ([2, 7, 14, 15]). The
motion of the neighbouring blades is not necessarily in
phase and usually a range of inter-blade phase angles
(IBPAs) is considered. For each IBPA, the unsteady
aerodynamic load on the blade surface during one
cycle is extracted and expressed by the aerodynamic
damping coefficient. The susceptibility to flutter is
then evaluated by comparing the present aerodynamic
and mechanical damping. This approach is commonly
called the energy method [3]. Although several efforts
have been made to include the full two-way coupling
([16–18]), the energy method is a well-proved tool for
flutter analysis [15] and it is employed in this work.
The transonic or supersonic flow-field in the last

stages of steam turbines is often characterised by a
complex shock pattern. This requires that the nu-
merical scheme, which is employed for the inviscid
flux approximation in the FVM, is capable of captur-
ing the shockwaves sharply, such as the flux-splitting
scheme AUSM devised by Liou and Steffen [19]. In
order to achieve a sufficient resolution of the flow
features, many FVM strategies include a gradient
reconstruction step providing a higher spatial order
of accuracy. The techniques are often based on the
Monotone Upstream-Centered Schemes for Conser-
vation Laws (MUSCL) approach [20], comprising of
two stages: firstly, the cell-wise constant values from
neighbouring finite volumes are used to reconstruct
the local gradient in each cell and secondly, the slope
is limited to prevent spurious oscillations at the points
of local discontinuities [21].

There exists a plethora of techniques for implement-
ing the MUSCL-type reconstruction, and although
this approach has become a routine practise in CFD,
there is no general agreement regarding which one is

the most suitable. In the first step, the cell-average
values from the standard FVM representation are
employed to reconstruct gradients in each cell. This
is most commonly performed using either a Green-
Gauss (GG) method, or a least squares minimiza-
tion (LSQ) [22]. The GG techniques further differ
by the method used to interpolate cell-face values,
while the least squares employ various stencils and
they may be either weighted or unweighted. In order
to achieve a second order of accuracy overall, the gra-
dient approximation needs to be at least first-order
accurate [23]. Mavriplis [24] found that unweighted
least squares severely underpredict normal gradients
on some meshes, which could be remedied by the
use of inverse distance weighting or by resorting to
a Green-Gauss method. Sozer et al. [22] compared
three GG-based approaches with a LSQ minimization
and a curvilinear gradient method and demonstrated
that the commonly used GG technique with either a
simple or an inverse-distance weighted averaging is in-
consistent and 0th order accurate for irregular meshes.
They further found gradient operators with compact
stencils to exhibit generally lower errors. The unsatis-
factory performance of the GG method with simple
averaging was confirmed by Mishriky and Walsh [25],
who derived analytically that it has a 0th order of
accuracy on a mesh with arbitrary spacing. They
also showed that the GG method with a more suit-
able face-value interpolation achieves a 1st order of
accuracy, similarly to the unweighted LSQ method.
Syrakos at al. [26] also concluded that a 1st order of
accuracy can be achieved with a GG method via a
suitable choice of face-value interpolation. They found
the inverse distance weighted LSQ approach to be at
least 1st accurate and, with a particular choice of the
weighting exponent (-3/2), up to 2nd order accurate
on some types of meshes.
The second step of MUSCLE-type procedure im-

poses a limiter on the reconstructed gradients in order
to prevent spurious oscillations. Such limiters are
for one-dimensional problems usually derived from a
total-variation diminishing criterion (TVD). However,
this approach is not directly extendable to multidi-
mensional problems on unstructured grids, due to the
difficulty of defining the TVD criterion in such cases
[27]. One of the earliest attempts to apply multidi-
mensional limiting on unstructured grids was devised
by Barth and Jespersen [28], invoking the monotonic-
ity principle to ensure that the reconstructed values
within the cell do not at any point exceed the mini-
mum/maximum of neighbouring centroid values. Ap-
plied to a computation of flow around airfoils, their
technique produced significantly more accurate results
in comparison with a first-order method. However, the
discontinuous nature of the limiter resulted in prob-
lems with steady-state convergence. To address this
problem, Venkatakrishnan [29] modified the method
by using a smooth limiter function. He succeeded in
achieving a better convergence behaviour, but his lim-
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iter used a constant which needed to be tuned for each
case. Other researchers tried to exploit the multidi-
mensionality of the problem and instead of multiplying
the gradient by a scalar slope limiter, they used its
projection onto a boundary of a maximum principle
region ([27], [23]). Kim and Kim [30] developed a
multidimensional limiting process for structured grids,
which was extended by Park et al. to unstructured
grids [31] and applied successfully to a transonic flow
computation around a NACA0012 airfoil. Recently, a
novel edge-based limiting procedure was devised by
Delis and Nikolos ([32], [33]). Instead of defining the
limited gradient as a constant value over the entire
cell, the limiting procedure is performed individually
for each cell-edge. The inevitable loss of accuracy
accompanying the activation of the limiter can thus
be minimized. Moreover, the edge-based limiting pro-
cedure employs the well-known 1D limiters, allowing
the user to chose the one that is most suitable for
their case.

