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Abstract. We present Template Numerical Library (TNL, www.tnl-project.org) with native support
of modern parallel architectures like multi–core CPUs and GPUs. The library offers an abstract
layer for accessing these architectures via unified interface tailored for easy and fast development of
high-performance algorithms and numerical solvers. The library is written in C++ and it benefits
from template meta–programming techniques. In this paper, we present the most important data
structures and algorithms in TNL together with scalability on multi–core CPUs and speed–up on GPUs
supporting CUDA.
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1. Introduction
TNL aims to be an efficient and user friendly library
for numerical simulations. To fulfill this goal, it
must support modern parallel architectures like GPUs
(graphical processing units) and multi-core CPUs on
one hand and offer simple and flexible interface for
implementation of complex numerical solvers on the
other hand. If high computational efficiency is re-
quired, we cannot follow the typical rules of the object–
oriented programming that usually lead to inefficient
organization of data in the computer memory and,
for example, use of virtual methods may lower the
performance of the final code. The design of TNL
profits from advantages of the C++ templates. Espe-
cially templates specializations is a natural tool for
generating specialized architecture dependent code
with no run-time overhead.

There is no doubt that modern numerical libraries
must support accelerators like GPUs. They provide
high memory bandwidth as well as great computa-
tional power which is obtained not by high clock fre-
quencies but by massively parallel design, which is
more power efficient. Programming of GPUs is eas-
ier with the CUDA framework. Nevertheless, deep
knowledge of the GPU hardware is still necessary to
produce efficient code which makes the GPUs almost
unavailable for many experts in numerical mathemat-
ics.
Adding support for GPUs to existing numerical

libraries is nearly impossible. The GPU architecture
is so different from the CPU that most of the numerical
methods and algorithms must be completely rewritten.
In CUDA, we deal with two different address spaces:
one associated with the CPU and the other with the
GPU. Communication between them is remarkably
slow and it must be fully managed by the programmer.
To get the maximum performance from the GPU, the
programmer must take care of the organization of data

in the memory, minimize the divergence of CUDA
threads, deal with limited shared memory, and many
other details of the GPU design [1].
In some cases, one may use the GPU for numer-

ical computing relatively easily. An implicit time
discretization of linear problems allows to construct
the linear system once on the CPU, transfer it to the
GPU and solve it repeatedly there by some iterative
solver like CG (conjugate gradients). Such solvers
require only common linear algebraic operations im-
plemented in libraries like CUBLAS or CUSPARSE
which are part of the CUDA toolkit. Difficulties arise
with non-linear problems, where the linear system
matrix must be updated in each time step. Transfer
of the matrix from the CPU to the GPU makes any
speed-up impossible. Therefore the matrix must be
assembled on the GPU. This process requires a manip-
ulation with an underlying format for sparse matrices
and also efficient access to numerical mesh. Neither
is trivial on the GPU.
Table 1 presents a comparison of TNL with sev-

eral other HPC libraries like Cublas [2], Cusparse [3],
Thrust [4], Kokkos [5], ViennaCL [6], PETSc [7] and
Eigen [8]. We chose primarily libraries with support of
GPU. The table shows which of them have modern in-
terface in C++ and which of them support distributed
computation using MPI. Parallel for, parallel reduc-
tion and scan are emerging programming patterns
in HPC which allow to write one code for different
parallel architectures. Sorting is another common op-
eration defined on arrays or vectors. Blas operations
are well known in the HPC community. Blas is a
standard library which, however, does not profit from
the modern features of C++. Especially Blas level
1 operations can be better expressed with expression
templates. Sparse matrices belong with no doubt to
one of the most important data structures in HPC.
GPUs are very sensitive to sparse matrix pattern. Re-
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TNL Cublas Cusparse Thrust Kokkos ViennaCL PETSc Eigen
GPU Yes Yes Yes Yes Yes Yes Weak No
MPI Weak No No No No No Yes No
C++ Yes No No Yes Yes Yes No Yes
Parallel for Yes No No Yes Yes No No No
Parallel reduction,scan Yes No No Yes Yes No No No
Sorting No Yes No Yes Yes No Yes No
Blas 1 Yes Yes Yes No Yes Yes Yes Yes
Blas 2 Weak Yes Yes No Yes Yes Yes Yes
Blas 3 No Yes Yes No No Yes Yes Yes
Expression templates Yes No No No No Yes No Yes
Sparse matrices Yes No Yes No Yes Yes Yes Yes
Linear systems solvers Yes No Weak No No Yes Yes Yes
Preconditioners Weak No No No No Yes Yes Weak
Nonlinear sys.solvers No No No No No Yes Yes No
Eigenvalues comp. No No No No No Yes No No
ODE systems solvers Yes No No No No No Yes No
Stencil computations Yes No No No No No Yes No
Unstructurted meshes Yes No No No No No Yes No
Python interface Weak No No No No Yes Yes Yes

Table 1. Comparison of TNL with other numerical libraries.

gardless of the great advance in the design of sparse
matrix formats for GPUs, it seems that there is no
such format which would dominate the others in a
large class of sparse matrices. It is profitable for a nu-
merical library to offer several different sparse matrix
formats. Having implemented sparse-matrix-vector
multiplication, it is relatively simple to incorporate the
sparse matrices into iterative linear systems solvers.
Efficient preconditioning for GPUs is still quite rare
though very important. Good preconditioning on the
CPU can easily outperform high memory bandwidth
and computational performance of GPUs. Nonlin-
ear system solvers, eigenvalues computations or ODE
system solvers are slightly less common compared to
linear systems solvers, nevertheless these algorithms
belong to the core of HPC as well. Stencil compu-
tations cover a large class of numerical algorithms
performed on structured rectangular grids. Unstruc-
tured meshes are necessary for finite volume or for
finite element methods. Some libraries also cooperate
with Python to offer a more efficient user interface.

