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Abstract. An optimization method for an ensemble local mean decomposition (ELMD) parameters
selection using genetic algorithms is proposed. The execution of this technique depends heavily on the
correct choice of the parameters of its model as pointed out in previous works. The effectiveness of the
proposed method was evaluated using synthetic signals, discussed by several authors. The resulting
algorithm obtained similar results to OELMD, but with an 82% reduction in processing time. Actual
vibration signals were also analysed, presenting satisfactory results.
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1. Introduction
Due to the wide variety of application, several signal
processing techniques have been developed in recent
years [1–4]. In 1998, a major advance in so-called de-
composition techniques occurred when [1] introduced
the empirical mode decomposition (EMD), which was
an effective tool for a non-linear and non-stationary
signal analysis. In this method, a complex signal could
be decomposed on a series of sums of finite functions
called intrinsic mode functions (IMF) that represents
the oscillatory components of the signal. However,
one of the main disadvantages of this technique is its
susceptibility to mode mixing phenomenon. [4]. Mode
mixing occurs when multiple modes resides withing
one IMF. To prevent this, in 2005, the local mean
decomposition (LMD) [2] was developed in order to
mitigate the mode mixing.
Nevertheless, when tested against highly complex

and contaminated signals, such as faulty mechani-
cal components vibration, despite showing superiority
when compared to EMD [5], the LMD still suffers, in
a prohibitive way, of mode mixing problem. Therefore,
in order to improve its applicability in complex signals
[3] proposed an ensemble local mean decomposition
(ELMD), which adds white noise to the vibration
signals in order to obtain the optimal compositions.
Meanwhile, according to [4], the effectiveness of ELMD
in reducing mode mixing is highly influenced by its
parameters, such as white noise amplitude, bandwidth
and ensemble numbers. Different drawbacks are also
pointed out by other authors, such as the occurrence
of pseudo-components ([6]) and poor signal reconstruc-
tion ([7]).
Regarding the choice of appropriate parameters

for the ELMD, [4] proposed an optimized ensemble
local mean decomposition (OELMD), an optimization
of the technique, in which parameters are chosen to

satisfy the decomposition performance. However, the
technique used a gross-based method for testing of
several values for the parameters, leading to a highly
prohibitive computational cost.
In this scope of optimization, genetic algorithms

(GA) are techniques that search for the best result
based on the principles of genetics and natural selec-
tion strongly studied by [8–15] and disseminated since
1970s. A GA allows that a population composed of
various individuals get involved in certain rules that
minimize (or maximize) a cost function. This article
proposes a new approach in the optimization of ELMD
parameters to satisfactorily fulfill the decomposition
performance. Thus, better results than the ELMD
with regards to mode mixing are expected, as well as
better results than OELMD in terms of processing
time.

Although this article is inspired by previous works
[4], [16], none of these studies, unlike ours, reported
the use of genetic algorithms to reduce the number of
iterations necessary in the search for optimal parame-
ters..

Furthermore, in order to assess the effectiveness of
the proposed method in one of its many applications,
this work intends to use the algorithm in the analysis
of bearing failure diagnosis.
Thus, this work comes with the following contri-

butions: (a) development of a new procedure based
on genetic algorithms to determine white noise pa-
rameters in an ELMD; (b) extend the work of [4] on
the investigation of RRMSE and SNR in the optimal
parameters selection; and (c) evaluation of the effec-
tiveness of time-frequency techniques in the diagnosis
of fault mechanical components.
The work is divided into six sections: Section 1 -

introduces the subject of decompositions and forms
of optimization; Section 2 - introduces the fundamen-
tals of local mean decomposition and its derivations;
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Section 3 - presents the methods of optimization of
parameters based on genetic algorithms; Section 4 -
compares the proposed methodology with that sug-
gested by [4] and other LMD improvements, by means
of a synthetic signal; Section 5 - proposes a method-
ology for improving the decomposition results by re-
applying the technique based on the value of RRMSE ;
Section 6 - shows the results of a test performed on
real vibrational data; and Section 7 - conclusion.

2. Local mean decomposition
Assuming that a signal can be represented as the sum
of a finite set of a product function from which it is
possible to extract instantaneous frequency imbued
with physical meaning, [2] developed a method that
basically consists in decomposing the signal in several
other functions, obtained from the product between
an envelope signal and a frequency modulated signal,
from which it is possible to extract the instantaneous
frequency, thus it can be represented as a time function
and as a frequency function, giving a rise to time-
frequency representation (TFR).
In the method, the signal decomposition is per-

formed by a progressive decoupling of the frequency
modulated signal from an amplitude modulated enve-
lope, throughout the following steps:
(1.) Obtaining all the local extremes from the signal
x(t). The extreme indices are denoted by ek and
the correspondent extremes by x(ek)