The aim of this paper is to present a computational
model for flutter analysis of a low-pressure turbine
blade-row. Although the model employs relatively
well-established techniques such as the AUSM+-up
scheme of Liou [34] for inviscid flux approximation
with a MUSCL-type reconstruction, the implemen-
tation of each step is carefully revisited in order to
achieve high fidelity. The gradients are approximated
by the weighted least-squares method, for which a
study analysing the suitable choice of the weighting
coefficient and of the stencil extent is presented. A
comparison of gradient limiting procedures is also
shown, comprising of the techniques of Barth and
Jaspersen [28], Venkatakrishnan [29], Park and Kim
[31] and Delis and Nikolos [32]. The numerical results
are validated by comparison with experimental data
on the Fourth Standard Configuration (STCF4) of
Bölcs and Fransson [35]. Results are also shown for a
low-pressure turbine blade-row with a highly subsonic
inlet and a coupled mode of vibration.

2. Computational Methods
2.1. Flow Model
We denote Ωt the computational domain occupied
by fluid at time t ∈ 〈0, T 〉. We aim to find the fluid
density ρ, velocity u = u(x, t) and static pressure p
for x ∈ Ωt, where u = [ux, uy]T has two components
in the directions of Cartesian axes x, y. Further we
denote the total energy et = e+ 1

2 (u2
x +u2

y), using the
notation e for internal energy.
We consider the domain at time t = 0 as the ref-

erence domain Ωref = Ω0 and introduce the ALE
mapping [5]:

At : Ωref → Ωt, X → x(X, t) = At(X), (1)

describing the time-dependent position x ∈ Ωt of a
point from reference domain X ∈ Ωref . The ALE

Figure 1. Computational domain.

velocity is defined s = ∂At/∂t. We consider the set
of Euler equations [36]:

∂

∂t

∫
Ωt

W dΩ +
∮

Γ(t)
F (W ,n, s)dΓ = 0, (2)

where n = [nx, ny]T is the surface outward unit nor-
mal. The vector of characteristic variablesW and the
flux vector F are defined as:

W =

 ρ

ρu

ρet

 , F = (u−s)·n

 ρ

ρu

ρet + p

−
 0
−pn
−ps · n

 .
(3)

The system of equations is closed by the ideal gas
law:

p = (κ− 1)
[
ρet − ρ

u2
x + u2

y

2

]
(4)

We distinguish four domain locations with a differ-
ent boundary condition prescribed: the blade wall Γw,
the domain inlet Γin, the domain outlet Γout and the
periodic boundaries Γper,l, Γper,u (Fig. 1). The blade
wall is treated with a free-slip boundary condition,
requiring that the normal component of flow velocity
is equal to the normal component of wall movement
velocity (Eq. 5).

[(u− s) · n]Γw
= 0 (5)

Uniform stagnation conditions are prescribed at
the inlet and the local characteristic variables are
calculated via isentropic relations, using the Mach
number extrapolated from the inside of the domain.
At the outlet, the circumferentially average static
pressure is prescribed. The number of blades included
in the domain is chosen in function of the IBPA, such
that a spatial periodicity with W |Γper,l

= W |Γper,u

is achieved.