Similar to PETSc or ViennaCL, we believe that the
main advantage of TNL is that it offers a wider class of
data structures and algorithms with a unified interface.
For decades, numerical libraries were developed in a
very modular way. The users at the end must combine
different libraries to solve the problem at hand. This
is becoming more difficult on modern architectures
like GPUs. Modern features of C++ can make it
easier. Our aim is to develop a library with a STL-
like consistent templated user interface and native
support of GPUs which would make development of
HPC algorithms more efficient.

The rest of the paper is organized as follows. First,
we briefly explain the basics of GPU programming

(Section 2). Then, we describe some basic data struc-
tures and solvers already implemented in TNL (Sec-
tion 3). Finally, we demonstrate the performance of
TNL by showing the scalability on multi-core CPUs
and speed–up of GPUs (Section 4).

2. Programming GPUs
The GPU is an accelerator connected to the CPU via
the PCI Express interface. It is equipped with its own
memory referred to as the global memory. Though its
memory bandwidth is several times faster compared to
common DDR4 connected to the CPU, communication
between the GPU and the CPU is substantially slow.
This limits the design of algorithms for GPUs because
frequent communication between the GPU and the
CPU may negatively affect the overall performance.
In case of iterative numerical solvers for PDEs, it is
often necessary to copy all necessary data to the GPU
before the start of iterations. The result is then copied
back to the CPU for post–processing.

Data in the global memory of the GPU need to be
accessed in large continuous blocks (this is referred to
as coalesced memory access), random access is by an
order of magnitude slower. Therefore, the data must
be often organized in a completely different way than
on the CPU. This is also the reason why porting an
older code to the GPU is so difficult.

The GPU consists of several independent multipro-
cessors which cannot communicate with each other.
They can access the global memory and each multi-
processor has its own shared memory which is remark-
ably smaller (tens of kilobytes only) than the global
memory, but much faster in comparison. The shared
memory can work as a cache or it can be managed by
the programmer. Each multiprocessor may process
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32 CUDA threads simultaneously which are referred
to as a warp. Threads in the same warp behave like
the SIMD architecture, i.e., they should follow the
same instruction at the same time. If not, we call it
divergent threads. In this case, efficiency is diminished
due to serialization. For more details about CUDA
we refer to [1].

3. Data structures and
algorithms in TNL

In this section, we describe basic data structures and
algorithms implemented in TNL. In the following text,
we refer to the GPU as device and to the CPU as
host. Methods, declared as __cuda_callable__, can
be executed on both, the device and host. If the
CUDA framework is not installed, this attribute has
no effect.
TNL uses template parameters. Few of them are

present in the majority of the code:
• Device - can be either TNL::Devices::Host or
TNL::Device::Cuda. It defines where the data are
going to be stored and where the related algorithms
will be executed.

• Real - defines the precision of the floating point
arithmetic (float or double).

• Index - defines integer type used for indexing within
data structure/algorithm (int or long int).

• Allocator - controls allocation of memory. It can
be TNL::Alocators::Host for allocation of mem-
ory on the host system, TNL::Allocators::Cuda
for allocation of the memory on the CUDA de-
vice TNL::Allocators::CudaHost for allocation
of a page-locked memory (part of the memory
that cannot be swapped off) using CUDA and
TNL::Allocators::CudaManaged for allocation of
CUDA Unified memory (shared memory space be-
tween CPU and GPU).

3.1. Arrays and vectors
Arrays are basic structures for the memory
management in TNL. An array is a template
TNL::Containers::Array< Value, Device,
Index, Allocator > with template parame-
ters Value (an array element type), Device (a device
where the array elements are stored), Index (the
indexing type) and Allocator (controlling memory
allocation). Array provides common methods such
as allocation (setSize), comparison and assignment
operators or I/O methods (binary load and save).
Array elements may be manipulated by setElement,
getElement and __cuda_callable__ operator[].
The first two methods can be called from the host even
for arrays allocated on the device but they cannot
be called from the CUDA kernels. The last one, on
the other hand, is defined as __cuda_callable__
and it can be called only from the CUDA kernels, if
the array is allocated on the device, and from the

host system only if the array is allocated on the
host. A method bind takes a pointer to an array
of given size or an instance of another array. An
array adopted in this way is not being deallocated
in the Array destructor. Such mechanism serves for
data sharing between more arrays or for wrapping of
data allocated outside of TNL. It also serves for the
partitioning of large arrays into a set of smaller ones
while keeping them allocated as one continuous block
in the memory.
Vectors (TNL::Containers::Vector< Real,

Device, Index, Allocator >), in TNL, extend
arrays with vector operations from the linear algebra
like vector addition, scalar products, norms, but also
prefix-sum (scan) [9]. The Blas Level 1 operations
are handled by expression templates which are more
general and user friendly with no loss of performance.

