Acta Polytechnica Vol. 44 No. 4/2004

Programming a Logical Control Method

by a Parallel Process

P. Jirousek

This paper deals with the development of the problem oriented language PRIMAS for use in program control. It is based on virtual
parallelism of the controlling program to make its hierarchical structure transparent. The author has also worked on the compiler and the
control process simulator. This system enables verification of the control algorithm when there is no controlled machine and no control
system. The PRIMAS language, compiler and simulator were developed and applied to real tasks, in the course of work on the author’s PhD

dissertation.

Keywords: Higher program language, logic control, modelling and simulating.

1 Introduction

In developing any kind of industrial control system, it is
important what kind of software support is used, in addition
to the hardware. In addition to the standard methods, solved
by the compiler of linear schemes and various representations
of combining equations, there is a wide range of tasks where
the support of higher program language is necessary. There
are languages like C, Pascal and perhaps Basic. The problem
is their in ability to represent combinatorial relations. A suffi-
cient solution is to use a parallelism for programming logical
control in a higher language. PRIMAS offers not only the
usual language structure but also parallel processes, timing
functions, easier object access and simulation instruments.

2 A linear scheme or a programming
language?

As an example, let us take a situation where our equip-
ment is performing one operation from its list. The control
program is composed of operations from this list. Running
these operations depends on a combination of logical condi-
tions. When a condition is fulfilled the running operation
should stop and a different one will start. There are usu-
ally some other parallel operations running on their own
algorithm. In addition the equipment has an alphanumerical
display with a keyboard to communicate with the operator. It
can also communicate with its major system.

If we want to use the linear scheme compiler or some
other form of combinatorial equations compiler; difficulties
may occur. We will have trouble to form sequences and cycles
and there will be probably a lack of procedures. The dialog to
the operator and the internal communications, taking place
concurrently with the running processes can be performed
only on the basis of commercially-available producers mod-
ules. Transparency and program service will also be difficult.
There exist higher level of logical control program systems
such as STEP 5 and GRAFCET. However there are situations
so that program instruments cannot deal with.

In C language the programmer writes functions like Shift
Left(), Drill(), etc., and puts them into a sequence. This
sequence is closed into the cycle for (i=0;:<5:i4++) and
creates a readable algorithm for Action(). Problems emerge if
we want to bring this action to the end abruptly whenever a
condition X appears. Into Shift Left(), Drill() and into other

© Czech Technical University Publishing House

http://ctn.cvut.cz/ap/

actions we have to write a new ifs (...). Unstructured jumps
need to be solved and program transparency suffers. Another
problem is parallel dialog to the operator and the communi-
cations. Here the interrupt function can be helpful. However
the program can become too complicated and totally lacking
in transparency.

3 Parallel tasks

The task of running the system control, dialog and com-
munication, which are quite independent actions, at the same
time can be solved naturally by the ability to create parallel
processes. Parallel processes are also good for creating the
actual control process and, even as a tuning tool.

4 Decomposing the task

In usual multitasking, the tasks are not allowed to influ-
ence each other and they communicate through exporting
and importing files. In the control processes there is typically
close cooperation among the actions. If we substitute ac-
tions for persons, the whole program becomes more like a
company. They have the same interests, work with the same
information and know what their colleagues do. This naive
comparison proves to be surprisingly adequate when asking:
“How many actions, what will they perform, and how do they
influence each other?” We can create a “manager”, a “com-
municator”, a “service man”, a “security technician”, and a
mass of “workers”.

The relations between actions are solved by the main pro-
gram structure and as are some particular problems. Let us
take our example with action conditioned by condition X. In-
stead of testing this condition in each procedure, we just
launch the guarding parallel process. This will continually test
that condition. Our action will no longer be needed. When
the condition is fulfilled the guard stops the action and launch
a different one, or even the same one with changed parame-
ters. This condition can be, for example, a time limit. Our ac-
tion will set the time limit and the guard watches its runover.
This type of the parallel control has the advantage that the ac-
tions “see into each others plate”.

In order to optimized decomposition, sensitivity and ex-
perience are needed.

27

Acta Polytechnica Vol. 44 No. 4/2004

4 Modeling and simulating

Parallel processes are an excellent tool for simulating and
tuning control tasks. A control process is an interaction be-
tween the control and the controlled. In simple terms a model
consists of controlling processes and a controlled utility. Then
we leave them to interact each other. With suitable visualiza-
tion of internal processes it is possible to observe the behavior
of the whole system. The use of cross development software
enables the tuning when there is no controlling process and
no controlled utility.

In practical terms this means that the more time is used on
development, the less time is needed when the program is
brought to life. The program just works as soon as it is
switched on.