(2.) Calculating the smoothed local mean m(t) and
smoothed local amplitude a(t). To acquire these
values two preliminary steps are necessary. The
first one, characterized by the calculation of the pre-
processed local meanm0(n) and the local amplitude
a0(n), it is obtained by:

m0(n) = x(ek) + x(ek+1)
2 for ek ≤ n ≤ ek+1 (1)

a0(n) = |x(ek)− x(ek+1)|
2 for ek ≤ n ≤ ek+1 (2)

However, despite the simplicity and consistency of
equations, [17] warn that results can not be obtained
without the extension of the signal, which may
introduce disagreements in its ends that gradually
influence its middle, disturbing the decomposition
performance [18]. Thus, the authors proposed a
treatment for the extremes, called a boundaries
processing method that calculates the local mean
and local amplitude, by means of the following
equations.
For the first extreme:

m0(n) = x(e1) + 2x(e2) + x(e3)
4 (3)

a0(n) = |x(e1)− x(e2)|+ |x(e2)− x(e3)|
4 (4)

For the last one:

m0(n) = x(eM−2) + 2x(eM−1) + x(eM )
4 (5)

a0(n) =

= |x(eM )− x(eM−1)|+ |x(eM−1)− x(eM−2)|
4

(6)

Where M is the signal length. Moreover,[19] de-
termined a signal extension algorithm that modifies
the extremes by a spline interpolation, which is
based on the work of [20].

Afterwards, from the variables m0(n) and a0(n),
the smoothed local mean m(t) and smoothed local
amplitude a(t) are obtained. There are differences
in how this smoothing is calculated. Although the
method proposed by [2], using the moving average
algorithm (MA), has been studied with proven effi-
cacy [3, 5, 18, 19, 21], [22] argue that this method
could lead the decomposition to incoherent results.
Thus, [23] proposed a cubic spline interpolation
based on LMD (SLMD) due its property of a good
convergence and high smoothing. However, [24]
confirmed that large interpolation errors can occur
in the local amplitude calculation. Thereby, the
authors have proposed a rational Hermite interpo-
lation (OLMD), replacing the spline interpolation,
stating that it could better counteract the wave-
form of the amplitude. Nevertheless, [22] confirm
that the Hermite interpolation cannot adaptively
adjust the shape of the curves with the varying local
characteristics of the waveform in the sifting pro-
cess. Therefore, the authors suggest that a rational
spline Interpolation coupled with an optimization
procedure of a tension parameter could control the
shape of the cubic spline. According to the authors’
studies, their method yields more accurate results
of decomposition as well as a reduction of the total
processing time of the technique. Some smooth
examples are show in Figure 1

(3.) Calculate the estimated zero-mean signal h11 and
FM signal s11 by means of the variables x(n), m(n)
and a(n). For that, the equation is defined by:

h11(n) = x(n)−m11(n) (7)

s11(n) = h11(n)
a11(n) (8)

It is important to make sure that s11(n) is a purely
FM signal. Otherwise, the function x(n) assumes
the value of s11(n) and the steps are repeated until
the condition described by Equation 9 is satisfied.
This condition is the so-called sifting process.

lim
p→∞

a1p(n) = 1 (9)
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local amplitude (OLMD)
local amplitude (SLMD)

local amplitude

local mean
smoothed local mean

signal x(t)

local amplitude (MA)

Figure 1. Hypothetical signal x(t) together with the local mean, smoothed local mean, local amplitude and local
amplitude smoothed by MA, SLMD and OLMD methods.

Due to its notorious importance in the LMD final
results [22], [19] proposed a method called sifting
stopping, which defines an optimal number of iter-
ations for the decomposition, which consequently
brought better results of the method as well as
reducing the processing time.

(4.) Calculation of the signal s1(n), envelope signal
a1(n) and the product function PF1(n) after the
execution of the sifting process. Considering a pro-
cess with p iterations, the values of s1(n), a1(n)
and PF1(n) are given by:

s1(n) = s1p(n) (10)

a1(n) =
N∏

j=1
aij(n) (11)

F1(n) = a1(n) · s1(n) (12)

(5.) Subtract the product function from the signal
x(n). The process must be repeated m times until
the entire signal is decomposed, so that:

x(n) =
m∑

i=1
PF i(n) (13)

2.1. Ensemble local mean decomposition
Components of the product function with different
characteristics are obtained by means of the LMD
method. However, due to the signal discontinuity,
mode mixing still occurs during the LMD process.
This condition causes an ambiguity in the physical
meaning of the instantaneous frequencies of the prod-
uct function after the decomposition.

