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Abstract. We present a novel hp-adaptive space-time discontinuous Galerkin (hp-STDG) method for
the numerical solution of the nonstationary Richards equation equipped with Dirichlet, Neumann and
seepage face boundary conditions. The hp-STDG method presented in this paper is a generalization of
a hp-STDG method which was developed for time dependent non-linear convective-diffusive problems.
We describe the method and the single ring experiment, and then we present a numerical experiment
which clearly demonstrates the superiority of the hp-STDG method over a discontinuous Galerkin
method based on a static fine mesh.
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1. Introduction
The single ring (hereafter SR) infiltration experiment
is a standard and robust dynamic field experiment.
The steady part of this experiment is traditionally
used for the identification of saturated hydraulic con-
ductivity. More recently, the unsteady part of this
experiment was used to analyze various hydraulic
properties of soils such as van Genuchten’s α (see, for
example, [1] and [2]).
The SR experiment can be mathematically de-

scribed by the Richards equation [3], which is a govern-
ing equation for many different applications ranging
from hydrology, soil and snow physics [4–6], contami-
nant transport simulations [7], etc.

The Richards equation belongs to the class of quasi-
linear degenerate parabolic equations since the space
and time derivative terms can vanish or blow up. The
analytical results concerning the existence and unique-
ness were published, e.g., in [8–10]. First attempts of
solving the Richards equation numerically date back
to [11] in the 1970s. Various methods for the nu-
merical solution of the Richards equation have been
studied and improved in the last decades [12–20].
There are two main reasons why hp-adaptive dis-

continuous Galerkin methods are naturally suitable
for the numerical simulation of the SR experiment:

(1.) The flow pattern is typically formed out of a mov-
ing wetting front. This wetting front is the source
of considerable computational difficulties due to
steep gradients in the solution and abrupt changes
in nonlinear functions.

(2.) The flow domain is effectively discontinuous, since
the thickness of the steel ring (≈ 1 mm) is negligible
compared to the scale of the flow pattern, as shown
in Fig. 1.
In this paper we use the discontinuous Galerkin

(DG) method to solve the nonstationary Richards
equation describing the SR experiment. The Richards
equation is equipped with both Dirichlet and Neu-
mann boundary conditions (BCs), as well as with a
seepage face boundary condition (BC). We combine
the DG method with an anisotropic mesh adapta-
tion algorithm and present a simulation of the SR
experiment which demonstrates the full potential of
the proposed numerical treatment for this class of
problems.

2. Governing equations
We will model the single ring infiltration experiment
using the nonstationary planar Richards equation in
the form

C(ψ)∂Ψ
∂t
−∇ · (K(ψ)∇Ψ) = 0, (2.1)

where ψ denotes the pressure head [L] and Ψ is the
hydraulic head [L]. They are connected by the simple
relation

Ψ = ψ + z, (2.2)

where z is the vertical distance from the reference
level (the geodetic head [L]). Moreover, the ten-
sor function K(ψ) is the unsaturated hydraulic con-
ductivity [L.T−1], and it is defined as the product
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Figure 1. Scheme of the single ring infiltration experiment.

of the the relative hydraulic conductivity Kr(ψ) [-]
and the (tensor value) saturated hydraulic conductiv-
ity Ks [L.T−1],

K(ψ) = Kr(ψ)Ks. (2.3)

Furthermore, the scalar function C(ψ) denotes the
water retention capacity [L−1], expressed in the form

C(ψ) = dθ(ψ)
dψ + θ(ψ)

θS
Ss, (2.4)

where the symbol θ(ψ) denotes the water content
function [-], and θS is the limited saturated water
content [-] and Ss is the specific storativity (aquifer
storage) [L−1].

The function θ(ψ) is given by the van Genuchten’s
law [21], which can be written in the form

θ(ψ) =


θs − θr

(1 + (−αψ)n)m
+ θr, for ψ < 0,

θs for ψ ≥ 0,
(2.5)

where θr[-] is the residual water content, θs[-] is the
saturated water content, n [-] and m [-] are pore size
distribution parameters, and α [L−1] is given as the
inverse of the air entry value.