3.2. Matrices
TNL supports dense matrices as well as several formats
for the sparse ones (in namespace TNL::Matrices).
All formats are available for both, the host system and
the CUDA device. Optimized sparse matrix formats
are crucial especially for good efficiency of the GPU
solvers. The user may choose between tridiagonal and
multi-diagonal matrices, Ellpack format [10], Sliced
Ellpack format [11, 12]1, Chunked Ellpack format [13],
BiEll format [14] and CSR format (for the GPU, it is
currently in experimental form).
The sparse matrix formats are usually optimized

for the matrix-vector multiplication. However, the
matrix construction time is also important, especially
for non-linear problems where the linear system must
be recomputed in each time step. In general, the
insertion of a matrix element can be very expansive
for the majority of the sparse matrix formats. Global
changes of the data structure or even reallocation
can be evoked. Fortunately, in many applications
the sparse matrix pattern does not change during the
computation. In TNL, the matrix assembling process
proceeds in two steps:

(1.) Matrix format meta–data initiation is based on
information about the number of non–zero elements
in each row (we refer to it as compressed row lengths
or matrix row capacities). The user calls a method
setCompressedRowLengths which accepts a vector
having the same size as the number of matrix rows.
i-th element of the vector says the number of non-
zero elements in i-th row. The matrix format is
initialized based on this information. Most impor-
tantly, it means that the necessary memory for each
matrix row is allocated. If the matrix pattern does
not change, this method can be called only once.

(2.) Matrix elements insertion consists of the non–
zero matrix elements insertion. Since the necessary
1In [11], we referred the Sliced Ellpack format as Row-

grouped CSR. It is, however, almost identical as Sliced Ellpack
from [12] and since it uses padding zeros, the name Ellpack
seems to be more convenient.
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memory for each row is already allocated, this can
be done in parallel. Each row can only have as
many non-zero elements as its capacity allows.

3.3. Numerical meshes
Currently, TNL supports regular orthogonal struc-
tured grids and unstructured conforming homogeneous
meshes. In this paper we deal only with the regular
grids. Computational results obtained with multi-
dimensional mixed-hybrid finite element method on
both structured and unstructured meshes were pre-
sented in [15].
The regular orthogonal grids are one, two

and three dimensional – TNL::Meshes::Grid<
Dimension, Real, Device, Index >. The tem-
plate parameter Dimension corresponds to the grid
dimension. The others are described at the beginning
of Section 3. The grid consists of mesh entities. Mesh
entity with topological dimension 0 is a vertex, mesh
entity with the same topological dimension as the
mesh itself is a cell. Each cell has a boundary made
of faces, i.e. mesh entities having topological dimen-
sion Dimension-1 . In 3D, each face has a boundary
consisting of 1-dimensional edges.

Within all mesh entities having the same dimension,
each mesh entity has a unique index and coordinates
as depicted on the Figure 1.

In 2D, we have two kinds of faces – those parallel to
the x-axis (marked with light gray) and those parallel
to the y-axis (marked with dark gray). They can be
distinguished by its index – the faces parallel to the
x-axis are indexed first (indexes 0− 11), followed by
faces parallel to the y-axis (indexes 12 − 23) – and
their orientation defined by the unit normal. This
similarly holds for edges in 3D, whose orientation is
given by the axis they are parallel to.
A mesh entity may be obtained using the method

getEntity defined in TNL::Meshes::Grid: All infor-
mation necessary for a numerical scheme implementa-
tion is accessible via the MeshEntity. It is especially
the mesh entity center, proportions, measure and its
neighbor entities indexes. There are several template
specializations for each type of the mesh entity de-
pending on what information is precomputed and
stored for repetitive use in the numerical scheme. The
following code snippet shows how to get their indexes
in case of cells:

3.4. Solvers
TNL provides solvers for ODEs and systems of ODEs
arising from the method of lines. Currently, the
user may choose between the first order accurate Eu-
ler solver and the fourth order Runge-Kutta-Merson
solver [16] with an adaptive time stepping. Both may
run on the GPU. Systems of linear equations can
be solved by several Krylov subspace methods like
CG, BiCGStab , GMRES and TFQMR (may be exe-
cuted on the GPU as well [17]) or the stationary SOR
method (does not run on the GPU yet).
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Figure 1. Figure shows 2D grid consisting of 3 × 3
cells, faces with gray box labels (vertical with dark
gray, horizontal with light gray) and vertexes with
white rounded box labels. Coordinates are depicted
on the top, indexing on the bottom.

4. Solution of parabolic PDEs
Performance of the presented data structures and
algorithms is demonstrated on a solution of the heat-
equation. The reason for this simple problem is that,
especially in explicit time discretization and with zero
right-hand side f(x, t) = 0, we get low computational
intensity which is the worst case for the GPU and so
the lower bound of the speed-up.