From this point of view, [3] demonstrated that the
addition of different Gaussian white noises to the

signal prior to its decomposition by LMD could dras-
tically decrease the mode mixing phenomenon. Al-
though it may seem that the addition of the distur-
bance to the signal could reduce the signal-to-noise
ratio (SNR) and consequently bring erroneous results
to the decomposition, due to the addition of a non-
existent product function, the authors proved that
because there are several independent Gaussian white
noises, the average of all added noise would tends
to zero. Thus, the technique repeatedly applies the
LMD method to the signal along with a Gaussian
white noise of a finite amplitude. The average of
the product functions derived from the various ap-
plications is used as the result of the decomposition.
Since the mean noise is zero, all disturbance added
can be considered as excluded. This technique was
called ensemble local mean decomposition (ELMD)
and yields results far superior to those of LMD in a
fault diagnosis of rotating machines [3, 21, 25].
According to [26] ELMD can be described by the

following steps:
(1.) Adding white noise to the signal x(t) thus forming
y(t).

(2.) Applying the LMD to signal y(t) in order to
obtain multiple product functions.

(3.) Repeat steps 1 and 2 several times adding differ-
ent noises at each iteration.

(4.) Calculating the mean of the PF obtained and
consequently using it as the result of the decompo-
sition.

3. Ensemble local mean
decomposition based on genetic
algorithms

Genetic algorithm (GA) is based on the principles
of genetics and natural selection. A GA allows a
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population composed of many individuals to be in-
volved under some sort of natural selection rule, so
that the final population is the one that best fits those
conditions.

Thus, the first step is to define the condition of the
environment for the population, in this case, the cost
function. In this work, it is essential that that the
white noise added to the original signal has a maxi-
mum value of RRMSE, which evaluates the difference
between the product functions and the original signal
in order to cancel the mode mixing. However, the
cost function minimization is used as an optimization
notation, thus establishing the cost function as:

Cost = −RRMSE (14)

Therefore, an initial population is defined, which
can be formed by totally random chromosomes or by
initial guesses in order to improve the convergence of
the algorithm. In the proposed method, the popula-
tion is defined in a totally random way, but within a
defined range based on data taken from the signal to
be decomposed.

Population = rand(Ncro, Nvar) (15)

Where, Ncro represents the number of chromosomes
of a population and Nvar represents the number of
alleles contained in the chromosome.

Subsequently the pairing is defined, where the most
adapted chromosomes are placed in order to cross.
Parents are defined randomly, and each pair produces
two descendants, which contain traits from each par-
ent. The parents still survive to be a part of the next
generation. The more similar the two parents are, the
better is the convergence towards a final population.
Once the pairing is defined, the crossover stage is

started. Several methods have been developed to op-
timize the creation of a descendant. The simplest
methods of crossbreeding are those called [11] points.
In these, one or more chromosome points are selected
as crossing points. Then, the variables between these
points are exchanged between the two parents. The
main disadvantage of this technique is that there is
no new information in the generation of individuals,
they are just replicas of the random values provided
by the initial population. Therefore, a variation of
this method was suggested, the so-called simple cross-
ing [12]. In this method, a descendant comes from
the combination of parents, so the chromosome as-
sumes new values, even though it is still related to
its predecessors. The formation of an allele for this
chromosome is demonstrated by:

allelenew = α · allelemom,n+
+ (1− α) · alleledad,n (16)

α being a random number between 0 and 1;
allelemom,n: nth allele on the mother chromosome,
and alleledad,n: nth allele on the father chromosome.
Note that in a simple crossing, if the value of α = 0.5,
the descending chromosome allele becomes a simple
average of the parent variables. However, even if
this method allows new information to be entered
by combining information from parents, it does not
allow values outside parent’s extremes. Therefore,
another approach, proposed by [12], was the heuristic
crossover, which again uses a random variable, β, cho-
sen in the interval [0.1], to define one or more alleles of
the descendants. In this work, the use of the heuristic
crossover was defined in the implementation of the
algorithm because it yields better results in the search
for the global maximum [13]. Thus, in the generation
of a new population lineage, this crossing is imposed
for at least one allele of each descendant. This one
is chosen at random and the remaining variable is
fairly distributed to the children, so that each parent
is always represented.

allelenew = β · (allelemom,n − alleledad,n)+
+ allelemom,n (17)

Finally, some form of mutation can be defined for
chromosomes in the population. The mutation pro-
cess is important in some cases where a function can
assume several local maximums and the cost func-
tion eventually converges to one of these maximums.
If there is no preventive measure, the result can be
far from the overall maximum cost. In this work,
the mutation is defined in a completely random way,
where a random value between 0 and 1 is calculated.
If it is greater than 0.8 (arbitrarily chosen value) a
chromosome is recalculated in a random way, without
presenting any correlations with its parents.
The proposed method is exemplified by the

flowchart shown in Figure 2, which represents an appli-
cation of genetic algorithms to the method developed
by [3].

