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Abstract. Relative particle motion on the internal rough surface of a concave soil-tilling disk,
which rotates around horizontal axis under a soil reaction force, has been considered. A disk blade
is positioned in a vertical plane, which makes an incidence angle with the direction of the machine
movement. This angle has its acceptable limit and when it exceeds the limit, it causes disk dragging.
In the paper, it has been assumed that dragging was non-existent, the rotational rate of a disk is stable
and it depends on stabilized velocity of the machine movement and on an incidence angle. When a
machine is operated, soil particles get onto an internal disk surface and perform a relative motion,
which determines the slipping trajectory of a particle on a disk surface. The trajectory of the absolute
particle motion relative to a fixed coordinate system allows tracing the rise height of a particle after its
gets onto a disk surface.

Differential equations of particle motion have been developed and solved using numerical methods.
A particle gets onto a disk with specified initial criteria, namely the direction of its entering on a disk
and its initial velocity. Two models of particle motion on a disk have been considered. According to the
first model, we assume that further particle motion after its getting onto a disk surface is performed
due to the kinetic energy of a particle at the moment of its getting onto a disk surface. According to
the second model, the backup force of other particles, which breaks the force of particle friction on a
surface, is taken into account.

Differential equations of particle motion have been developed in projections onto a fixed solid
system of axes. Thus, the system includes three differential equations in three unknown functions. One
of the unknown functions is the surface reaction force and the dependences, which describe relative
particle motion on a disk surface.

For the purpose of the quality of soil loosening, we conducted multivariate experiment to determine
the area of the soil dissipation. On the basis of field experiments, it has been determined that the
production process quality of tillage machine meets agrotechnical requirements.

Keywords: soil-tilling disk; rotary motion; differential equations of motion.

1. Introduction
Concave disks are widely spread operating elements of
tillage machinery. They are mounted at an incidence
angle to the direction of a machine movement, which
results in a reaction force that rotates disks. Here, soil
particles slide on the internal operating surface of a
disk, thus, perform relative motion. A grain or mate-
rial particle performs a compound motion; its part is
a relative trajectory of particle sliding on the internal
surface of a disk. Investigation of such motion by the
example of a separate particle allows understanding
the nature of particle movement and determining the
influence of the parameters of disk mounting on their
behaviour. In its turn, this contributes to designing
tillage machinery with disk operating elements. The
compound motion of process material particles on
running surfaces is considered in fundamental stud-
ies [14, 15, 20]. Motion of soil grains on a plough
mould board is investigated in studies [2, 10]. The
determination of the trajectory of a particle, which

moves on a cylindrical surface under the action of
backup forces, is considered in papers [11, 12, 16].
There is a separate group of scientific papers, which
investigate particle motion on a rough surface under
the action of a weight force [1, 3–9, 13, 17–20].

2. Material and method
For the purpose of studying patterns of a particle
along the inner surface of a spherical cultivating disk
that rotates around a horizontal axis, let us consider
tillage machinery, presented in Figure 1.

Disk layout in tillage machinery is shown in Figure 2,
a in projections. A disk is represented by a segment
of a sphere of radius R, which periphery is a circle of
radius r and this circle is a cutting edge, that is to
say, a blade. If a machine moves in Y -direction, the
angle α, which is made by a blade surface and Y -axis,
is an incidence angle. A disk penetrates into the soil
at depth a. In order to simplify calculations, we do
not rotate a disk through angle α, as it is shown in
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assume that the soil approaches a disk at velocity Vm at angle α, where Vm – velocity of machine 

movement (Fig. 2,b). Such a model enables simplified description of a disk surface without its 

rotation trough angle α, by replacing disk rotation to rotation of a velocity vector of a machine.  

 
Fig.2. Illustrations of disk layout in coordinates 

 

The value of angular velocity of disk rotation depends on an incidence angle α. At α=900 

rotation is not possible. With the decrease of angle α, angular velocity of disk rotation increases and 
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Figure 2a, but we assume that the soil approaches
a disk at a velocity Vm at an angle α, where Vm —
the velocity of machine movement (Figure 2b). Such
model enables a simplified description of a disk surface
without its rotation trough an angle α, by replacing
the disk rotation to a rotation of a velocity vector of
a machine.