2.2. Numerical Scheme
The numerical solution employs a Finite Volume
Method for the discretization of Euler equations in
ALE formulation. The cell-face fluxes are calculated
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by the AUSM+-up scheme, introduced by Liou [34]
as a modification of the original AUSM+ scheme [19].
The reader is referred to the original paper for details,
here we will only expand on the alterations arising
due to the flux formulation within the ALE reference
frame. The underlying idea of the AUSM scheme
family is to split the flux into convective and pressure
parts and to treat them separately:

F̃1/2 = F̃ c
1/2 + F̃ p

1/2, (6)

where the 1/2 subscript indicates evaluation at the cell
interface. The definition of the pressure term can be
found in the paper of Darracq et al. [37], who derived
the ALE formulation for an M-split AUSM+ scheme.
In contrast to the original Eulerian formulation, a new
term ps · n appears:

F̃ p
1/2 =

 0
pn

ps · n


1/2

(7)

The convective flux for the AUSM+-up method is
defined as [34]:

F̃ c
1/2 = ṁ1/2

 1
u

et + p/ρ


L/R

(8)

The mass-flow calculation needs to be updated for
the ALE formulation, such that it uses a relative Mach
number Mr = (u − s) · n/a instead of an absolute
one:

ṁ1/2 = a1/2M
r
1/2

{
ρL if Mr

1/2 > 0,
ρR otherwise (9)

Special attention needs to be paid to the integration
in time for the ALE formulation. The stability and
accuracy of the time-stepping method is conditioned
by its compliance with the Geometric Conservation
Law (GCL) which ensures an exact reproduction of a
constant solution. In case of the explicit Euler scheme
used for time integration in the present work, this
requires that the fluxes are evaluated on a midpoint
grid in between the present and the next timestep
[36].

2.3. Gradient Reconstruction and
Limiting

The approximation of local gradients for the MUSCL-
type reconstruction is performed by a weighted least
squares method. For each cell a stencil is selected,
including either only its neighbours with a common
face, or also those sharing only a vertex. A plane is
fitted to this data, resulting into an overdetermined
linear system of equations [38]:


w1(x1 − xA) w2(y1 − yA)
w2(x2 − xA) w2(y2 − yA)

...
...

wm(xm − xA) wm(ym − yA)

∇qA=


w1(q1 − qA)
w2(q2 − qA)

...
wm(qm − qA)


(10)

Here the subscript A denotes the concerned cell,
the subscripts 1...m its neighbours included in the
stencil, x and y are the cell centroid coordinates, q is
a cell-averaged quantity. Each equation is multiplied
by an inverse-distance weighting factor

wi =
[√

(xi − xA)2 + (yi − yA)2
]−k

(11)

with the exponent k ∈ {0, 1, 3
2 , 2}. Solving the

system via the normal equation approach, i.e. by mul-
tiplying the system of equations Ax = b with AT , can
lead to a compromised accuracy on highly stretched
grids [39]. The solution is therefore realized via the
Gram-Schmidt process with QR decomposition.
In the second step of gradient reconstruction, a

limiter to avoid spurious oscillations is applied. The
performance of the following limiters is analysed in
the present work:
• Barth & Jespersen limiter [28]: The technique

limits the gradient obtained by the LSQ method in
a scalar manner, defining the reconstructed quantity
within the element A as:

q(x, y)|A = qA + ξ∇qA ·∆r (12)

First the minimum qminA and the maximum qmaxA

of the cell-average values on a stencil composed of
the cell A and its face-neighbours is calculated and
then the limiter ξ is set such that

qminneighbour ≤ q(x, y)|A ≤ qmaxneighbour (13)

For a linear reconstruction the extrema of q(x, y)|A
occur at the vertices of the cell, implying that the
above condition needs to be applied only at these
points. Sometimes a less restrictive procedure is
applied, requiring that the condition is satisfied only
for face midpoints. The limiter of Barth & Jespersen
is also sometimes referred to as the Limited Central
Difference (LCD) approach [40].

• Projected LCD [27]: The author defines a maxi-
mum principle (MP) region to constrain the limited
gradient ∇qA:

min(qk − qA, 0) ≤ rAk · ∇qA ≤ max(qk − qA, 0)
(14)

for k = 1...m, where rAk is the vector from the
centroid of cellA to the midpoint of the face between
cells A and k. The LCD procedure simply scales the
gradient such that it lies within the MP region. The
procedure proposed by Hubbard, on the other hand,
projects the gradient onto the boundary of the MP
region. The limiter is therefore less compressive
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and aims at a better accuracy. It should be noted
that in our implementation the gradient is obtained
by the weighted least squares method, which differs
from the approach employed by Hubbard.