5 Problems when implementing
parallelisms

Parallelisms offer many advantages. It remains is to find
suitable development software to enable the implementation
of parallelism. Let us focus on control systems which do not
support UNIX, QNX or some other multitask operating sys-
tem. These are mostly smaller and cheaper systems, mainly
eight bits, with processors such as 8051, Z80, 180186 etc. Most
of producers of development software, if they do offer paral-
lelism, will enable it to run only thanks to the real time core of
their system. This processes drives the switching and also the
mutual communication. This separates the language from
the parallelism. There are libraries for approaching a core
function. The compiler remains unaffected by parallelisms.
Sharing the information in the system in this way is not
problem-free. Passing the information through the core by
sending messages proves to be a very safe and clear method,
but it is not really necessary in this case. If such a message is an
integer, sending it becomes to difficult. This variable can be
shared between processes inside the memory. This can be
done only if collisions between the producer and the receiver
of the information are eliminated. The recipient cannot touch
this variable at the same time as the producer is changing it.
The core control has some procedure to deal with this.

One way to eliminate mutual work with one variable is to
apply cooperative multitasking in a suitable manner. The pro-
cessor is not forced to surrender the process, but it can decide
whether or not it is appropriate. The information producer
holds on the processor until the data work is finished. Then
there is the problem of how to control process switching. If the
application program has to take care of this problem, it is not
only a burden to bear but also a possible source of any kind of
mistake. These processes can cause long delays.

6 Parallelisms in PRIMAS

To deal with the problem discussed above the PRIMAS
program system was developed. Its core consists of a higher
language orientated to logical control tasks. It is based on the
ideas of parallel programming. When looking at the source
code, a slight resemblance with Pascal is recognizable. There
are procedures, functions, integers, real variables, the classi-
cal if-then-else program structure, etc. In addition, the bite
objects have been made accessible, the program works with
virtual timers, and there are also language structures which fa-
cilitate work with these particles.

In PRIMAS, parallelism is supported by the ability to
define more than one process. Switching between them is en-
sured by the cooperative multitasking method. The decision
on switching, and its exact placing, is made by the compiler
according to a precisely set strategy. The programmer can
also influence this placing by himself, but this has been used
minimally. Individual processes share the global variables,
timers, inputs and outputs, and they can call the same proce-
dures if they are re-enter. Processes can launch and stop each
other, while they are accessible to each other through their
individual identifiers. The processes can be addressed indi-
rectly, so they become parameters in the procedures and
functions.

6 Tuning and simulating in PRIMAS

The PRIMAS program system consists of a compiler for
the given control system and the universal tuning program. It
is made for MS-DOS. When simulating, one or more external
file is attached to define the object placement and the way
in which they are shown on the PC screen. The tuning pro-
gram then interprets the translated processes, and projects all
changes onto the screen. Here we can observe how the water
level is rising, how the object runs along its trajectory, or
how the end switch is working. Then this process can be
influenced with the use of the mouse or keyboard. When the
mouse is clicked on an object showing a binary value, an
immediate change will follow. In other cases, the dialog line
shows up and a new value will be inputted from the keyboard.

7 Implementing PRIMAS

While it was being developed PRIMAS was implemented
for 18048, 18051, Z80, Z181 and 18086 processors. The pro-
cessor units of PROMOS system by ELSACO and AREM pro
are based on these platforms. Many library functions have
been prepared for PROMOS, to support specific hardware.
PRIMAS is offered as a device for developing programs for
this hardware.

o° oo o° oe

Example
% The following program has no practical means. It only
% demonstrates commonly used elements of PRIMAS.
PROCESSES: MAIN MainControl

ErrorStatus Oiling <* Simulator *> ;
28

© Czech Technical University Publishing House

http://ctn.cvut.cz/ap/

Acta Polytechnica Vol. 44 No. 4/2004

CONSTANTS: HEX[2C]

NAME PortAdr
5 NAME CycleCount
REAL 4.2E6 NAME Coefficient
ENUM Status0O Statusl Status2;

BYTE INPUTS: WITH ADDRESS PortAdr NAME InPort

WITH ADDRESS 32 NAME Serialline

WITH ADDRESS 33 NAME DataSL
WITH FILTER HEX[2D] NAME FPort ;
BYTE OUTPUTS: WITH ADDRESS 1024 NAME OutPortl ;
TIMERS: INTERVAL 100

Time DelayTimer AlarmClock ;

INCLUDE “\INC\library.prm“

INT: Counter
Array[22] Array[2] NAME Element2
WITH ADDRESS HEX[F000] NAME VideoRam
WITH ADDRESS 100 NAME MonitorStatus

REAL: ra rp[20] ;

BIT OUTPUTS: OutPortl.O NAME Pump
OutPortl.7 NAME ErrorSignal
MonitorStatus.5 NAME BufferFull
OutPortl.l# NAME Drain ;

BIT INPUTS: InPort.2 NAME Button
InPort.3 NAME LoadFull
InPort.4# NAME OilPressureOk
SeriallLine.O NAME DataReady
@(123).5 NAME Bit50nAdrl23
Array[3].10 NAME ImprotantBit ;

INT FUNCTION: CharFromSerialLine (I:Mask)

INT: i p[1l0];
REAL: r x[20];
WAITFOR DataReady

= AND (DataSL,Mask) ;

PROCEDURE: GetMessage (I:Length,L:Signal)

LOG FUNCTION:

INT: iy

i :=0

REPEAT
Array[i] := CharFromSerialline(HEX[T7F]
i = i+1

UNTIL [i>Length]