The relative conductivity Kr(ψ) appearing in (2.3)
is given by the Mualem function [22] which in combi-
nation with (2.5) reads

Kr(ψ) =
{ (1−(−αψ)m n(1+(−αψ)n)−m)2

(1+(−αψ)n)m/2 for ψ < 0,
1 for ψ ≥ 0,

(2.6)

In order to close the Richard’s equation (2.1) we
add the usual Dirichlet and Neumann BCs. Moreover,
in order to simulate the seepage of the fluid from the
medium through its boundary, we consider also the
seepage face boundary condition which reads

ψ := Ψ− z ≤ 0, −K(Ψ− z)∇Ψ · n ≥ 0, (2.7)
ψ(∇Ψ · n) = 0.

The first condition in (2.7) means that the pressure
head ψ must be non-positive and the second one means
that the fluid cannot flow into the medium because
there is no fluid outside the medium. Finally, the last
relation in (2.7) gives that the fluid leaves the medium
if and only if the medium becomes saturated (ψ = 0).
For the purpose of numerical implementation we

have to reformulate (2.7). According to [23], we treat
the seepage BC as a Signorini condition. This means
that if the medium on the boundary is unsaturated
(ψ < 0) then this boundary behaves as a no-flow
(homogeneous Neumann) boundary. On the other
hand, if the medium on the boundary is saturated
then the boundary changes into a Dirichlet one with
a zero pressure head. These conditions can be then
written as

∇Ψ · n = 0, if ψ < 0, (2.8a)
ψ = 0, if ∇Ψ · n < 0. (2.8b)

2.1. Initial boundary value problem
In order to formulate (2.1) in a form more suitable
for numerical discretization, and taking into account
(2.2), we write the first term in (2.1) as

C(ψ)∂Ψ
∂t

= C(Ψ− z)∂Ψ
∂t

= C(Ψ− z)∂(Ψ− z)
∂t

= ∂ϑ(Ψ− z)
∂t

= ∂ϑ(ψ)
∂t

. (2.9)

Here, in virtue of (2.4), we define the quantity

ϑ(ψ) := θ(ψ) + Ss
θS

∫ ψ

−∞
θ(s)ds (2.10)

which represents the active pore volume affected by
the changing pressure (hydrostatic and capillary). For
vanishing specific storage Ss, the active pore volume
ϑ(ψ) coincides with the water content θ(ψ).

Now we are ready to formulate the initial boundary
value problem. The porous medium occupies a domain
Ω ⊂ R2. If x ∈ Ω then we write either x = (x1, x2) or
x = (x1, z). Furthermore, the symbol Γ denotes the
boundary of Ω, T > 0 is the final physical time of our
interest and we put I := (0, T ). Moreover, symbols
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ΓD, ΓN and ΓE , respectively, denotes the correspond-
ing parts of Γ, where the Dirichlet, Neumann and
seepage face BCs are prescribed, respectively. Obvi-
ously, these parts have to be mutually disjoint and
ΓD ∪ ΓN ∪ ΓE = Γ.
In virtue of (2.1) and (2.8) – (2.9), we define the

following problem. Find a function Ψ = Ψ(x, t) :
Ω× I → R such that

∂ϑ(ψ)
∂t

−∇ · (K(ψ)∇Ψ) = 0 in Ω× I, (2.11a)

Ψ = ΨD on ΓD × I, (2.11b)
K(ψ)∇Ψ · n = qN on ΓN × I, (2.11c)

∇Ψ · n = 0 if Ψ ≤ 0
Ψ = 0 if ∇Ψ · n ≤ 0

}
on ΓE × I, (2.11d)

Ψ(x, t = 0) = Ψ0 in Ω. (2.11e)

3. Space-time discontinuous
Galerkin discretization

We solve (2.11) numerically using the space-time dis-
continuous Galerkin (STDG) method. We refer to [24]
where it was developed for the numerical solution of
a time-dependent partial differential equation. Here,
we present its adaptation for the Richards equation.

3.1. Space-time partition
First, using a finite sequence 0 = t0 < t1 < . . . <
tr = T we split the time interval I into sub-intervals
intervals Im = (tm−1, tm], m = 1, . . . , r of lengths
|Im| = τm. We define τ = maxm=1,...,rτm. For each
interval tm, m = 1, . . . , r, we consider a triangulation
Th,m of Ω consisting of a finite number of closed
mutually disjoint triangles K covering Ω, i.e., Ω =
∪K∈Th,m

K, m = 0, . . . , r. The meshes Th,m can
differ for each time level. By ∂K and hK we denote
the boundary and the diameter, respectively, of K ∈
Th,m.