• Multidimensional Limiting Process (MLP)
[31]: The MLP bears resemblance to the limiter of
Barth & Jespersen in that it satisfies the maximum
principle, but it differs in the extent of the stencil
involved. The procedure applies to each vertex of a
given cell the condition

qminneighbour ≤ qvtx ≤ qmaxneighbour (15)

where qvtx is the reconstructed vertex value, ob-
tained by Eq. 12, and qminneighbour, q

max
neighbour are the

minimum and maximum of the cell-average values
among the cells sharing the vertex. From this con-
dition the constraints for the limiting function ξ
are derived. Park et al. propose two definitions
of ξ: one is denoted as MLP-u1 and it represents
the steepest slope in the allowable region. The
limiter is non-differentiable, which can cause con-
vergence problems for steady computations. The
latter, MLP-u2, is a differentiable function derived
from the limiter of Venkatakrishnan [29]. It also
employs a constant K that needs to be tuned to
balance between accuracy and convergence of the
limiter. The present computations were performed
with K = 1.

• Face-based limiter of Delis and Nikolos. [33]:
Whereas the other procedures result in a limited
gradient that is constant over the whole cell, the
technique of Delis et al. applies the limiter indi-
vidually to each face of the cell. The procedure is
performed in two steps: first, the value at the inter-
section of the cell-face with a line connecting the
centroids of the two adjacent cells is reconstructed,
and then another reconstruction is performed for the
face midpoint value. Each of these steps employs
a 1D limiter, working with a virtual upwind node.
The motivation behind this approach is that scalar
limiters are stricter a necessary because they affect
all components of the gradient uniformly. More-
over, this technique employs 1D limiters, whose
behaviour has been thoroughly researched in the
past and whose wide array allows the user to choose
the most suitable one for their case. Here we present
results for the min-mod limiter.

3. Test-case Description
3.1. Fourth Standard Configuration
The Fourth Standard Configuration (STCF4) belongs
to a collection of turbomachinery flutter test-cases
formed in the 1980’s at École Polytechnique Fédérale
De Lausanne and it is presented here for the purpose
of solver validation. The geometries and experimental
data were made public in [35] and they are available
in a digitized form at [41]. From the wide range

Parameter STCF4 M8

Chord, c 72 mm 273.3 mm
Blade spacing, s 56.25 mm 229.6 mm
Stagger from axial, γ −56.6° −72.3°
Inlet total temperature, T01 330 K 348.5 K
Inlet total pressure, p01 217 100 Pa 35 637 Pa
Inlet flow angle from ax., β1 −28° −73.9°
Outlet isen. Mach n., M2,is 1.39 (1.42 uns.) 1.56
Vibration mode translation coupled
Maximum displacement, h/c 0.00406 0.0201
Reduced frequency, λ 0.164 0.4074

Table 1. Test-case parameters.

Figure 2. Computational grids for the STCF4 (top)
and the M8 (bottom) cascades with insets showing
refinement in the LE and TE regions.

of testing conditions with publicly available data we
choose the Test Case 628, characterized by transonic
flow with strong compressibility effects. As the value
of the inlet total temperature is not specified in the
original data, we use T01 = 330 K in accordance with
Waite [42]. It has been discussed that the originally
reported inlet flow angle β1 = −56.6° was measured
inaccurately due to the proximity of the probe to the
blade leading edge [43]. A value of β1 = −28° has
been demonstrated to give a better match between
numerical and experimental results [42], which is also
what we employ here. The mode of blade oscillation is
a harmonic translation in a direction of 63° from the
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Figure 3. Test-grids for gradient reconstruction.

axial. An overview of the turbine cascade parameters
and testing conditions is given in the Tab. 1.
The computational domain was discretised in AN-

SYS ICEM with a mixed-element tri/quad grid, con-
taining 13824 elements per blade passage (Fig. 2-top).
The movement of the blades requires that the mesh is
updated accordingly in each step. The displacement
of the grid vertices forming the surface of each blade
is interpolated linearly onto the domain. The result-
ing displacement of each grid point is thus a sum of
individual contributions from all blades.

3.2. Low-Pressure Turbine M8
The second test-case represents a cylindrical cut of a
low-pressure steam turbine M8 at 65% of span. Com-
pared to the Test Case 628 with an inlet Mach num-
ber of 0.21, the inlet conditions are high subsonic at
M1 = 0.76. Another substantial difference arises in
the mode of vibration which is coupled. The elas-
tic axis (EA) of the blade travels along an elliptical
trajectory while the blade is subject to a pitching mo-
tion about the EA. The horizontal (xEA) and vertical
(yEA) displacement of the EA and the pitching angle
(α) are defined as:

xiEA(t) = Axcos(2πft+ φx + i · IBPA),

yiEA(t) = Aycos(2πft+ φy + i · IBPA), (16)
αi(t) = Aαcos(2πft+ φα + i · IBPA), i = 1...n
Here the amplitudes Ax, Ay and Aα, the phase-

shifts φx, φy and φα and the frequency f are obtained
via an a-priori structural analysis performed in AN-
SYS. The index i denotes the position of the blade in
the cascade, ranging from 1 to the overall number of
blades n, and the IBPA signifies the phase shift be-
tween two adjacent blades. Basic test-case parameters
are listed in the Tab. 1. The mixed-element tri/quad
grid contains 13.107 elements per blade passage (Fig.
2-bottom) and its movement is realized similarly to
the STCF4 test case.