BufferFull := Signal ;

PROCESS Oiling
INT: i
REAL: a ;
BEGIN
WAITFOR OilPressureOk#
TIMER := 50 SET (Pump)

WAITFOR OilPressureOk+ [TIMER=0]

© Czech Technical University Publishing House http://ctn.cvut.cz/ap/

DumpEnable = Button * LoadFull ;

)

’

29

Acta Polytechnica Vol. 44 No. 4/2004

IF OilPressureOk#
THEN SET(ErrorSignal)
ELSE SET(ErrorSignal# Pump#)

ENDIF
AGAIN
PROCESS ErrorStatus
BEGIN
IF ErrorSignal
THEN VideoRam := “0Oiling Error “ RESET
ELSEIF Bit50nAdrl23
THEN VideoRam := “PError XY Y RESET
ENDIF
AGAIN
PROCESS MainControl
OutPortl := 0

WAITFOR Button

RUN Oiling

BEGIN
VideoRam

WAITFOR Button#
RUN ErrorStatus

:= “Working Cycle ™
GetMessage (4,0)
CASE Element?2

OF "R’ THEN SET(OutPortl.l
OF "B’ THEN SET(OutPortl.2
ELSE SET (OutPortl.3
ENDCASE
DO Array[l] TIMES
OutPortl.4 := OutPortl.4#
DELAY TIMER := 2
LOOP
WHILE DumpEnable#
SET (OutPortl.5 OutPortl.o#)
DELAY TIMER := 5
SET (OutPortl.5# OutPortl.6)
ENDWHILE
AGAIN

’

<* INCLUDE “\SIM\simul.prm“™ *>

9 Conclusion

On the basis of analyzing the process of creating a control
program, the PRIMAS program system offers two means of
development. First, the language for formalizing the control
tasks of a given class. Second, the simulation tool.

The PRIMAS program language as a language for de-
scribing the algorithm for logical automatic machines offers
an innovative and untraditional means. Logical controlling
has until now been commanded by methods deriving from fi-
nite automatic description. An example is proved by be the
GRAFCET system, created in 1997 by the French Association
for Economic and Technical Cybernetics. GRAFCET became

30

© Czech Technical University Publishing House

an international standard for a sequence description. There
are still research teams working on the GRAFCET system and
implementing this method on to control systems. Although
this system is a significant step forward, compared to state
diagrams, it still suffers from all the shortcomings discussed
above.

PRIMAS was introduced to specialists on GRAFCET
and similar systems for modeling sequence systems from the
Polytechnique National de Grenoble during the Higher
Education in Control Engineering seminar organized by the
Faculty of Electrical Engineering at CTU. They declared that
no other system similar to PRIMAS was known to them.
They thought the reason might lie in “cultural” differences in

http://ctn.cvut.cz/ap/

Acta Polytechnica Vol. 44 No. 4/2004

logical control and computer science. They also emphasize
the importance of solving the problems caused by expressing
utility diversity.

PRIMAS offers some new elements and language con-
structions, that make the algorithms much easier to express.
The basic characteristic is the parallel description of the algo-
rithm by mutually integrating processes. In PRIMAS, paral-
lelism is not just a way of exploiting the processor better, but
especially it leads to easier control system decomposition. Par-
allelism is also used for describing a standard situation. Writ-
ing it in a single sequence program would be theoretically
possible but, practically very difficult and not transparent.
Other language properties supporting the development of
the control program, are the timing functions, the simple
approach to the system interface, and independent object
access.

The PRIMAS program system as a means of development
can verify whether the system works within the assigned time.
Unlike other program systems, for instance systems support-
ing the GRAFCET, verification is performed in graphical
torm. This ability is given by the means of simulation in the
tuning program and is also contained in the language. This
enables verification of the ideas and conceptions without a
physical need for the existence of the controlled system.

PRIMAS has been put into practice in several industrial
companies and the users have been highly satisfied. They
appreciate that it changes and improves the control system
programmer and the mechanical part constructor relation-

© Czech Technical University Publishing House

http://ctn.cvut.cz/ap/

ship. Simulation has become their meeting point, and it
makes their communication easier. In industrial companies
where the system has been in use for a period of time, we can
see that the wide ability of PRIMAS leads to higher demands
on the system author. Some universities working on simula-
tions of discreet processes have also expressed an interest in
the PRIMAS system.

References

[1] Jirousek P.: Vy$8i programovaci jazyk pro logické fize-
ni paralelnimi procesy. Kandidatskd diserta¢ni prace
(Ph.D. thesis, Czech Technical University in Prague),
Praha 1991.

[2] Jirousek P.: “Programovani dloh logického fizeni para-
lelnimi procesy.” Automa 3—4, 1996, (in Czech).

[3] Alla H., David R.: Du GRASFCET aux Réseaux de Petri.
Hermes, 1989.

Ing. Pavel Jirousek, CSc.
phone: +420 221 912 387

e-mail: jirousek@troja.fjfi.cz
Department of Solid State Engineering

Czech Technical University in Prague
Faculty of Nuclear and Physical Engineering
Trojanova 13

120 00 Praha 2, Czech Republic

31