We consider a domain Ω ≡ [0, 1]2, the initial condi-
tion uini ∈ C2(Ω) and the Dirichlet boundary condi-
tions g ∈ C2(Ω× (0, T ]) defined as:

∂u(x, t)
∂t

−∆u(x, t) = f(x, t) in Ω× (0, T ], (1)
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u(x, 0) = uini(x) in Ω, (2)
u(x, t) = g(x, t) on ∂Ω× (0, T ].(3)

The solution u is approximated on vertexes of the
2D grid. Let h be the space step and N the number
of cells along x and y axis such that h = 1/N . Let

ωh = {(ih, jh) | 1 ≤ i, j ≤ N − 1}

denote the set of interior grid vertexes and let

ωh = {(ih, jh) | 0 ≤ i, j ≤ N} (4)

stand for the set of all grid vertexes. Then, by ∂ωh =
ωh \ ωh, we denote the boundary vertexes. For some
function u : Ω→ R2, we define the projection on ωh

as uij = u(ih, jh). For interior vertexes from ωh, we
define the approximation of the Laplace operator ∆h

as follows:

∆hu ((ih, jh) , ·) ≈
ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4uij

h2 = ∆huij .

The explicit time discretization is done using the
method of lines which leads to the following system
of ODEs

d
dtuij(t) = ∆huij(t) + fij(t), (5)

at the interior vertexes and uij(t) = gij(t) at the
boundary vertexes. This system can be solved by
the Runge-Kutta method. For the semi-implicit time
discretization2, we introduce a time step τ and we
denote uk

ij := u(ih, jh, τk). With this notation, the
semi-implicit scheme is given by a system of linear
equations

uk+1
ij − uk

ij

τ
− (6)

uk+1
i+1,j + uk+1

i−1,j + uk+1
i,j+1 + uk+1

i,j−1 − 4uk+1
ij

h2 = fk+1
ij ,

at the interior vertexes and

uk+1
ij = gk+1

ij (7)

at the boundary vertexes. Both (6) and (7) can be
written in the form of a linear system

Axk+1 = bk, (8)

where xk+1
iN+j ≡ u

k+1
ij and for (i, j) ∈ ωh

AiN+j,i(N−1)+j = −λ
AiN+j,iN+j−1 = −λ
AiN+j,iN+j+1 = −λ
AiN+j,i(N+1)+j = −λ,

AiN+j,iN+j = 1− 4λ,
bk

iN+j = τfk+1
ij + uk

ij

2The scheme given by (6)–(7) is implicit. In general, implicit
schemes for non-linear parabolic PDEs involves the Newton
method, which is not implemented in TNL yet. Such problems
must be discretized by semi-implicit schemes.

where we set λ = τ/h2. The Dirichlet boundary
conditions (3) are approximated on (i, j) ∈ ∂ωh as
AiN+j = 1 and biN+j = gk+1

ij . Discretization of 1D
and 3D problem is done in the same way.

Algorithm 1 Algorithm for the time dependent PDE
solver
1: Initialize numerical mesh (4)
2: Allocate degrees of freedom for u0

ij

3: Setup the initial condition (uini)
4: Setup the numerical solver (Runge-Kutta or linear

system solver)
5: t := 0, k := 0, τ := initial time step
6: while t < T do
7: τ := min {τ, T − t}
8: if have explicit time discretization then
9: Evaluate the right hand side of (5)
10: Update uk

ij by the Runge-Kutta solver to
get uk+1

ij

11: else /* we have semi-implicit time discretiza-
tion */

12: Assembly the linear system (8)
13: Resolve (8) by the linear system solver to

get uk+1
ij

14: end if
15: t := t + τ , k := k + 1
16: if t is snapshot time then
17: Make snapshot of the solution uk

ij

18: end if
19: end while

A numerical solver for such parabolic problem may
be written as an Algorithm 1. Each of the steps in
this algorithm may be non-trivial for more complex
problems or parallel computations. TNL comes with
a framework based on what we call a problem-solver
model. On one hand, there is a problem defined by the
user in a form of a (templated) class. On the other
hand, there is a solver provided by TNL. The solver
interacts with the problem via predefined methods
and C++ types definitions.

4.1. PDE solver design
The design of the solver is depicted in Figure
2. The problem to be solved is defined and
managed by three template parameters of the
solver TNL::Solvers::Solver i.e. ProblemConfig,
ProblemSetter and ProblemBuild. They serve for
definition of the problem configuration parameters,
resolution of the problem template parameters and
control of the problem build process (complete build
may take a lot of time) respectively.
The static method TNL::Solvers::Solver::run

takes the command line arguments argc and argv.
The TNL solver firstly calls a static method
ProblemConfig::configSetup to get a definition of
the configuration keywords. In the next step, the
command line arguments are parsed and based on
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Figure 2. Structure of the PDE framework.The green boxes on the right are part of a problem written by the
user. The blue ones on the left are the solver part implemented in TNL. The yellow boxes represent the template
parameters and the violet ones stand for data.
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the definition of the configuration keywords, the con-
figuration parameters are resolved and stored in a
container TNL::Config::ParameterContainer. The
control is then passed to the SolverInitiator that
reads the file with the numerical mesh given by the
value of the configuration keyword –mesh. It is a bi-
nary file created by the TNL tool tnl-grid-setup
and it contains a binary image of templated class
Grid. In TNL, most objects may be saved in the
binary format using the method save. A header
of such file contains the object type written in the
C++ style, e.g., TNL::Meshes::Grid< 2, double,
TNL::Devices::Host, int >. The solver initiator
parses template arguments of this object type and
so it can resolve the mesh type completely. The
values of its template parameters Real and Index
are used as default values for floating point arith-
metics and indexing type in the problem. This can be
changed by the configuration keywords –real-type
and –index-type. Together with the argument
–device-type, the solver initiator can resolve the
primary template arguments (RealType, DeviceType,
and IndexType) and MeshType for the problem. The
solver may, however, depend on some other tem-
plate types like numerical scheme or boundary condi-
tions. We refer to them as secondary template argu-
ments. To resolve them, the control is passed to the
ProblemSetter.
The solver starter (based on the configuration pa-