4. Results and Discussion
4.1. Gradient Reconstruction
Reconstruction of gradients from the cell-wise constant
representation is performed within the MUSCL frame-
work to obtain a higher-order numerical method. The
present technique employs the weighted least square
approximation described at the beginning of Sec. 2.3.

Grid A (tri)
L2-norm L∞-norm

k face vertex face vertex
0 0.99 1.07 0.95 0.93
1 0.99 1.14 0.94 0.98
1.5 1.00 1.68 0.93 1.01
2 1.00 1.10 0.92 0.90

Grid B (quad)
L2-norm L∞-norm

k face vertex face vertex
0 1.62 1.55 0.01 0.02
1 1.64 1.72 0.01 0.15
1.5 1.64 1.76 0.00 0.23
2 1.65 1.76 0.03 0.23

Grid C (tri/quad interface)
L2-norm L∞-norm

k face vertex face vertex
0 1.13 1.24 0.96 0.91
1 1.11 1.36 0.88 0.98
1.5 1.11 1.76 0.86 1.00
2 1.11 1.33 0.85 0.97

Table 2. Order of accuracy of gradient approximation
by least squares on three types of meshes. Results
for different values of the distance-weighting exponent
k and for stencils including either f ace- or vertex-
adjacent cells.

In order to evaluate the suitable choice for the stencil
size and for the value of the weighting exponent k
(Eq. 11), the accuracy of the method was tested on
three types of grids. The test-grids are presented in
Fig. 3: grid (A) is composed of triangular cells, grid
(B) of quadrilateral cells and grid (C) comprises two
sections featuring triangular and quadrilateral cells
respectively. A testing function

f(x, y) = tanh(jx)tanh(jy) (17)
was prescribed on the domain and the error of

the numerical gradient approximation was evaluated
for 7 levels of refinement on each of the three grids,
halving the cell-edge length each time. The order
of convergence with grid refinement is quantified in
Tab. 2 for the overall error (L2-norm) and for the
maximum error (L∞-norm). The results are presented
for different values of the weighting exponent k ∈
{0, 1, 3

2 , 2} and for two sizes of stencil, including either
cells with a common face only, or also cells sharing a
vertex.

The performance of the least squares method on the
grids (A) and (C) was similar, achieving an order of
accuracy at least 0.99 in the L2-norm and over 0.85 in
the L∞-norm. The quad-element grid exhibited a sub-
stantially worse convergence in the L∞-norm, with the
face-stencil based approximation failing to converge
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Figure 4. Pseudo-schlieren of a steady-state flow in
the STCF4 cascade.

entirely and the vertex-based approximation achiev-
ing at best an order of accuracy 0.23. The L2-norm
error of the quad grid, on the contrary, converged the
fastest of all grid-types. The failure to converge in the
L∞-norm was caused by a small region of extremely
skewed cells near the lower boundary of the domain,
becoming even more distorted with each refinement.
Such low-quality cells would normally be avoided at
the grid generation stage.
The accuracy of the approximation was generally

higher for the larger stencil. Only the unweighted
least squares (k = 0) in some cases achieved slightly
better results with the faced-based stencil. The best
convergence was obtained with the weighting exponent
set to k = 3

2 , in agreement with the observations of
Syrakos et al. [26]. The achieved order of accuracy
for k = 3

2 combined with the vertex-based stencil was
over 1.68 in the L2-norm on all grids and at least
1.0 in the L∞-norm everywhere except on the quad-
type grid. It can be concluded that the weighted
least squares method with these settings achieves an
order of accuracy of at least 1 in both types of norms,
providing that extremely low-quality cells are avoided.
Thus it is fully satisfactory for the construction of a
second-order accurate numerical scheme and it is used
for the computations presented further in this paper.

