
1 Introduction
In solid mechanics, unlike fluid mechanics, it is still not

widely recognized that knowledge of the size effect, or scaling,
is the means to obtain analytical predictions of quasibrittle
failures in general, even if the size effect need not be calcu-
lated. For the actual size of interest, a direct analytical solution
is hard, next to impossible. However, by scaling the structure
down to vanishing size, or up to infinite size, one gets a duc-
tile, or brittle, response, either of which is much easier to
solve. Knowing these asymptotic solutions, an approximate
failure prediction for the middle range of practical interest
can then be obtained by asymptotic matching – “interpolation”
between the opposite infinities. It is for this reason that the
size effect is the key problem for all quasibrittle failures.

The purpose of this paper is to present a brief summary of
the advances in six problems of size effect recently studied at
Northwestern University.

2 Variation of cohesive softening law
in boundary layer
By now it has been well established that the total fracture

energy GF of a heterogeneous material such as concrete, de-
fined as the area under the cohesive softening curve, is not
constant but varies during crack propagation across the liga-
ment. The variation of GF at the beginning of fracture growth,
which is described by the R-curve, is only an apparent phe-
nomenon which is perfectly consistent with the cohesive crack
model (with a fixed softening law) and can be calculated from
it. However, the variation during propagation through the
boundary layer at the end of the ligament is not consistent
with the cohesive crack model and implies that the softening
curve of this model is not an invariant property.

The fact that the fracture energy representing the area un-
der the softening curve should decrease to zero at the end of
the ligament was pointed out in a paper by Bažant (1996),
motivated by the experiments of Hu and Wittmann (1991 and

1992a), and was explained by a decrease of the fracture pro-
cess zone (FPZ) size, as illustrated on the left of Fig. 1a repro-
duced from (1996) paper of Zdeněk Bažant. An experimental
verification and detailed justification of this property was
provided in the works of Hu (1997, 1998), Hu and Witt-
mann (1992b, 2000), Duan, Hu and Wittmann (2002, 2003),
and Karihaloo, Abdalla, and Imjai (2003). As mentioned by
Bažant (1996) as well as Hu and Wittmann, the consequence
of these experimental observations is that:
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where GF � average fracture energy in the ligament (Fig. 1b),
D � specimen size (Fig. 1a), a0 � notch depth, P � load,
u � load-point deflection, � (x) � local fracture energy as a
function of coordinate x along the ligament (Fig. 1a left),
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Is this behavior compatible with the cohesive crack

model? To check it, consider a decreasing FPZ attached to the
boundary at the end of ligament, Fig. 1a. Exteding to this
situation Rice’s (1968) approach, which effectively launched
the use of the cohesive (or fictitious) crack model, we calculate
the J-integral along a path touching the crack faces as shown
in Fig. 2a,b:
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in which � � path length; x � x1, y � x2 are the Cartesian coor-
dinates; ui � displacements; ti � tractions acting on the path
from the outside; U � strain energy density; v � w/2; x � D
is the end point of the ligament; wend is the opening at the
end of ligament (Fig. 2b). From these equations, we see that
the instantaneous flux of energy, J, into the shrinking FPZ at-
tached to the end of ligament (Fig. 1a) represents the area be-
low the line � � �end in the softening diagram, cross-hatched
in Fig. 2i.

It is, however, a matter of choice with which coordinate x
in the FPZ this flux J should be associated. If we associate J
with the front, the tail, or the middle (Fig. 2b) of the FPZ, we
get widely different plots of � � Jend, Jtail, Jmiddle, as shown
in Fig. 2c, d, e, respectively (the first one terminating

with Dirac delta function). This ambiguity means that the
boundary layer effect experimentally documented by Hu and
Wittmann cannot be represented by the standard cohesive
crack model, with a fixed stress-separation diagram.

Can the cohesive crack model be adapted for this pur-
pose? It follows from Eq. (4) and Fig. 2 (h, i) (and has been
computationally verified) that Wittmann et al.’s (1990) and
Elices et al.’s (1992) data can be matched (Fig. 2j) if the slope
of the tail segment of the bilinear stress-separation diagram
for concrete is assumed to decrease (Fig. 1c) in proportion to
diminishing distance r � D � x (Fig. 2b) from the end of the lig-
ament. After such an adaptation, the cohesive (or fictitious)
crack model has a general applicability, including the bound-
ary layer.
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Fig. 1: (a) Variation of local fracture energy �(x) across the ligament, decreasing in the boundary layer (reproduced from Bažant 1996);
(b) Average fracture energy GF; (c) Required modification of cohesive (or fictitious) crack model
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data fitted by modified cohesive crack model with variable tail



However, the consequence is that the total fracture energy
GF (area under the complete stress-separation curve) is not
constant. Noting that the larger the structure, the smaller is
the length fraction of the boundary layer, one must conclude
that the diminishing tail slope in Fig. 1c automatically implies
a certain size effect on the apparent GF, as given by Eq. (1).