Furthermore, by Γh,m we denote the set of edges of
Th,m. We define several subsets of Γh,m, namely

ΓIh,m = {γ ∈ Γh,m, γ ⊂ Ω} (interior edges), (3.1)
ΓDh,m = {γ ∈ Γh,m, γ ⊂ ΓD} (Dirichlet edges),
ΓNh,m = {γ ∈ Γh,m, γ ⊂ ΓN} (Neumann edges),
ΓEh,m = {γ ∈ Γh,m, γ ⊂ ΓE} (seepage face edges),
ΓBh,m = ΓDh,m ∪ ΓNh,m ∪ ΓEh,m,
ΓIDh,m = ΓIh,m ∪ ΓDh,m.

Finally, a unit normal to γ ∈ Γh,m is denoted by
nγ . We assume that vectors nγ , γ ∈ ΓBh,m are outer
normals to ∂Ω. The orientation of nγ of interior edges
γ ∈ ΓIh,m is arbitrary but fixed.

3.2. Finite element space
We will seek the approximate solution in a space of
piecewise polynomial but discontinuous functions. We
use a fixed polynomial degree q ∈ N wrt. t ∈ I but

a possibly varying polynomial degree pK wrt. x ∈ Ω
for each mesh element K ∈ Th,m, m = 0, . . . , r. We
define the spaces of space-time discontinuous piecewise
polynomial functions on Ω× I as

Sτ,qh,p := {ϕ : Ω× I → R; ϕ|K×Im ∈ P pK ,q(K × Im),
K ∈ Th,m, m = 1, . . . , r}, (3.2)

where P pK ,q(K × Im) is the space of space-time poly-
nomial functions on K × Im having degree ≤ pK wrt.
x ∈ K and degree ≤ q wrt. t ∈ Im for K ∈ Th,m and
m = 1, . . . , r.

Moreover, a restriction of Sτ,qh,p on the time layer Im,
m = 1, . . . , r is given by

Sτ,qm,h,p := {ϕ : Ω× Im → R; (3.3)
ϕ|K×Im

∈ P pK ,q(K × Im), K ∈ Th,m}.

Finally, we introduce the jumps and mean val-
ues of functions from Sτ,qh,p. For γ ∈ ΓIh,m and
v ∈ Sτ,qm,h,p, m = 0, . . . , r we define

[v]γ = v|(+)
γ − v|(−)

γ , (3.4)
〈v〉γ = 1

2
(
v|(+)
γ + v|(−)

γ

)
, (3.5)

where v|(±)
γ = limδ→0± v(x + δnγ), x ∈ γ. For γ ∈

ΓBh,m, we set [v]γ = 〈v〉γ = v|γ . In the case that
nγ , [·]γ and 〈·〉γ are arguments of

∫
γ
. . . dS, γ ∈ Γh,m

we omit the subscript γ.
Additionally, we set

{ϕ}m := ϕ|+m − ϕ|−m, ϕ|±m := lim
δ→0±

ϕ(tm + δ),

(3.6)

defining a jump of ϕ ∈ Sτ,qh,p wrt. time at tm, m =
0, . . . , r.
We observe that the finite element space Sτ,qh,p is

independent on the type of boundary conditions since
they are incorporated directly in the numerical scheme.
This is different from conforming finite element meth-
ods.

3.3. Space discretization
We discretize problem (2.11) in space using the incom-
plete interior penalty Galerkin (IIPG) method. The
main advantage of the IIPG technique is the absence
of additional stabilization terms, cf. [24, Chapter 2].
In order to simplify an exposition of IIPG method,
we assume in this section that ΓE = ∅. The general
case will be discussed in Section 3.4.
Let Ψ be a sufficiently smooth exact solution of

(2.11). Let m = 1, . . . , r be arbitrary but fixed. We
multiply (2.11a) with ϕ ∈ Sτ,qh,p, integrate over K ∈
Th,m, sum over all elements K ∈ Th,m, and carry out
some manipulation. The Green’s theorem applied to
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the conductivity term and (2.11c) yields

−
∑

K∈Th,m

∫
K

∇ · (K(Ψ− z)∇Ψ)ϕdx (3.7)

=
∑

K∈Th,m

(K(Ψ− z)∇Ψ,∇ϕ)K

−
∑

γ∈ΓID
h,m

(〈K(Ψ− z)∇Ψ〉 · n, [ϕ])γ

−
∑

γ∈ΓN
h,m

(qN , ϕ)γ .