4.2. Fourth Standard Configuration
Turbine

Steady-state results. The topology of the steady-
state flow is illustrated in the Fig. 5 by means of
density gradient contours, imitating a schlieren im-
age. The flow with an average inlet Mach number
0.21 is accelerated in the blade passage up to approxi-
mately M = 1.6, until it encounters a right-running
shockwave formed at the TE of the upper blade. The
shockwave impinges on the suction side (SS) of the

Figure 5. Pressure coefficient distribution (top) and
convergence history (bottom) for STCF4 computa-
tions with different limiters. The top plot includes
experimental data [41] marked by x.

lower blade, reflects from the surface at 55% chord
and propagates further downstream at an angle of
−30° from the machine axis. A left-running oblique
shock also forms at the TE, emanating at an angle of
−18° from axial direction.

The blade surface pressure distribution is quantified
in Fig. 5-top in terms of a non-dimensional pressure
coefficient Cp. The plots show results of computations
using the set of limiters described in Sec. 2.3, together
with experimental data from [41] for validation. The
first-order method without MUSCL-type reconstruc-
tion underpredicts the flow acceleration in the first
30% of the suction side (SS), resulting in a Cp higher
by about 0.05 than in the other numerical cases. More-
over, it fails to capture the local pressure minimum
induced by the impingement of the right running TE
shockwave at 55% SS. This region also highlights the
differences between the individual MUSCL-type re-
constructions which are negligible elsewhere on the
blade. Although the location of the peak is captured
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consistently, its magnitude varies depending on the
limiter employed. The sharpest resolution is obtained
by the limiter of Barth & Jespersen, whereas the u2
variation of the MLP method is shown to be the most
dissipative. The other three limiters capture the pres-
sure jump with similar sharpness, although with an
offset in the distributions. The maximum discrepancy
between all limiters amounts to ∆Cp = 0.02, while the
first-order computation differs by up to ∆Cp = 0.08.

The results of computations employing the MUSCL-
type reconstruction agree closely with the experimen-
tal data over the whole pressure side (PS) and on the
section of SS upstream of the shockwave impingement.
The location of the pressure minimum induced by the
shock matches the experimental data well, but its mag-
nitude is underpredicted by about ∆Cp = 0.11. This
discrepancy is accounted for by the viscous phenom-
ena in the shockwave-boundary layer interaction and
to the three-dimensional effects, neither of which are
modelled in the present inviscid planar computations.
The impact of both viscosity and three-dimensionality
on the pressure distribution in this region was demon-
strated by McBean et al. [3], although it has to be
noted that their computations failed to capture the
shock location accurately in either case.

Together with the sharpness of extrema resolution,
an equally important property of a limiter is its conver-
gence behaviour. The bottom part of Fig. 5 displays
the evolution of density residuals in L2-norm. The
convergence of the MLP-u1 and Barth & Jespersen
methods stops after 5× 104 iterations and the resid-
uals begin to rise again nearly to their original level.
The projected-LCD and MLP-u2 limiters perform
more favourably and the convergence of the latter
could be further improved by raising the constant K,
but this would increase the its dissipativeness, already
the highest of all tested limiters. The best conver-
gence was obtained by the Delis and Nikolos limiter,
although the overall drop of residuals of three orders
of magnitude is still not comparable with the fast
convergence of the first-order computation. Neverthe-
less, this limiter proves to offer the most favourable
combination of extrema resolution and convergence
behaviour and it is employed for the computations
presented further.

Unsteady results. The blades are subject to har-
monic vibrations in translatory mode as described in
the Sec. 3.1. Fluctuations in blade-surface pressure
are analysed by performing a Fast-Fourier Transform
in time at each point and the magnitude and phase
of the first harmonic are displayed in the top and
lower plots of Fig. 6 respectively for the IBPA 180°.
The first pressure harmonic is typically the largest
[3] and thus most essential for the determination of
aerodynamic damping. The pressure-side distribution
matches well the experiments in terms of both phase
and magnitude. Satisfactory agreement is achieved
also in the front 50% of the suction side, although

Figure 6. Amplitude (top) and phase (bottom) of
the STCF4 first harmonic pressure coefficient.

with a higher discrepancy than on the PS. The fail-
ure to capture viscous and three-dimensional effects,
discussed already for the steady results, influences
the pressure oscillations downstream of the shockwave
impingement at the 55% chord. The peak at 60%
chord is underpredicted by ∆|Cp(1)| = 0.6, but more
importantly, the phase at the 86% chord differs by
160°. The pressure fluctuations in the aft part of the
blade SS are thus captured with a nearly opposite
phase, meaning that the contribution to the integral
aerodynamic damping has an opposite sign.