It further follows from Fig. 2 (h, i), and has been com-
putationally verified, that the initial tangent of the stress-
-separation diagram, the area under which represents the
initial fracture energy Gf (Bažant 2002a, b, Bažant, Yu and Zi
2002), can be considered as fixed – in other words, Gf, unlike
GF , is a material constant. Aside from the fact that the
maximum loads of specimens and structures are generally
controlled by Gf, not GF, this suggests that the standard frac-
ture test that should be introduced is that which yields not GF
but Gf (the size effect method, as well as the method of
Guinea, Planas and Elices, 1994a, b, serve this purpose, while
the work-of-fracture method does not). This conclusion is not
surprising in the light of abundant experimental data reveal-
ing that GF is statistically much more variable than Gf (Bažant
and Becq-Giraudon 2002, Bažant, Yu and Zi 2002).

Jirásek (2003) showed that Hu and Wittmann’s data can
be matched by a nonlocal continuum damage model in which
the characteristic softening curve is kept fixed. Consequently
the nonlocal model is a more general, and thus more funda-

mental, characterization of fracture than the cohesive (or ficti-
tious) crack model. This finding should be taken into account
in fracture testing. It appears that GF would better be defined
by the area under the softening curve of the nonlocal model,
multiplied by the characteristic length of material corre-
sponding to the effective width of FPZ, which equals the mini-
mum possible spacing of parallel cracks (Bažant 1985, Bažant
and Jirásek 2002), to be distinguished from l EG ff t0

2� � .

3 Universal size effect law
As is now well known, the size effect for crack initiation

from a smooth surface (a0 � 0) is very different from the size
effect for large notches or large stress-free (fatigued) cracks at
maximum load (a0/D not to small). As far as the mean nominal
strength of structure, �N, is concerned, the former is always
energetic (i.e., purely deterministic), while the latter is purely
energetic only for small enough sizes and becomes statistical
for large enough sizes. It is of interest to find a universal size
effect law that includes both of these size effects and spans the
transition between them. A formula for this purpose was pro-
posed in Bažant and Li (1996) (also Bažant and Chen 1997,
Bažant 2002b). However, that formula was not smooth and
did not include the statistical (Weibull) part for crack initia-
tion failures.
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Fig. 3: (a, b) Improved universal size effect law USEL (left–without, right –with Weibull statistics), and (c, d, e) profiles obtained from
USEL, compared to Duan and Hu’s (2003) approximation
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A better formula has now been obtained; see Figs. 3,
the left (Fig. 3a) without, and the right (Fig. 3b) with, the sta-
tistical (Weibull) part, in which � �E effective Young modulus;
� �ft local tensile strength of material; g0, �g0, ��g0 are values of

dimensionless energy release function g(�) and its derivatives
at �0 0� a D ; l E G ff t0

2� � � � Irwin’s characteristic length

(corresponding to the initial fracture energy); g(�) � k2(�),
k(�) is the dimensionless stress intensity factor; m � Weibull
modulus of concrete (about 24), n � number of dimensions
for scaling; r, k � empirical positive constants; and cf � con-
stant (the ratio c lf 0 depends on the softening curve shape,
and c lf � 0 2 for triangular softening). The formulas in
Figs. 3a, b were derived by asymptotic matching of 6 cases:
the small-size and large-size asymptotic behaviors (first two
terms of expansion for each), of the large-notch and vanish-
ing-notch behaviors, and of the energetic and statistical parts
of size effect.

4 Can fracture energy be measured on
one-size specimens with different
notch lenghts?
The fact that specimens of different sizes are needed for

the size effect method of measuring Gf is considered by some
as a disadvantage. For this reason, Bažant and Kazemi (1990),
Bažant and Li (1996) and Tang et al. (1996) generalized the
size effect method to dissimilar specimens, the dissimilarity
being caused by the use of different notch lengths a0 in speci-
mens of one size. If the random scatter of test data were small
(coefficient of variation CoV < 4 %), this approach would
work. However, for the typical scatter of maximum loads of
concrete specimens (CoV � 8%), the range of brittleness num-
bers attainable by variation of notch length in a specimen of
any geometry (about 1:3, Bažant and Li 1996) does not suffice
to get a sharp trend in size effect regression of test data, and
thus prevents determining Gf accurately.