4. Simulated signal test
The test of the proposed technique was carried out us-
ing a synthetic signal x(t) extracted from [4], obtained
by summation of the three components presented in
Equations 18, 19 and 20 shown in Figure 3. Since it
is often impossible to know all the compositions of a
real signal, the use of synthetic ones is very useful for
the evaluation of a signal processing method.

x(t) = x1(t) + x2(t) + x3(t) (18)

x1(t) = 1.5 · e−800t′
· sin(2π · 5000t) (19)

x2(t) = 0.2 · (1 + cos(2π · 100t) + cos(2π · 100t)
(20)
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Figure 2. Flowchart of the proposed method based on genetic algorithms for parameter selection.
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Figure 3. Waveform in the time domain of the signal
x(t), x1(t), x2(t) and x3(t).

Where, x3(t) is white Gaussian noise with a band-
width from 2 to 4 kHz, and; t′ is a periodic function
with a fundamental period of 1/160 s. According to [4],
this frequency was chosen because, when compared
with low frequency noises, high frequencies generally
present larger contributions to the extremes of the
original signal.
In order to compare the performance of the pro-

posed GAB-ELMD (genetic algorithm based - ensem-
ble local mean decomposition) to OELMD and LMD
methods (using MA and sifting process for smooth-
ing, respectively) root-mean-square error (RMSE),
the number of product functions and processing time
are considered as indicators. The expression for the
RMSE is given by.

RMSE =

√∑N
i=1[xi(t)− PFi(t)]2

N
(21)

Where xi(t) and PFi(t) are the original components
of the signal and its decomposed form, respectively.
A lower RMSE value indicates a better performance.
The computer used for the simulation is a 2.4 GHz
i7-Dual Core processor with 8 GB RAM. The software
used is MATLAB (R2018b). The tests were performed
ten times and the results shown in Table 1 represent
their means.
Values presented in Table 1 shows similar results

for both methods, making it impossible to point out
the best within the giving confidence interval. In
terms of the computational cost, OELMD required
a longer time due to its test characteristic, while the
proposed technique obtained similar results with a
shorter average processing time without significant
losses in quality of the signal, highlighting a reduction
in processing time of 82.6%.
The processing time is also illustrated in Figure 5,

which displays the relationship between the number of
samples of a discrete signal and the processing time of
each of the techniques shown in Table 1. Results are
shown along their error calculated by a Student’s t-
distribution for a confidence interval of 95%, with the
proposed technique being superior to the OELMD in
each instance. As for the decomposition error, it can
be seen that although the proposed method had bet-
ter average values as compared to OELMD, it shows
higher error values due to its inherent characteristic
of finding adjustable results not always aligned with
the global maximum, which corroborates the data
presented in Figure 6, which displays a heat map
containing the number of times that a given solution
arranged in the model of Figure 4 was achieved by
the technique based on the genetic algorithm, in a
test performed one hundred times. Figure shows that
there were many cases where an overall maximum was
not reached.

5. Proposed algorithm for
improvement of decomposition
results

After the signal is decomposed by GAB-ELMD, some
product functions still contain mode mixing, which
can be observed in the previous section. Although it is
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Methods
RMSE Processing

PF1 PF2 PF3 Time (s)

OELMD 0,171 ± 0,017 0,125 ± 0,006 0,198 ± 0,013 166,5
GAB 0,197 ± 0,033 0,117 ± 0,020 0,190 ± 0,028 28,9

Table 1. Comparison of performance between OELMD’s and proposed method’s performances.

Figure 4. Model of the RRMSE values for signal
defined by Eq. 18 based on the amplitude and band-
width values of the noise.
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Figure 5. Signal’s processing time per sample size.

an intrinsic phenomenon of the ELMD method, in this
work, the reapplication of the decomposition based on
RRMSE in order to mitigate mode mixing is proposed.
Recent works, such as [16] and [4], have already inves-
tigated the use of RRMSE as a parameter of mode
mixing between product functions, but none of them
used it in order to reapply the decomposition in the
product functions with the highest RRMSE. Based
on the characteristics of this function, reapplication
of decomposition is based on the following steps:

(1.) GAB-ELMD is initially applied to decompose the
signal.

(2.) The RRMSE matrix is then calculated making it
possible to compare the relative root-mean-square
error between the product functions. In this way,
it is expected to find the product function with a
higher mode mixing (minimum value).

Figure 6. Heat map showing the number of times
such a solution was obtained for a method based on
genetic algorithm.

M =

RMSE(PFi, PFi) · · · RMSE(PFi, PFj)
...

. . .
...