The work of aerodynamic forces during one cycle of
oscillation is characterised by the aerodynamic damp-
ing coefficient [44]. We use the difference between the
inlet total pressure p01 and the outlet static pressure
ps2 for non-dimensionalization in order to keep con-
sistency with the definition of the pressure coefficient
Cp:

Ξ = −Waero

πbh2(p01 − ps2) (18)
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Figure 7. STCF4 cascade global damping coefficient.

Here b is the blade span and h is the maximum
displacement of all points on the blade surface during
the oscillation cycle. A positive value of Ξ indicates a
stable flutter behaviour.
The aerodynamic damping coefficient is plotted in

Fig. 7 for computations with IBPAs −90°, 0°, 90° and
180°. The plot also includes experimental results for
the whole IBPA range with a discretization of 18°,
except for the value at 0°, unavailable in the measure-
ments [41]. The sign-convention for IBPA is chosen
such that a positive value marks a forward-travelling
wave in the direction of blade-row rotation. In spite
of the discussed shortcomings of the computational
model, the prediction of aerodynamic damping shows
a reasonable agreement with experiments. The trends
are predicted consistently, although the numerical re-
sults are shifted by 0.15-0.26 towards the region of
stability. It has to be noted that this discrepancy may
also arise from the method of aerodynamic damping
calculation from experimental data. The imaginary
part of the unsteady pressure coefficient is integrated
along the blade surface and given the limited number
of transducers on the blade, this procedure is bound
to be rather inaccurate.

4.3. Transonic Turbine M8
Steady-state results. The steady-state blade Mach
number distribution is plotted in Fig. 9 and compared
to the STCF4 turbine. As the M8 test-case represents
a section of low-pressure turbine in the upper portion
of span, the inlet Mach number is considerably higher
at 0.76 compared to M1 = 0.21 of the STCF4. The
flow is further accelerated in the channel and reaches
a value of 1.72 at 55% SS when it encounters the
right-running TE shockwave of the neighbouring blade.
The subsequent deceleration is milder and the Mach
number remains nearly constant at the remainder of
the SS. The PS Mach number is high subsonic with a

Figure 8. Pseudo-schlieren of a steady-state flow in
the M8 cascade.

Figure 9. Steady-state blade Mach number distribu-
tions of the M8 and STCF4 turbine cascades.

supersonic portion in the aft 11% chord induced by
the flow acceleration in the inter-blade channel.
The flow topology is illustrated by contours of the

density gradient in Fig. 8. The shockwave pattern is
similar to the STCF4, but the compression induced
by the pair of left- and right-running TE shockwaves
is weaker. The density gradients marking the wake
region are also notably less pronounced.

Unsteady results. The global aerodynamic damp-
ing coefficient is plotted in Fig. 10 to characterise
the aeroelastic stability of the turbine cascade. The
computations were performed for the whole range of
IBPA with a stepping of 30°. The damping coefficient
is negative in all investigated cases, indicating an un-
stable behaviour. Its values seem to lie on a nearly
sinusoidal curve with the exception of the IBPA −30°.
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Figure 10. M8 cascade global damping coefficient.
Flat-plate cascade model predictions of acoustic reso-
nance inter-blade phase angles highlighted.

The aerodynamic excitation is significantly less intense
in this case with the damping coefficient standing out
by 0.25 from the distribution.
Such a sharp local drop or peak in aerodynamic

damping is commonly referred to as a "flutter bite" and
it is often a manifestation of acoustic resonance [42].
This condition describes a limiting state when acoustic
waves induced by the blade movement are on the verge
of propagating throughout the domain. Lane and
Friedman [45] studied propagation of acoustic waves
in a 2D flat plate cascade and derived an analytical
relation for resonant IBPAs. We use an equivalent
formula given by Donini [14]:

σr =
(
Mη ±

√
1−M2

ξ

) Mλs

(1−M2)c , (19)

whereMξ andMη are the axial and tangential Mach
numbers respectively, λ is the reduced frequency, s
the blade-to-blade spacing and c the chord. Using ei-
ther the inlet or the outlet Mach number and reduced
frequency, we obtain two pairs of resonant IBPAs.
In case of the M8 turbine cascade, the resonant an-
gles are σ1

r,in = −17.1°, σ2
r,in = 119.6° for the inlet

and σ1
r,out = −52.3°, σ2

r,out = −12.8° for the outlet
conditions. Given the simplifications of Lane’s and
Friedman’s analytical model and the IBPA resolution
of 30° of investigated cases, it cannot be expected that
the resonant angles would match exactly the results of
the computation. However, the location of the IBPA
−30° in the neighbourhood of the first inlet and of
both outlet resonant angles supports the conlusion
that the local peak in damping is caused by acoustic
resonance.