Recently, this problem was considered independently by
Duan and Hu (2003). They proposed the semi-empirical
formula:
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where �0 � �ft for small 3PB specimens; a�
* is a certain con-

stant; and �n represents the maximum tensile stress in the
ligament based on a linear stress distribution over the liga-
ment, � � �n N A� ( )0 .

This alternative formula, intended for specimens of the
same size when the notch length a0 is varied, in effect at-
tempts to replace the profile of the universal size effect law
(Fig. 3) at constant size D, scaled by the ratio

� � �n N A�1 0( ),

where A( )�0 depends on specimen geometry;
A( ) ( )� �0 0

21� � for notched three-point bend beams. How-
ever, the curve of the proposed formula has, for a0 0� , a size
independent limit approached, in log a0 scale, with a hori-
zontal asymptote, while the correct curve, amply justified by

tests of modulus of rupture (flexural strength) of unnotched
beams (Bažant and Li 1995, Bažant 1998, 2001, 2002b,
Bažant and Novák 2000a, b, c), terminates with a steep slope
for a0 0� and has a size dependent limit, as seen in the
aforementioned profiles in Fig. 3a, b, and better in Fig. 3c.
Fig. 3d, e shows the profiles in D and in �, and it is seen that
they cannot be matched well by Duan and Hu’s approxima-
tion converted from �n to �N. The test data on the depend-
ence of �n on a0, which Duan and Hu fitted by their formula,
should better be fitted with the size effect law (Bažant and
Kazemi 1990, Bažant and Planas 1998, and Bažant 1997,
2002b):
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in which D is constant and �0 0� a D is varied (and function
g( )�0 is available from handbooks). However, very short or
zero notches (a0 < 0.15 D) must be excluded, which means
that the value of strength �ft cannot be used with Duan and
Hu’s approach. To use it, it is necessary to adopt either the
approach of Guinea et al. (1994a, b) or the zero brittleness
method (Bažant, Yu and Zi 2002).

5 Size effect of finite-angle notches
In elastic bodies, a sharp notch of a finite angle (Fig. 4)

causes stress singularity � �� �r 1 that is weaker than the crack
singularity (� > 0.5) and is given by Williams’ (1952) formulas
(a)–(e) shown in Fig. 4, in which r, � � polar coordinates, �rr,
���, �r� � near-tip stresses. If the structure has a positive
geometry, it will fail as soon as an FPZ of a certain charac-
teristic length 2cf is fully formed at the notch tip. In the limit
of D � �, the structure will fail as soon as a crack can start
propagating from the notch tip, which requires a certain criti-
cal energy release rate equal to Gf . Experiments show that the
load (or nominal stress �N) at which this occurs increases with
angle 	. In previous studies (e.g., Carpinteri 1987, Dunn et al.
1997a,b), some arguments in terms of a non-standard ‘stress
intensity factor’ K	 corresponding to singularity exponent
1 � � < 0.5 were used to propose that the nominal stress
� �

N D� �1.

A notch of finite angle cannot propagate. So, a realistic
approach requires considering that a cohesive crack must
propagate from the notch tip (Fig. 4 left). Circular bodies
with notches of various angles 2	 (and ligament dimension
D, Fig. 4a) were simulated by finite elements with a mesh
progressively refined as r � 0 (the first and second rings
of elements were bounded by r D� 6000 and D 3000).
The circular boundary was loaded by normal and tangential
surface tractions equal to stresses �rr and �r� taken from
Williams’ symmetric (Mode I) solution; P � load parameter
representing the resultant of these tractions; and
�N P bD� � nominal stress (b � 1).

First, ligament D was considered to be so large that the
length of the FPZ, lc, was less than 0.01 D. In that case, the
angular distribution of stresses along each circle with r D�01.
ought to match Williams’ functions frr, fr� , f�� . Indeed, the
numerical results could not be visually distinguished from
these functions. The logarithmic plots of the calculated stress
versus r for any fixed � (and any 	) were straight lines, and
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their slopes agreed with the exponent � � 1 required by Wil-
liams solution, see Fig. 4 (right). Thus the correctness of the
cohesive finite element simulation was confirmed.