RMSE(PFj , PFi) · · · RMSE(PFj , PFj)

 (22)

(3.) The PF with the highest mode mixing is selected.
(4.) LMD is applied to the PF previously selected.
(5.) Each new product function is compared through
the RRMSE with the PFs obtained in step 1. The
PF of step 1 with the closest resemblance to the
new one will be added to it or be replaced by it (if
the PF is selected in the third step).

(6.) The procedure is repeated from step 2 to 5 until
the lowest value in the RRMSE array is greater than
or equal to 1, or the number of desired maximum
iterations is reached.

(7.) Gets the product functions with the least mix of
modes.

In order to compare the effectiveness of the proposed
method, it was applied to a hypothetical signal defined
by Equations 18-20, which was previously decomposed
by the methods mentioned in Section 2. Thus, the PFs
obtained (Figures 7-11) were again compared to the
respective components of the original signal obtained
by means of RMSE. The values are then presented in
Table 2, built by performing each algorithm 10 times.
Data shows the RMSE average calculated along with
its error, using a Student’s t-distribution for a 95 %
confidence level.
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Method RMSE Number
of PFsPF1 PF2 PF3

SLMD 0.331 ± 0,000 0.134 ± 0,000 0.301 ± 0,000 3
OLMD 0.331 ± 0,000 0.134 ± 0,000 0.302 ± 0,000 3
ILMD 0.211 ± 0,000 0.086 ± 0,000 0.302 ± 0,000 4

OELMD 0,171 ± 0,017 0,125 ± 0,006 0,198 ± 0,013 3
Proposed 0.154 ± 0,062 0.101 ± 0,072 0.172 ± 0,0485 3

Table 2. Comparison of performance between proposed algorithm and methods discussed in Section 2.
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Figure 7. Signal in time domain (left) and frequency
domain (right) by SLMD method.
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Figure 8. Signal in time domain (left) and frequency
domain (right) by OLMD method.

The figures show that all methods discussed in
Section 2 presented a major problem of mixing modes.
Figures 7 and 8 shows that the SLMD and OLMD
methods had almost the same result being unable to
separate the signal into its product functions, with
almost the entire signal restricted in the first product
function. Although the second PF still keeps its signal
characteristics, the amplitudes are very low. In the
same manner, PF3 shows its noise characteristics,
depicting it more like an error function. For ILMD
(Fig. 9), the best results for PF2 are evident, clearly
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Figure 9. Signal in time domain (left) and frequency
domain (right) by ILMD method.
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Figure 10. Signal in time domain (left) and frequency
domain (right) by OELMD method.

showing the beating signal with amplitude levels very
close to the original, however, the method was unable
to separate the impact signal from the noise, basically
leaving the two compositions only in PF1. As for
OELMD (Fig. 10), even though the optimal result
shown by ILMD for PF2 was not reproduced, it was
quite efficiently able to separate the noise, leaving the
product function representing the impact signal alone
at PF1. However, the mode mixing still remained,
as much of the beating signal was embedded in the
noise signal. Finally, the proposed method managed
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Figure 11. Signal in time domain (left) and frequency
domain (right) by proposed method.

to separate the signal into three product functions
very similar to the original composition, with the noise
being isolated in only one function, the beating signal
with optimum amplitude levels in another and the
first product function representing only the impact
signal.
Table 2 shows the same results as Figures 7-11,

however, numerically highlighting that the proposed
method gives better average results than all the algo-
rithms tested for PFs 1 and 3. For PF2, the ILMD
method showed better results, as in some cases the
proposed method was not able to improve the beating
signal decomposition, having similar results to the
ones presented by OELMD. Another fact to mention
are the high variances presented by OELMD and the
proposed method against the null variance of the other
algorithms. This is because, as already mentioned,
the optimal bandwidth and noise amplitude values to
be applied to the decomposition are not always the
same, which causes fluctuations in the decomposition
results.

6. Experimental data analysis
To assess the proposed algorithm in a real case sce-
nario, a set of rolling bearing data obtained from a test
rig was used and the results were compared. Figure 12
shows the experimental test rig and all the apparatus
used in the test while their specifications and tech-
nical and instrumental characteristics are shown in
Table 3. Two model 6004-2RS1 (SKF) bilaterally
shielded rolling bearings were used, their dimensions
and construction data are shown in Table 4.

From the data presented in Table 4 , the characteris-
tic fault frequencies on the outer and inner races have
been calculated and presented in Table 5. The damage
to the bearings was made by means of a 1mm diame-
ter diamond-tipped drill mounted on a mini electric
bench driller. The localized damage has approximate
dimensions of 1.2mm in diameter and 1mm in depth.
After the defect was imposed, the steel chips from

1) base, 2) drive motor, 3) accelerometers, 4) computer, 5) data 

conditioning, 6) amplifier, 7) drive shaft, 8) optical encoder, 9) bearing,

10) frequency inverter

Figure 12. Test rig.