rameters) sets up the templated types for the time
discretization (TimeStepper) and related solvers – the
Runge-Kutta solver for the explicit time discretization
or linear systems solver for semi-implicit scheme. At
the end, the solver starter creates an instance of the
class Problem, passes it to the PDESolver and starts
the solver. PDESolver loads the numerical mesh from
the file and, subsequently, it calls methods of the class
Problem which we describe in the following section.

4.2. PDE problem structure
The class Problem representing the heat-
equation or similar parabolic problem could
be parametrized by four template parameters –
Mesh, BoundaryConditions, RightHandSide and
DifferentialOperator defining the mesh type,
the boundary conditions (3), the right-hand side
of equation (1) and the differential operator in the
same equation (1) respectively. It is inherited from a
templated class TNL::Problems::PDEProblem which
defines the following methods (we list only the most
important ones):

• setup - this method serves for set-up of the problem
configuration parameters which were parsed from
the command-line arguments.

• getDofs - based on the numerical mesh, problem
type (single PDE or system of PDEs) and type of
the mesh entities linked with DOFs (cells, faces or
vertexes), this method returns a number of DOFs

for the unknown mesh function (it is uk
ij (5) or uij(t)

(6) in our example). DOFs are then allocated by
the solver.

• bindDofs - this method serves for binding of DOFs
into mesh functions.

• setInitialCondition - the initial condition uini

(2) may be set here.
• getExplicitUpdate - this method evaluates the

right-hand side (5) of the explicit numerical scheme.
It is called for the explicit time discretization only.

• setupLinearSystem - in the case of semi-implicit
time discretization, this method serves for setup of
the (sparse) matrix format storing the linear system
(8) as described in the Section 3.2. It is called only
for the semi-implicit time discretization.

• assemblyLinearSystem - this method is responsi-
ble for the construction of the linear system (8). It
is called for the semi-implicit time discretization
only.

• makeSnapshot - this method stores the state of the
time dependent problem into a file.

5. TNL tools
TNL offers several helper tools (see Figure 3).
tnl-grid-setup is a simple utility for creating a file
with the numerical grid definition. tnl-init serves
for easier set-up of initial conditions. It produces
file with binary image of a mesh function. After the
problem solver finishes the computation and saves
the solution in a form of a sequence of binary files,
they may be post-processed by tnl-view to convert
the binary data to VTK (or Gnuplot) format or by
tnl-diff to evaluate differences between different
mesh functions or experimental order of convergence
(EOC). tnl-image-converter can convert images to
binary TNL files and vice versa. Currently, TNL sup-
ports PGM (natively), PNG (via libpng), JPEG (via
libjpeg) and Dicom (via dcmtk).

6. Performance tests
Computational benchmarks were performed on In-
tel Xeon E5-2640 running at 2.4GHz. This CPU is
equipped with 8 computational cores and 25 MB L3
cache and it was connected to DDR4 memory modules.
The Turbo-boost technology was turned off only for
measuring the weak scalability on CPU. For all other
computations it was turned on. The GPU solvers were
tested on Nvidia Tesla V100 with 5120 CUDA cores
running at 1455 MHz and equipped with 16 GB of
global memory. The heat equation (1–3) was solved
in a domain (−1, 1)n where n = 1, 2, 3 denotes the
dimensions of the domain. The initial condition was
uini(x) = exp

(
−4 ‖x‖2

)
. The final time T was set

to 0.1.
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Figure 3. TNL tools for a computation data pre-
processing and post-processing.

6.1. Explicit numerical schemes
Firstly, we test the explicit numerical scheme. The in-
tegration in time is done by the Runge-Kutta-Merson
solver with the adaptive choice of the time step. Re-
sults are presented in Tables 2–4. The number of
DOFs is shown in the first column. The following
columns show times and efficiency of the CPU solver
on one, two, four and eight cores, together with the
parallel efficiency. The time values in bold face show
the best CPU computation time in each row. The
last two columns belong to the GPU solver. They
show the time and speed-up compared to the best
time obtained on CPU. The simulations in 1D (Table
2) have too small number of DOFs and thus we do not
obtain good parallel scalability and speed-up on the
GPU. In 2D (Table 3), the CPU solver scales relatively
well up to four cores on larger numerical meshes. The
best time is obtained on eight cores but the parallel
efficiency is lower. The GPU speed-up is more than
nine on large problems. In 3D, similar results can
be seen in Table 4 reporting the GPU speed-up more
than eight. Note that Turbo-boost was active on the
CPU which can affect the parallel efficiency.