In order to ensure the coercivity of the resulting nu-
merical scheme, we include additional terms to (3.7)
which are vanishing if Ψ is smooth and satisfies (2.11b).
Namely,∑
γ∈ΓI

h,m

(σ[Ψ], [ϕ])γ +
∑

γ∈ΓD
h,m

(σ(Ψ−ΨD), ϕ)γ , (3.8)

where σ is the penalty parameter. The terms in (3.8)
are called the interior and boundary penalties and they
replace the interelement continuity of approximate
solution from Sτ,qh,p.

Taking into account (3.7)–(3.8), we obtain the rela-
tion

(∂tϑ(Ψ), ϕ)Ω + ah,m(Ψ, ϕ) = 0 ∀ϕ ∈ Sτ,qh,p, (3.9)

where

ah,m(Ψ, ϕ) :=
∑

K∈Th,m

(K(Ψ− z)∇Ψ,∇ϕ)K (3.10)

−
∑

γ∈ΓID
h,m

(〈K(Ψ− z)∇Ψ〉 · n, [ϕ])γ

+
∑

γ∈ΓI
h,m

(σ[ϕ], [Ψ])γ

+
∑

γ∈ΓD
h,m

(σϕ,Ψ−ΨD)γ − (qN , ϕ)ΓN
.

Let us note that Ψ and ϕ are functions of x =
(x1, x2) = (x1, z) ∈ Ω and t ∈ I.

3.4. Numerical realization of seepage
face boundary (2.8)

In this section, we extend the IIPG discretization of
(2.1) from Section 3.3 to a general case, i.e., ΓE 6= ∅.
Similarly as in [23], we implement condition (2.8)
using the scheme

if ψ < 0 and ∇Ψ · n > 0 then ∇Ψ · n = 0,
if ψ < 0 and ∇Ψ · n < 0 then ∇Ψ · n = 0,
if ψ > 0 and ∇Ψ · n > 0 then ∇Ψ · n = 0,
if ψ > 0 and ∇Ψ · n < 0 then ψ = 0,

(3.11)

The quantities before “then” are taken from the inte-
rior of Ω and the equalities after “then” correspond
to the prescribed BCs.

Let us note that practical implementation of (3.11)
in the framework of conforming finite element methods
is quite difficult since the finite element space, where
the approximate solution is sought, depends on the
Dirichlet part of boundary ΓD and then the realization
of (3.11) requires frequent changes of finite element
space.
The realization of (3.11) using the DG method is

much easier. On the seepage face part of boundary ΓE ,
we define a scalar function σ∗ : ΓE → {0, 1} whose
role is to switch between (2.8a) (Neumann BC) for
σ∗ = 0 and (2.8b) (Dirichlet BC) for σ∗ = 1. Then
we supplement the form (3.10) by additional integrals
over ΓE in the form

ah,m(Ψ, ϕ) :=
∑

K∈Th,m

(K(Ψ− z)∇Ψ,∇ϕ)K (3.12)

−
∑

γ∈ΓID
h,m

(〈K(Ψ− z)∇Ψ〉 · n, [ϕ])γ

−
∑

γ∈ΓE
h,m

(σ∗K(Ψ− z)∇Ψ · n, ϕ)γ

+
∑

γ∈ΓI
h,m

(σ[ϕ], [Ψ])γ

+
∑

γ∈ΓD
h,m

(σϕ,Ψ−ΨD)γ

+
∑

γ∈ΓE
h,m

(σ∗σϕ,Ψ− z)γ − (qN , ϕ)ΓN
.

Form ah,m from (3.12) behaves in the following way:
Let gE ⊂ ΓE be an arbitrary but fixed part of the
seepage face boundary. If σ∗|gE

= 1 then Dirichlet
BC Ψ = z is enforced on gE . On the other hand,
if σ∗|gE

= 0 then the homogeneous Neumann BC is
used on gE .