From Eqs. (b), (f) and (g) of Williams’ LEFM solution in
Fig. 4,
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According to the equivalent LEFM approximation of co-
hesive fracture, ��� for r cf� (the middle of FPZ), should be

approximately equal to material tensile strength �ft . This con-
dition yields,
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valid for D l�250 0; �(	) is the � value for angle 	. To check
this equation, geometrically similar scaled circular bodies of
different ligament dimensions D (Fig. 4) were analyzed by
finite elements for various angles 	 using the same linear
softening stress-separation diagram of cohesive crack. The
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Fig. 4: (a) Angle-notched circular specimen considered for analysis, (b) Numerically computed singularity exponent compared to Wil-
liams' elastic solution, (c) Computed variation of nominal strength with notch angle, (d) Analytical size effect law for angular
notches compared to cohesive crack model
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numerically obtained values of log �N for various fixed D cf
are plotted in Fig. 4c as a function of angle 	. We see that this
size effect curve matches perfectly the curve of Eq. (9) and
(10) for D cf � 500, confirming that the equivalent LEFM
approximation obtained for r cf� is good enough.

A general approximate formula for the size effect of
notches of any angle, applicable to any size D, may be written,
as proposed by Bažant (2003), as follows:
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where H h0 � 	 value 	 �0, and D0 is given in terms of g(�),
and is the same as for a crack (	 �0). Eq. (11), which is
of course valid only for large enough notches penetrating
through the boundary layer of concrete, has been derived by
asymptotic matching of the following asymptotic conditions:
1) for 	  0, the classical size effect law

� �N D D� � �
0 0

1 21( ) must be recovered;

2) for D l0 0� , there must be no size effect;
3) for D l0 � �, Eqs. (11) and (9) must coincide;
4) for 	 �� 2 (flat surface), the formula must give no size

effect when D � �.

In reality, there is of course a size effect in the last case, but
it requires a further generalization of Eq. (11) (which will be
presented separately). Therefore, Eqs. (11) and (9) can be
applied only when the notch is deeper than the boundary
layer, which is at least one aggregate size. Complete generality
will require amalgamating Eq. (11) with the universal size
effect law in Fig. 3.

The plot of log �N versus log D for 	 �� 3 according
to Eq. (11) is compared to the finite element results for
notched circular bodies with cohesive cracks in Fig. 4d. The
agreement is seen to be excellent.

6 New derivation of size effect law
from asymptotic dimensional
analysis
From Buckingham’s (1914) 	–theorem of dimensional

analysis, two size effects can be easily proven: (1) if the failure
depends only on material strength �ft (dimension N/m2), then
there is no size effect, i.e., the nominal strength of geometri-
cally similar specimens does not depend on their size, and
(2) if the failure depends only on material facture energy Gf
(dimension N/m), then of course the size effect is �N D� �1 2

(e.g. Bažant 1993). Nothing more can be deduced.

Knowing that Irwin’s characteristic length l E G ff t0
2� �

has the physical meaning of fracture process zone length,
one can deduce more. When D l0 0� , the body is much
smaller than the fracture process zone, and so Gf cannot
matter. It follows that case (1) corresponds to the small-size
asymptotic limit, i.e., a horizontal asymptote in the plot of
log �N versus log D. When D l0 � �, the fracture process
zone is a point compared D, and so there is a stress singularity,
which means that the local material strength cannot matter.
It follows that case (2) corresponds to the large-size asymp-
totic limit, i.e. an inclined asymptote of slope �1/2 in the

same plot. Hence, for the intermediate sizes, the size effect
must be a gradual transition from the horizontal to the
inclined asymptote. To deduce the form of this transition, one
needs to further take into account the known asymptotic
properties of the cohesive crack model (Bažant 2001, 2002b).
They may be satisfied as follows (Bažant 2003).