The heat equation (1) with f(x, t) = 0 exhibits low
computational intensity. Therefore the Tables 2–4
demonstrates the lower bound of the GPU speed-up
that can be obtained for explicit solvers in TNL. Re-
sults with arithmetically more intensive computations
are presented in Tables 5–7 where we set

f(x, t) = cos(t)
(
−2a
σ2 e

−x2

σ2 + 4ax2

σ4 e
−x2

σ2

)
, (9)

f(x, t) = cos(t)
(
−2a
σ2 e

−x2−y2

σ2 + 4ax2

σ4 e
−x2−y2

σ2 +

−2a
σ2 e

−x2−y2

σ2 + 4ay2

σ4 e
−x2−y2

σ2

)
, (10)

and

f(x, t) = cos(t) ·(
−2a
σ2 e

−x2−y2−z2

σ2 + 4ax2

σ4 e
−x2−y2−z2

σ2 +

−2a
σ2 e

−x2−y2−z2

σ2 + 4ay2

σ4 e
−x2−y2−z2

σ2 +

−2a
σ2 e

−x2−y2−z2

σ2 + 4az2

σ4 e
−x2−y2−z2

σ2

)
, (11)

for 1D, 2D and 3D respectively. The setup is the same
for Tables 2–4, just for 2D and 3D simulations (Tables
6 and 7) we set the final time T was set to 0.01. In
this situation we get certain speed-up even for 1D
problem. In 2D and 3D the speed-up reaches almost
one hundred compared to eight cores CPU time. This
is the estimate of the upper bound of speed-up one
can obtain with the explicit solver.

6.2. Semi-implicit numerical schemes
Tables 8–10 show results obtained by the semi-implicit
numerical scheme (6)–(7). In this case, majority of
the time is spend by solving the linear system (8).
The sparse matrix A in (8) is stored in CSR format on
CPU and SlicedEllpack format on GPU. The linear
system was solved by the GMRES method on CPU
and CWYGMRES [18] on GPU. The use of GPU
makes no sense in 1D where the speed-up is smaller
than one as well as in the case of the explicit solver.
In 2D and 3D, the speed-up is more than 12 and 10
respectively.

The Figure 4 shows graphs of efficiency of the CPU
solvers and so it demonstrates the strong parallel scal-
ability of different solvers on different problems sizes.
The left column shows scalability in 1D where the
problem size is usually too small for efficient paral-
lelization. In 2D and 3D (the second and the third
column), especially for larger grid size, the efficiency
grows. The middle row shows the result of arithmeti-
cally more intensive explicit solver with f given by
(9)–(11). The efficiency is significantly higher. It indi-
cates that the CPU solvers are probably limited by
the memory bandwidth.
The weak scalability is reported in Table 11 and

Figure 5. To study the weak scalability we increase
the problem size linearly with the number of threads
by prolongating the domain Ω along the x axis. The
initial condition is scaled in the same way. We set
the domain Ω as Ω ≡ (0, p), Ω ≡ (0, p) × (0, 1) and
Ω ≡ (0, p)×(0, 1)×(0, 1) in 1D, 2D and 3D respectively,
where p denotes the number of threads. The discrete
numerical mesh ωh resolution is set as 10000p, 200p×
100 and 100p× 50× 50 in 1D, 2D and 3D respectively.
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CPU GPU
DOFs 1 core 2 cores 4 cores 8 cores

Time (s) Time (s) Eff. Time (s) Eff. Time (s) Eff. Time (s) Speed-up
16 0.003 0.002 0.75 0.003 0.25 0.003 0.12 0.04 0.05
32 0.003 0.003 0.5 0.003 0.25 0.003 0.12 0.04 0.07
64 0.005 0.005 0.5 0.005 0.25 0.005 0.12 0.05 0.1

128 0.015 0.015 0.5 0.015 0.25 0.01 0.18 0.12 0.08
256 0.06 0.06 0.5 0.06 0.25 0.06 0.12 0.43 0.13
512 0.28 0.29 0.48 0.33 0.21 0.34 0.10 1.36 0.20

1024 1.45 1.8 0.40 1.85 0.19 2.2 0.08 5.32 0.27
2048 8.57 9.111 0.47 8.5 0.25 9.38 0.11 20.95 0.40
4096 56.37 50.94 0.55 40.9 0.34 41.9 0.16 84.66 0.48

Table 2. Performance of the explicit numerical solver of (5) for the heat equation in 1D. Bold face stresses the
best time on CPU (with Turbo-boost turned on) based on which we compute the GPU speed-up written in bold face
as well.

CPU GPU
DOFs 1 core 2 cores 4 cores 8 cores

Time (s) Time (s) Eff. Time (s) Eff. Time (s) Eff. Time (s) Speed-up
162 0.003 0.003 0.5 0.003 0.25 0.008 0.04 0.003 0.03
322 0.005 0.006 0.41 0.006 0.20 0.006 0.10 0.07 0.07
642 0.03 0.027 0.55 0.022 0.34 0.028 0.13 0.09 0.33

1282 0.41 0.27 0.75 0.17 0.60 0.16 0.32 0.22 0.72
2562 6.17 3.67 0.84 2.12 0.72 1.46 0.52 0.79 1.84
5122 96 55.47 0.86 30.84 0.77 18.7 0.64 5.73 3.26

10242 1743 990.7 0.87 556.9 0.78 381.6 0.57 64.82 5.88
20482 31226 17627.7 0.88 10403.4 0.75 8297.8 0.47 911.11 9.10

Table 3. Performance of the explicit numerical solver of (5) for the heat equation in 2D. Bold face stresses the
best time on CPU (with Turbo-boost turned on) based on which we compute the GPU speed-up written in bold face
as well.