Equipment Specifications

Drive motor
Weg W22 - TFVE
Nominal speed: 2 985 rpm
Power: 1.0 kW

Frequency inversor Weg CFW10
Power: 1.5 kW

Amplifier HBM Quantum X
Sample frequency: 19 200 Hz

Accelerometer

SKF 739L
Sensibility: 500mV/g ± 5%
Frequency range:
- ±5 %: 0.6− 700Hz
- ±10%: 0.4− 1 000Hz
- ±3 dB: 0.2− 2 300Hz

Table 3. Specifications and technical characteristics
of the test rig.

the damaged components were removed, the proper
lubricant reapplied and shielding plates reassembled.

Therefore, the vibration signal was decomposed us-
ing the proposed and the OELMD methods, obtaining
a series of PFs and a constant residual. Then, an enve-
lope analysis was applied to the second PF to identify
the localized defect on the bearing.

6.1. Bearing with outer race fault
Figure 13 shows the envelope spectrum of the signal
for the outer race defect, being (a) without any pre-
processing treatment; (b) using the OELMD for the
pre-processing; (c) using the proposed method for the
pre-processing. As seen, in (a), although the charac-
teristic bearing failure frequencies are seen, they are
not evidenced and are hidden in noises of an order of
magnitude similar to the excitations. In (b), although
presenting different spectrum, the noise is still domi-
nant and has even worsened the visualization of the
characteristic failure frequencies. Thus, only in the
method proposed in (c), it is possible to clearly visu-
alize the BPFO frequency and its harmonics, clearly
showing a failure signal.
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Construction feature Dimension
Outer diameter 42mm
Inner diameter 20mm
Rolling’s element diameter 6.35mm
Number of rolling elements 9

Table 4. Geometry parameters of the experimental
bearing.

Fault frequency Value (Hz)
BPFI 269,7
BPFO 178,0

Table 5. Bearing’s fault frequencies.

6.2. Bearing with inner race fault
In a similar way to outer race signals, the envelope
spectra for the inner race are shown in Figure 14.

Unlike the previous case, it was already possible to
observe the characteristic fault frequencies without
the presence of a signal pre-processing. Although
the decomposition techniques removed a significant
amount of noise level from the analysis, the proposed
algorithm, for instance, could not clearly show the
third harmonic.

7. Conclusions
Ensemble local mean decomposition is a new method
in time-frequency analysis which comprises the main
innovation of the LMD, being the separation of a
single component AM-FM signal into a set of prod-
uct functions of the envelope signal, and a purely
frequency-modulated signal, with a significant im-
provement in mode mixing. However, an intensive
search for parameters that actually solve the problem
is required, which can be time and human resource
consuming. In this work, an approach using a well-
known optimization method was suggested in order
to select the parameters for ELMD automatically and
with the least time consumption. At this stage, the
results demonstrate the superiority of the proposed
technique to the OELMD, leading to the following
conclusions:
(1.) Although OELMD shows a greater selectivity of
the parameters, the proposed technique presented
similar results when applied on a synthetic signal.

(2.) The proposed method showed lower processing
time, reducing the total time by more than 82%.

(3.) It was found that the main difficulty in achiev-
ing better processing times in the execution of the
technique was the smoothing algorithm, discussed
in Section 2, delineating a new field of research.

(4.) Even though the results are promising, they have
not been compared to other new techniques that
address ELMD limitations in other ways, focusing
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(a) . Without any pre-processing method.
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(b) . Pre-processing with OELMD method.

0 500 1000 1500

Frequency [Hz]

0

2

4

6

P
e
a
k
 a

m
p
lit

u
d
e

10-3

Envelope spectrum

BPFO harmonics

(c) . Pre-processing with proposed method.

Figure 13. Envelope spectrums of PF2 from bearing
with outer race fault.

on being a simple and complementary solution to
the algorithm proposed by [4].
Subsequently, a method for improving the decom-

position results was proposed, based on the use of the
relative-root-mean-square error and re-application of
the decomposition to the obtained product functions.
Regarding this section, the analyses of the results lead
to the following conclusions:
(1.) The proposed method presented superior results
in the mitigation of mode mixing as compared to
the OELMD.

(2.) The execution of the method does not signifi-
cantly increase the computational costs nor the
processing time, since after the execution of the
ensemble local mean decomposition - which is more
time consuming - only the LMD, which presents a
faster processing, is executed.

(3.) The excellent results obtained were achieved from
synthetic signals and a small sample of real vibration
signals, so the effectiveness of the method was not
tested on highly complex signals.
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(a) . Without any pre-processing method.
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(b) . Pre-processing with OELMD method.
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(c) . Pre-processing with proposed method.

Figure 14. Envelope spectrums of PF2 from bearing
with inner race fault.