From the governing parameters of the failure problem,
�N, D, �ft , Gf and E, we may form, according to Buckingham’s
�-theorem, two and only two independent dimensionless
parameters, which we choose as

�1

2
�

�
�N

fE G
, �2

2

2�
�

�N

tf
, (12)

(note that, for size effect, the ratios of the structural dimen-
sions characterizing the geometry may be ignored because
they remain constant when the structure is scaled up or
down). The equation governing failure may, therefore, be as-
sumed in the form: F (�1, �2) � 0. If function F is assumed to
be smooth, we can approximate it by Taylor series truncated
after the linear terms:

� � �F F F F� � �*
1 1 2 2 , (13)

where:
F Fi i� � �� (i � 1, 2), �1

2� ��N fE G and �2
2 2� ��N tf

(Bažant 2003).
Substituting these values into Eq. (13) and solving for �N,

one gets an equation of the form of Bažant’s classical size
effect law (1984):

� �N D D� � �
0 0

1 21( ) . (14)

This function satisfies the first two asymptotic terms of
both the large-size and the small-size asymptotic expansions
of the cohesive crack model (Bažant 2001, 2002). If we chose
for �1 and �2 any other dimensionless monomial, these
asymptotic conditions could not be satisfied. This proves
that (14) is the proper asymptotic matching formula.

For a cohesive crack with its FPZ attached to either a notch
or a stress-free (fatigued) crack, the first two terms of the
small-size asymptotic series expansion in terms of powers of
D, as well as the first two terms of the large-size asymptotic se-
ries expansion in terms of powers of 1/D (Bažant 2001), were
previously shown to be matched by the asymptotic expansions
of this law.

If different dimensionless variables �1 and �2 were
chosen, different size effect laws would result by using the
same logical procedure. However, these laws either would not
match the asymptotic properties of the cohesive crack model,
or would lead to more complex size effect formulas differing
from (14) only by third- and higher-order terms of the asymp-
totic expansions (Bažant 2003). Thus, if the dimensional anal-
ysis is combined with the known asymptotic requirements, the
resulting size effect law is unique (except for complex formu-
las with higher than second-order deviations).

It may be noted that a size effect formula recently pro-
mulgated by Karihaloo (1999), and Karihaloo et al. (2003),
�N D D� �( )1 0

1 2, is not an asymptotic matching formula
because it matches only the first two terms of the large-size
asymptotic expansion in terms of powers of 1/D, but not the
terms of the small-size expansion in powers of D.
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The foregoing argument is not valid for failure at crack
initiation because the energy release rate at crack initiation
vanishes. The size effect is here governed by the derivatives of
the energy release rate, for which Gf is immaterial.

7 Design formula with size effect for
shear capacity of RC beams
The time is now ripe for adding size effect to all the design

specifications dealing with brittle failures of concrete struc-
tures (shear and torsion of R.C. beams with or without stir-
rups, slab punching, column failure, bar embedment length,
splices, bearing strength, plain concrete flexure, etc.). In ACI
Standard 318, only the new formula for anchor pullout in-
cludes the size effect (of LEFM type). By analysis of the latest
ACI 445 database with 398 data (Reineck et al. 2003), repre-
senting an update of 1984 and 1986 Northwestern University
databases (with 296 data), two improved formulas for shear
failure of reinforced concrete beams without stirrups, having
the simplicity desired in ACI, have recently been developed
by asymptotic matching of first or second order (Bažant and
Yu 2003); see Fig. 5 (vc � �N � mean shear stress in the cross
sections at failure, d � beam depth up to reinforcement cen-
troid, � �fc standard compression strength of concrete). The
formula in Fig. 5a is more accurate (2nd order match), the
other is simpler (1st order match). They are shown in Fig. 5,
where they are also compared to the database (the solid line is
the mean formula, the dashed line is a formula scaled down to
achieve additional safety, as practiced in ACI). The coeffi-
cients of variation of the vertical deviations from data points,
�, are shown in the Fig. 5.

In the derivation of these formulas, the following three
principles were adhered to:
1) Only theoretically justified formulas must be used in data

fitting because the size effect (which is of main interest for
d ranging from 1 m to 10 m) requires enormous extra-
polation of the ACI 445 database (in which 86 % of

data pertain to d < 0.6 m, 99 % to d < 1.1 m and 100 %
to d < 1.89 m).

2) The validity of the formula must be assessed by comparing
it only to (nearly) geometrically scaled beams of broad
enough size range (only 11 such test series exist).

3) The entire database must be used only for the final cali-
bration of the chosen formula (and not for choosing the
best formula, because data for many different concretes
and geometries are mixed in the database, and only 2 % of
the data have a non-negligible size range).

8 Closing remarks
Although the size effect in fracture of concrete structures

has been studied for over quarter a century, there are still sig-
nificant issues to be resolved. Among them, the introduction
of size effect into the specifications in concrete design codes is
of the greatest practical importance.

The present paper is a mere summary of six recent investi-
gations at Northwestern University which will be fully pre-
sented in forthcoming papers.
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