5. Conclusions
This paper presents the results of a numerical flut-
ter investigation for a low-pressure turbine blade row.

The in-house solver is based on Euler equations for
planar flow, discretized by the Finite Volume Method.
The AUSM+-up scheme is used for flux approxima-
tion and a MUSCL-type reconstruction is employed
to construct a higher-order scheme. A weighted least-
squares gradient approximation was tested for several
types of grids and it was shown that the best accuracy
is achieved with a vertex-based stencil and a weight-
ing exponent − 3

2 . Such approximation achieved at
least 1st order accuracy on all grids and it is thus
considered sufficient for the construction of a 2nd or-
der MUSCL reconstruction. Several gradient-limiting
techniques were tested on a steady-state computation
of the Fourth Standard Configuration turbine cascade.
Although the method of Barth & Jespersen managed
to capture shockwaves with the sharpest resolution,
it suffered from a rather poor convergence behaviour.
The face-based limiting technique of Delis and Nikolos
offered the most favourable combination of improved
convergence properties and accurate extrema resolu-
tion.
Both steady-state and unsteady computations of

the STCF4 turbine showed a good overall agreement
with experimental data. There were observed dis-
crepancies in terms of the local pressure magnitude
during suction-side shockwave impingement and in
the unsteady pressure phase-shift further downstream
along the suction side. Both these discrepancies
were ascribed to the influence of viscous and three-
dimensional effects which are not included in the nu-
merical model. The global aerodynamic damping pre-
diction for different inter-blade phase angles matched
the measurements in terms of the overall trends, but
the absolute values showed an offset. Apart from the
computational model simplifications, this disagree-
ment can also be ascribed to the limited accuracy
of damping coefficient evaluation from experimental
data.

The aeroelastic behaviour was further analysed for
a low-pressure turbine M8, operating at high subsonic
inlet conditions and excited in a coupled mode of
vibration. The global damping coefficient followed
a sinusoidal curve over a range of inter-blade phase
angles with a strong deviation observed for the IBPA
−30°. An analytical model for the propagation of
acoustic waves in a 2D flat plate cascade showed that
the probable cause of this damping peak is acoustic
resonance.
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List of symbols
A amplitude
ALE Arbitrary Lagrangien-Eulerian
b blade span [m]
c chord [m]
Cp pressure coefficient, (ps − ps2)/(p01 − ps2)
Cp(n) n-th harmonic of unsteady pressure coefficient,
ps(n)/[h/c(p01 − ps2)]

CFD Computational Fluid Dynamics
CSM Computational Structural Mechanics
h maximum blade displacement [m]
e energy [J kg−1]
EA elastic axis
f frequency [Hz]
F flux vector
FEM Finite Element Methods
FVM Finite Volume Methods
GCL Geometric Conservation Law
GG Green-Gauss
IBPA inter-blade phase angle
k weighting exponent
LCD Limited Central Difference
LE leading edge
LP low-pressure
LSQ least squares
M Mach number
ṁ mass-flow [kgm−2 s−1]
MLP Multidimensional Limiting Process
MP Maximum Principle
MUSCL Monotone Upstream-Centered Schemes for

Conservation Laws
n surface normal [m]
NLH non-linear harmonics
p pressure [Pa]
s ALE velocity [ms−1]
s blade-to-blade spacing [m]
t time [s]
TE trailing edge
TV D total-variation diminishing
u velocity [ms−1]
W vector of characteristic variables
w weighting factor
Waero work of aerodynamic forces in one cycle [J ]
x, y coordinates [m]

β flow angle from axial [deg]
γ stagger angle from axial [deg]
Γ domain boundary
κ Poisson constant
λ reduced frequency, 2πfc/uref
ξ limiter function
Ξ aerodynamic damping coefficient
ρ density [kgm−3]
σr resonant inter-blade phase angle [deg]
φ phase-shift [rad]
Ω computational domain

0 stagnation
1 inlet
2 outlet
is isentropic
t total
ref reference
w wall
l lower
u upper
per periodic
r relative
c convective
p pressure
1/2 cell interface
L left
R right
vtx vertex
s static
η tangential
ξ axial
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