Finally, the effectiveness of the method was anal-
ysed for only one of its applications. That’s why the
proposed technique was tested against OELMD. In
this section, the following conclusions can be drawn:

(1.) Although defects in bearing races require a sim-
pler analysis, a slight improvement in the envelope
spectrum was observed as compared to the ones de-
rived from the ensemble local mean decomposition.

(2.) Spectral analysis does not always guarantee the
detection of a bearing defect. This work has shown
the effectiveness of a well-known meta-heuristic
method in the optimization of an algorithm used
for signal processing, proposing a new technique
with a notable improvement in pre-processing the
vibration signals and spectral analysis.

Acknowledgements
The authors greatly acknowledge the grant support from
the Universidade Estadual do Oeste do Paraná.

References
[1] N. E. Huang, Z. Shen, S. R. Long, et al. The empirical
mode decomposition and the Hilbert spectrum for
nonlinear and non-stationary time series analysis. Royal
Society of London Proceedings Series A 454(1):903–995,
1996. https://doi.org/10.1098/rspa.1998.0193.

[2] J. S. Smith. The local mean decomposition and its
application to EEG perception data. Journal of The
Royal Society Interface 2(5):443–454, 2005.
https://doi.org/10.1098/rsif.2005.0058.

[3] Y. Yang, J. Cheng, K. Zhang. An ensemble local
means decomposition method and its application to
local rub-impact fault diagnosis of the rotor systems.
Measurement 45(3):561–570, 2012.
https://doi.org/10.1016/j.measurement.2011.10.010.

[4] C. Zhang, Z. Li, C. Hu, et al. An optimized ensemble
local mean decomposition method for fault detection of
mechanical components. Measurement Science and
Technology 28(3):035102, 2017.
https://doi.org/10.1088/1361-6501/aa56d3.

[5] Y. Wang, Z. He, Y. Zi. A Comparative Study on the
Local Mean Decomposition and Empirical Mode
Decomposition and Their Applications to Rotating
Machinery Health Diagnosis. Journal of Vibration and
Acoustics 132(2):021010, 2010.
https://doi.org/10.1115/1.4000770.

[6] Z. Wang, J. Wang, W. Cai, et al. Application of an
Improved Ensemble Local Mean Decomposition Method
for Gearbox Composite Fault Diagnosis. Complexity
2019, 2019. https://doi.org/10.1155/2019/1564243.

[7] Y. Cheng, D. Zou. Complementary ensemble local
means decomposition method and its application to
rolling element bearings fault diagnosis. Proceedings of
the Institution of Mechanical Engineers, Part O:
Journal of Risk and Reliability 233(5):868–880, 2019.
https://doi.org/10.1177/1748006X19838129.

[8] I. Bruant, L. Gallimard, S. Nikoukar. Optimal
piezoelectric actuator and sensor location for active
vibration control, using genetic algorithm. Journal of
Sound and Vibration 329(10):1615–1635, 2010.
https://doi.org/10.1016/j.jsv.2009.12.001.

[9] L. B. Jack, A. K. Nandi. Genetic algorithms for feature
selection in machine condition monitoring with vibration
signals. IEE Proc-Vis Image Signal Process 147(3):205–
212, 2000. https://doi.org/10.1049/ip-vis:20000325.

[10] H. Hao, Y. Xia. Vibration-based Damage Detection
of Structures. Journal of Computing in Civil
Engineering 16(3):222–229, 2002.
https://doi.org/10.1061/(ASCE)0887-
3801(2002)16:3(222).

[11] A. A. Adewuya. New Methods in Genetic Search with
Real-Valued Chromosomes. Master thesis,
Massachusetts Institute of Technology, 1996.

[12] Z. Michalewicz. Genetic Algorithms + Data
Structures = Evolution Programs. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1996.
https://doi.org/10.1007/978-3-662-03315-9.

[13] R. L. Haupt, S. E. Haupt. Practical Genetic
Algorithms. John Wiley & Sons, Inc., Hoboken, NJ, USA,
2nd edn., 2003. https://doi.org/10.1002/0471671746.

474

https://doi.org/10.1098/rspa.1998.0193
https://doi.org/10.1098/rsif.2005.0058
https://doi.org/10.1016/j.measurement.2011.10.010
https://doi.org/10.1088/1361-6501/aa56d3
https://doi.org/10.1115/1.4000770
https://doi.org/10.1155/2019/1564243
https://doi.org/10.1177/1748006X19838129
https://doi.org/10.1016/j.jsv.2009.12.001
https://doi.org/10.1049/ip-vis:20000325
https://doi.org/10.1061/(ASCE)0887-3801(2002)16:3(222)
https://doi.org/10.1061/(ASCE)0887-3801(2002)16:3(222)
https://doi.org/10.1007/978-3-662-03315-9
https://doi.org/10.1002/0471671746


vol. 61 no. 3/2021 Genetic algorithms for determining the optimal parameters. . .