CPU GPU
DOFs 1 core 2 cores 4 cores 8 cores

Time (s) Time (s) Eff. Time (s) Eff. Time (s) Eff. Time (s) Speed-up
163 0.005 0.005 0.5 0.004 0.31 0.004 0.15 0.08 0.05
323 0.07 0.049 0.71 0.031 0.56 0.02 0.43 0.08 0.25
643 2.46 1.47 0.83 0.8 0.76 0.49 0.62 0.23 2.13

1283 94.32 53.08 0.88 30.66 0.76 23.75 0.49 3.48 6.82
2563 3050.47 1720.04 0.88 1005.89 0.75 827.16 0.46 103.46 7.99

Table 4. Performance of the explicit numerical solver of (5) for the heat equation in 3D. Bold face stresses the
best time on CPU (with Turbo-boost turned on) based on which we compute the GPU speed-up written in bold face
as well.
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CPU GPU
DOFs 1 core 2 cores 4 cores 8 cores

Time (s) Time (s) Eff. Time (s) Eff. Time (s) Eff. Time (s) Speed-up
16 0.003 0.003 0.5 0.003 0.25 0.003 0.12 0.02 0.15
32 0.003 0.003 0.5 0.003 0.25 0.003 0.12 0.05 0.05
64 0.007 0.007 0.5 0.007 0.25 0.007 0.12 0.07 0.09

128 0.032 0.032 0.5 0.03 0.26 0.03 0.13 0.11 0.27
256 0.19 0.2 0.47 0.2 0.23 0.2 0.11 0.36 0.52
512 1.35 1.37 0.49 1.5 0.22 1.5 0.11 1.37 0.98

1024 10.58 6.08 0.87 4.21 0.62 3.64 0.36 5.25 0.69
2048 78.26 43.08 0.90 26.86 0.72 20.13 0.48 20.74 0.97
4096 609.17 321.73 0.94 190.37 0.79 128.69 0.59 83.55 1.54

Table 5. Performance of the explicit numerical solver of (5) for the heat equation in 1D with f given by (9) and
T = 0.1. Bold face stresses the best time on CPU (with Turbo-boost turned on) based on which we compute the
GPU speed-up written in bold face as well.

CPU GPU
DOFs 1 core 2 cores 4 cores 8 cores

Time (s) Time (s) Eff. Time (s) Eff. Time (s) Eff. Time (s) Speed-up
162 0.004 0.004 0.5 0.004 0.25 0.006 0.08 0.04 0.1
322 0.01 0.007 0.71 0.006 0.41 0.007 0.17 0.05 0.12
642 0.03 0.02 0.75 0.01 0.75 0.01 0.37 0.08 0.12

1282 0.69 0.34 1.01 0.19 0.90 0.14 0.61 0.06 2.33
2562 11.03 5.65 0.97 3.13 0.88 1.83 0.75 0.12 15.2
5122 181.6 93.57 0.97 53.65 0.84 29.29 0.77 0.63 46.4

10242 2996.2 1557.51 0.96 865.7 0.86 481.47 0.77 6.41 75.1
20482 48965 25065.9 0.97 13716.7 0.89 8002.77 0.76 87.6 91.3

Table 6. Performance of the explicit numerical solver of (5) for the heat equation in 2D with f given by (10) and
T = 0.01. Bold face stresses the best time on CPU (with Turbo-boost turned on) based on which we compute the
GPU speed-up written in bold face as well.

CPU GPU
DOFs 1 core 2 cores 4 cores 8 cores

Time (s) Time (s) Eff. Time (s) Eff. Time (s) Eff. Time (s) Speed-up
163 0.03 0.02 0.75 0.014 0.53 0.011 0.34 0.01 1.1
323 0.33 0.16 1.03 0.1 0.82 0.09 0.45 0.01 9
643 4.5 2.33 0.96 1.31 0.85 0.81 0.69 0.03 27

1283 174.2 88.33 0.98 50.11 0.86 28.65 0.76 0.37 77
2563 6047.66 3071.05 0.98 1696 0.89 982.2 0.76 9.87 99

Table 7. Performance of the explicit numerical solver of (5) for the heat equation in 3D with f given by (11) and
T = 0.01. Bold face stresses the best time on CPU (with Turbo-boost turned on) based on which we compute the
GPU speed-up written in bold face as well.
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CPU GPU
DOFs 1 core 2 cores 4 cores 8 cores

Time (s) Time (s) Eff. Time (s) Eff. Time (s) Eff. Time (s) Speed-up
16 0.003 0.003 0.5 0.003 0.25 0.003 0.12 0.03 0.1
32 0.003 0.003 0.5 0.004 0.18 0.004 0.09 0.13 0.02
64 0.006 0.006 0.5 0.007 0.21 0.011 0.06 0.26 0.02

128 0.016 0.018 0.44 0.019 0.21 0.025 0.08 0.9 0.02
256 0.081 0.1 0.40 0.09 0.22 0.11 0.09 1.8 0.04
512 0.48 0.51 0.47 0.54 0.22 0.55 0.1 6.05 0.08

1024 3.42 2.98 0.57 2.83 0.30 3.57 0.11 21.6 0.17
2048 24.88 17.29 0.71 14.05 0.44 15.5 0.20 85.8 0.16
4096 189.7 114.12 0.83 79.53 0.59 76.11 0.31 342.8 0.22

Table 8. Performance of the implicit numerical solver (6)–(7) for the heat equation in 1D. Bold face stresses the
best time on CPU (with Turbo-boost turned on) based on which we compute the GPU speed-up written in bold face
as well.