Now, let us discuss the choice of the function σ∗ in
(3.12). In virtue of (3.11), we set σ∗ according to the
signs of ψ and −K(Ψ− z)∇Ψ · n on ΓE . Therefore,
we define

σ∗(Ψ(x, t)) =
{

1 if ψ(x, t) ≥ 0 and ∇Ψ · n ≤ 0,
0 otherwise .

(3.13)
However, this choice is not suitable from the practical
point of view because the function σ∗ only admits
two distinct values 0 and 1. As a result, iterative
solvers for the resulting algebraic system will fail to
converge. This unpleasant effect can be suppressed
via smoothing of σ∗ near the transition from σ∗ = 0
and σ∗ = 1.
Hence, we introduce transition regions of small

widths sph > 0 and sfl > 0, and define a function
σ∗h(Ψ(x, t)) which is continuously differentiable with
respect to Ψ. It is equal to σ∗ if ψ(x, t) 6∈ [0, sph] and
K(Ψ− z)∇Ψ · n 6∈ [0, sfl].
In order to ensure the consistency of the resulting

numerical scheme, the transition regions must van-
ish for a vanishing mesh size. Therefore we define
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sph|K := c1 hK and sfl|K := c2 hK , where c1 > 0 and
c2 > 0 are empirically chosen constants. Typically we
use the values c1 = c2 = 0.1. Numerical experiments
show that the numerical scheme only depends weakly
on sph|K and sfl|K .

Finally, we replace σ∗ in (3.12) with σ∗h and obtain

ah,m(Ψ, ϕ) :=
∑

K∈Th,m

(K(Ψ− z)∇Ψ,∇ϕ)K (3.14)

−
∑

γ∈ΓID
h,m

(〈K(Ψ− z)∇Ψ〉 · n, [ϕ])γ

−
∑

γ∈ΓE
h,m

(σ∗h(Ψ)K(Ψ− z)∇Ψ · n, ϕ)γ

+
∑

γ∈ΓI
h,m

(σ[ϕ], [Ψ])γ

+
∑

γ∈ΓD
h,m

(σϕ,Ψ−ΨD)γ

+
∑

γ∈ΓE
h,m

(σ∗h(Ψ)σϕ,Ψ− z)γ − (qN , ϕ)ΓN
.

3.5. Time discretization
The time discretization is carried out using the space-
time discontinuous Galerkin method (STDGM) (see
[24]), which reads

Ah,m(Ψ, ϕ) = 0 ∀ϕ ∈ Sτ,qh,p, m = 1, . . . , r, (3.15)

where

Ah,m(Ψ, ϕ) =
∫
Im

(
(∂tϑ(Ψ− z), ϕ)Ω + ah,m(Ψ, ϕ)

)
dt

+ ({ϑ(Ψ− z)}m−1, ϕ|
+
m−1)Ω. (3.16)

Now, we define the final hp-space-time discontinu-
ous Galerkin (hp-STDG) solution of problem (2.11):

Definition 3.1. Let Ah,m be the form (3.16). The
function Ψhτ ∈ Sτ,qh,p is called the approximate solution
of (2.11) if

Ah,m(Ψhτ , ϕ) = 0 ∀ϕ ∈ Sτ,qh,p, m = 1, . . . , r (3.17)

where Ψhτ |−0 := Ψ0, cf. (2.11e).

The term ({ϑ(Ψ− z)}m−1, ϕ|
+
m−1)Ω in (3.16) re-

places in some sense the interelement continuity in
time. The approximate solutions on two subsequent
time layers are connected together only by this term.
A major advantage of this treatment is that differ-
ent grids (and polynomial degrees pK , K ∈ Th,m)
can be used in each time interval separately. This
is advantageous from the point of view of adaptive
methods.

3.6. Solution of the discrete problem
The approximate solution (3.17) represents a sequence
of r nonlinear algebraic systems of equations, one
system for each m = 1, . . . , r. The size of the system
(= number of degrees of freedom) is equal to the
dimension of the space Sτ,qm,h,p and it changes for m =
1, . . . , r. The system is solved using the Anderson
acceleration method [25]. The stopping criteria and
the choice of the time step are controlled in such a way
that the errors arising due to the space discretization,
time discretization, and iterative solution of nonlinear
algebraic systems are balanced.
The meshes and polynomial degrees are chosen

adaptively using a technique introduced in [26, 27].
Using a higher order reconstruction of the computed
approximate solution, this technique proposes new
sizes and shapes of mesh elements, as well as the
corresponding polynomial degrees. The basic idea
of the mesh adaptation algorithm is to minimize the
number of degrees of freedom on the prescribed toler-
ance level for the interpolation error measured in the
H1(Ω)-seminorm.