[14] J. H. Holland. Adaptation in Natural and Artificial
Systems: An Introductory Analysis with Applications to
Biology, Control and Artificial Intelligence. Cambridge,
MA, 1992. https://doi.org/10.1086/418447.

[15] J. H. Holland. Genetic Algorithms and the Optimal
Allocation of Trials. SIAM Journal on Computing
2(2):88–105, 1973. https://doi.org/10.1137/0202009.

[16] W. Guo, P. W. Tse. A novel signal compression
method based on optimal ensemble empirical mode
decomposition for bearing vibration signals. Journal of
Sound and Vibration 332(2):423–441, 2013.
https://doi.org/10.1016/j.jsv.2012.08.017.

[17] Y. Wang, Z. He, Y. Zi. A demodulation method
based on improved local mean decomposition and its
application in rub-impact fault diagnosis. Measurement
Science and Technology 20(2), 2009.
https://doi.org/10.1088/0957-0233/20/2/025704.

[18] F. D. D. M. Borges. Comparação de métodos de
tratamento de sinais aplicáveis ao diagnóstico de
defeitos em mancais de rolamento. Mestrado,
Universidade Estadual do Oeste do Paraná, 2018.

[19] Z. Liu, M. J. Zuo, Y. Jin, et al. Improved local mean
decomposition for modulation information mining and
its application to machinery fault diagnosis. Journal of
Sound and Vibration 397:266–281, 2017.
https://doi.org/10.1016/j.jsv.2017.02.055.

[20] G. Rilling, P. Flandrin, P. Gonçalvès. On empirical
mode decomposition and its algorithms. In 6th
IEEE-EURASIP Workshop on Nonlinear Signal and
Image Processing. Grado, Italy, 2003.
https://doi.org/10.1210/en.2002-220356.

[21] L. Wang, Z. Liu, Q. Miao, X. Zhang. Time–frequency
analysis based on ensemble local mean decomposition
and fast kurtogram for rotating machinery fault diagnosis.
Mechanical Systems and Signal Processing 103:60–75,
2018. https://doi.org/10.1016/j.ymssp.2017.09.042.

[22] Y. Li, X. Liang, Y. Yang, et al. Early Fault
Diagnosis of Rotating Machinery by Combining
Differential Rational Spline-Based LMD and K-L
Divergence. IEEE Transactions on Instrumentation and
Measurement 66(11):3077–3090, 2017.
https://doi.org/10.1109/TIM.2017.2664599.

[23] L. Deng, R. Zhao. An improved spline-local mean
decomposition and its application to vibration analysis
of rotating machinery with rub-impact fault. Journal of
Vibroengineering 16(1):414–433, 2014.

[24] Y. Li, M. Xu, Z. Haiyang, et al. A new rotating
machinery fault diagnosis method based on improved
local mean decomposition. Digital Signal Processing
46:201–214, 2015.
https://doi.org/10.1016/j.dsp.2015.07.001.

[25] L. Wang, Z. Liu, Q. Miao, X. Zhang. Complete
ensemble local mean decomposition with adaptive noise
and its application to fault diagnosis for rolling bearings.
Mechanical Systems and Signal Processing 106:24–39,
2018. https://doi.org/10.1016/j.ymssp.2017.12.031.

[26] J. Sun, Z. Peng, J. Wen. Leakage aperture
recognition based on ensemble local mean decomposition
and sparse representation for classification of natural
gas pipeline. Measurement 108:91–100, 2017.
https://doi.org/10.1016/j.measurement.2017.05.029.

475

https://doi.org/10.1086/418447
https://doi.org/10.1137/0202009
https://doi.org/10.1016/j.jsv.2012.08.017
https://doi.org/10.1088/0957-0233/20/2/025704
https://doi.org/10.1016/j.jsv.2017.02.055
https://doi.org/10.1210/en.2002-220356
https://doi.org/10.1016/j.ymssp.2017.09.042
https://doi.org/10.1109/TIM.2017.2664599
https://doi.org/10.1016/j.dsp.2015.07.001
https://doi.org/10.1016/j.ymssp.2017.12.031
https://doi.org/10.1016/j.measurement.2017.05.029

	Acta Polytechnica 61(3):465–475, 2021
	1 Introduction
	2 Local mean decomposition
	2.1 Ensemble local mean decomposition

	3 Ensemble local mean decomposition based on genetic algorithms
	4 Simulated signal test
	5 Proposed algorithm for improvement of decomposition results
	6 Experimental data analysis
	6.1 Bearing with outer race fault
	6.2 Bearing with inner race fault

	7 Conclusions
	Acknowledgements
	References