CPU GPU
DOFs 1 core 2 cores 4 cores 8 cores

Time (s) Time (s) Eff. Time (s) Eff. Time (s) Eff. Time (s) Speed-up
162 0.004 0.004 0.5 0.01 0.1 0.03 0.02 0.04 0.1
322 0.015 0.012 0.62 0.011 0.34 0.01 0.18 0.12 0.08
642 0.12 0.07 0.85 0.047 0.63 0.05 0.3 0.3 0.15

1282 1.2 0.65 0.92 0.37 0.81 0.26 0.57 0.83 0.31
2562 17.51 9.17 0.95 4.79 0.91 3.03 0.72 2.86 1.05
5122 230.9 120.83 0.95 66.49 0.86 39.62 0.72 12.07 3.28

10242 3634.24 1928.66 0.94 1081.04 0.84 752.73 0.60 86.9 8.66
20482 59185 32048 0.92 18080.1 0.81 13167.5 0.56 1057 12.4

Table 9. Performance of the implicit numerical solver (6)–(7) for the heat equation in 2D. Bold face stresses the
best time on CPU (with Turbo-boost turned on) based on which we compute the GPU speed-up written in bold face
as well.

CPU GPU
DOFs 1 core 2 cores 4 cores 8 cores

Time (s) Time (s) Eff. Time (s) Eff. Time (s) Eff. Time (s) Speed-up
163 0.021 0.013 0.80 0.01 0.52 0.011 0.23 0.07 0.14
323 0.46 0.25 0.92 0.14 0.82 0.11 0.52 0.18 0.61
643 10.04 5.21 0.96 3.02 0.83 1.83 0.68 0.6 3.05

1283 240.9 125.11 0.96 81.24 0.74 51.46 0.58 6.54 7.86
2563 6429.6 3815.9 0.84 2313.79 0.69 1536.4 0.52 140.1 10.96

Table 10. Performance of the implicit numerical solver (6)–(7) for the heat equation in 3D. Bold face stresses the
best time on CPU (with Turbo-boost turned on) based on which we compute the GPU speed-up written in bold face
as well.
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Figure 4. Graphs of the CPU efficiency – the first row represents the explicit solver from Tables 2–4, the second
row is the explicit solver with f given by (9)–(11) from Tables 5–7 and the last row is the implicit solver from Tables
8–10. The first column contains results of computations in 1D, the second column in 2D and the third one in 3D.
The red curve is efficiency of simulation with two threads, the green one with four threads and the blue one with
eight threads. The horizontal axes represent grid size of the simulation and the vertical axes show the efficiency.
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Figure 5. Graphs of weak parallel scalability on
the CPU – the figure on the top shows the results of
the explicit solver, the one on the bottom shows the
implicit solver. The red curve represents computations
in 1D, the green one in 2D and the blue one in 3D.
The problem size grows linearly with the number of
threads. Therefore the more straight the curve is the
better parallel scalability the solver exhibits.

Time(s)
Explicit Implicit

Threads 1D 2D 3D 1D 2D 3D
1 0.56 1.06 1.34 1.25 2.84 5.59
2 0.58 1.31 1.36 1.29 3.54 5.82
3 0.61 1.42 1.35 1.30 3.61 6.09
4 0.59 1.51 1.49 1.31 3.80 6.30
5 0.60 1.54 1.80 1.31 3.80 6.59
6 0.61 1.51 1.94 1.31 3.68 7.07
7 0.60 1.42 1.91 1.32 3.60 7.59
8 0.66 1.41 1.97 1.36 3.54 8.31

Table 11. The weak scalability on the CPU – the
columns represent the CPU time of simulation on a
domain growing linearly with the number of threads
(the first column). The less the times grow with the
number of threads the better the weak scalabiltiy is.

7. Future work
In the future we would like to improve the support of
MPI to make computations on clusters easier, imple-
ment support of GPUs by AMD company via ROCm
toolkit [19] and create interface of TNL into Julia
[20]. As we mentioned before, efficient precondition-
ers for linear systems solvers are extremely important.
Currently we are working on a more flexible imple-
mentation of sparse matrices, on adaptive numerical
grids and distributed unstructured numerical meshes.
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8. Conclusion
We have presented Template Numerical Library, TNL,
for easy development of numerical solvers on modern
parallel architectures. We have described details of
the TNL design and we have presented a number of
numerical experiments to demonstrate the scalability
of TNL on multi-core CPUs together with the speed-
up on GPUs. The explicit solver achieves speed–up
of 8 to 99 depending on the arithmetic intensity. The
semi-implicit solver gives a speed–up of almost 11.
Both results were obtained by the comparison of 8
core CPU Intel Xeon with the GPU Nvidia Tesla
V100.
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