4. SR experiment setup
The proposed SR experiment is depicted in Fig. 2.
The ring is located in the vicinity of a hillside, which
is a typical application for the seepage face boundary
discussed in this paper. The porous environment is
anisotropic, with layers inclined into the hillside. Such
experimental setup was chosen to combine the effects
of a moving wetting front, seepage face boundary, and
discontinuous flow domain. The domain is illustrated
in the left part of Fig. 2.
The initial and boundary conditions are given as:

Γ1 (=: ΓN ) no flow boundary

∂Ψ
∂~n

= 0, ∀(x, t) ∈ Γ1 × t ∈ [0, T )

Γ2 (=: ΓD) ponding depth 5 cm

Ψ(x, t) = 0.05 + z, ∀(x, t) ∈ Γ2 × t ∈ [0, T )

Γ3 (=: ΓE) seepage face, cf. (2.7) and Section 3.4.
This is shown in the right part of Fig. 2. The origin
of the coordinate system is located at the left-bottom
corner of the domain.

The initial condition is a hydrostatic state with zero
capillary pressure at the impermeable bottom,

Ψ(x, t0) = −2 m, ∀x ∈ Ω. (4.1)

The soil hydraulic properties were assumed as fol-
lows: α = 0.8 m−1, n = 1.2, m = 0.167, θs =
0.55, θr = 0, Ss = 10−3 m−1.

Soil properties were assumed here to be anisotropic
with rotated main axes of anisotropy as depicted on
Fig. 3. The rotation angle αxx′ was -30◦, and so
the layers were inclined into the hillslope. Kx′ was
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Figure 2. Scheme of the single ring infiltration experiment.

Figure 3. Example of rotated main axes of anisotropy
of hydraulic conductivity, obtained from [28].

assumed to be ten times greater than Kz′ . The re-
sulting tensor of anisotropy of saturated hydraulic
conductivity for our global system of coordinates

was Ks =
(

1.031× 10−4 −5.187× 10−5

−5.187× 10−5 4.323× 10−5

)
m.s−1.

Please note that the example presented here is purely
synthetic.

4.1. Numerical results
Fig. 4 presents the approximate solution (hydraulic
head) for different time levels as well as the dynam-
ically adapted meshes. Fig. 5 shows the dynamic
development of the mesh and the number of degrees
of freedom. It should be noted that our case study is
sensitive to discretization qualities as explained in [29].
The numerical solution exhibits physically justifiable
characteristics while maitaining a low number of de-
grees of freedom. The maximum number of degrees
of freedom was roughly 1000. Taking into account
the domain size and dimension, such automatically
adapted mesh is highly optimal.
Finally we also present a quantitative comparison

of an adaptive computation and a computation on a
fixed fine mesh. Namely, we compare the actual water
flux through the input boundary

F (t) = −
∫

Γ2

K(ψ)∇Ψ(x, t) · n dx (4.2)

and the total (accumulated flux)

F (t) = −
∫ t

0

∫
Γ2

K(ψ)∇Ψ(x, t′) · n dxdt′. (4.3)

The fine mesh was chosen in such a way that both
computations have roughly the same level of accuracy.
Fig. 6 shows the values of the actual and total fluxes
in dependence on time. We observe that the actual
flux is the highest at the beginning of the computation
and starting from t ≈ 0.2 hours, it is approximately
constant. Finally, when the seepage face is active, the
actual flux decreases (the total flux stagnates).

Moreover, we find that both computations (adaptive
and fixed meshes) give very similar behaviours. The
main difference is at the end of the computation where
the actual flux is already negligible. The difference is
caused by a large final time step chosen by the adap-
tive method. Furthermore, the adaptive computation
uses approximately 200 elements and 10,000 degrees
of freedom. It takes 74,646 seconds. The fixed mesh
computation uses 2279 elements and 45,580 degrees of
freedom, and it takes 401,769 seconds. Hence, clearly,
the adaptive computation is much more efficient.
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Figure 4. Hydraulic head and a detail of the dynamically adapted mesh.
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