The value of an angular velocity of a disk rotation
depends on an incidence angle α. At α = 90°, the
rotation is not possible. With the decrease of the
angle α, the angular velocity of disk rotation increases
and at α = 0°, it is maximum. In order to determine
its value, let us resolve the machine velocity vector Vm
into two components: longitudinal Vτ and transverse
Vt (Figure 2b). The value of the components can be
found from angle α as Vτ = Vm cosα, Vt = Vm sinα.
A particle gets onto a disk surface having transverse
velocity Vt, and an angular velocity of a disk rotation

depending on the longitudinal velocity Vτ . For an
effective operation of a machine, the angle α should
be increased, but there is a certain limit at which
a disk dragging begins. Let us assume that there
is no dragging, that is to say, Vτ = ωr, where ω —
angular velocity of the disk rotation. Hence, we define
ω as ω = Vm cosα/r. The value of the transverse
velocity Vt, as well as the angular velocity of the
disk rotation, is taken into account for numerical
integration of differential equations relative to particle
motion on a disk surface.
Let us govern the initial position of a sphere us-

ing parametric equations; here X-axis of coordinates,
which is parallel to a horizontal plane, that is to say,
which is parallel to a field surface, is taken for a rota-
tional axis (Figure 2b):

X = −R cosu,
Y = R sin u sin v,
Z = R sin u cos v, (1)

where u, v — independent variables of a surface; v
— angle of rotation of a point around X-axis along
the parallel (v = 0–2π); u — an angular coordinate
of this point along the meridian, which origin starts
from the point of the intersection of the X-axis and a
sphere surface.
In order to separate the required segment out of

the equations of a sphere (1), it is necessary to set the
limits of the variable u. The variable u changes from
0 (corresponds to a segment point, through which
axis of rotation passes) to arcsin(r/R) — this value u
corresponds to a segment circle (cutting edge) [9]. If
independent variables of a surface u and v are made
dependent on one another, a line will be described on
the surface of a segment. Let us assume that such
dependence is determined by the other variable t —
time of the particle sliding on the surface of a segment
(a disk). Then, an intrinsic equation relative to par-
ticle trajectory is defined by u = u(t) and v = v(t).
These dependences are to be found. Equations (1) are
the equations of a surface, but when determining de-
pendences u = u(t) and v = v(t) they change into the
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equations of a line on a surface. In order to differenti-
ate equations of a surface from equations of a curve on
it, for indicating X, Y , Z in the equations of a surface
we use upper case and in the equations of a line we use
lower case. With dependences u = u(t) and v = v(t)
(yet unknown), equations (1) trace out a trajectory
of relative particle motion. Using a differentiation (1)
according to time t, we obtain projections of a relative
velocity of particle sliding on a disk surface:

x′ = Ru′ sin u,
y′ = R(u′ cosu sin v + v′ sin u cos v),
z′ = R(u′ cosu cos v − v′ sin u sin v). (2)

The value of relative velocity is obtained from vector
sum of the components:

V =
√
x′2 + y′2 + z′2 = R

√
u′2 + v′2 sin2 u. (3)

When rotating around its axis at angular velocity
ω, all segment points (1) turn at angle ϕ = −ωt. Sign
“−” was adopted in order to correlate velocity vector
of a machine and rotation direction of a segment (a
disk). By applying rotation formulas, let us write
parametric equations of a segment, which describe its
position after its turn at an angle ϕ:

X = −R cosu,
Y = R sin u sin v cos(−ωt)−R sin u cos v sin(−ωt),
Z = R sin u sin v sin(−ωt) +R sin u cos v cos(−ωt).

(4)

After simplifications (4), we obtain an equation of
a line on a segment surface, which is an absolute
trajectory of particle motion; that is why we pass on
to lower case letters:

x = −R cosu,
y = R sin u sin(v + ωt),
z = R sin u cos(v + ωt). (5)

The differential equation of particle motion on the
surface of a segment of a sphere is written as m~w = ~F ,
where m — a mass of a particle, ~w — the vector of
absolute acceleration, ~F — equal vector forces, which
are exerted on a particle. Such forces are the follow-
ing: weight force of a particle mg (g = 9.81m/s2),
surface reaction ~N and friction force f ~N , which offers
a resistance to the particle sliding on the surface of a
segment (f — friction coefficient). Let us write the
deduced vector equation in projections onto an axis
and, as a result, we obtain a set of three differential
equations.

Absolute acceleration of a particle is obtained from
successive differentiation of equations (5) according
to time t. The first-order derivative of equations (5),
that is to say a vector of an absolute velocity of a

particle, takes the following form:

x′ = Ru′ sin u,
y′ = R

(
u′ cosu sin(v + ωt)

+ (v′ + ω) sin u cos(v + ωt)
)
,

z′ = R
(
u′ cosu cos(v + ωt)
− (v′ + ω) sin u sin(v + ωt)

)
. (6)

We differentiate equations (6) and obtain projections
of a vector of an absolute acceleration onto an axis:

x′′ = R(u′2 cosu+ u′′ sin u),
y′′ = R cos(v+ωt)

(
2u′(v′+ω) cosu+ v′′ sin u

)
+R sin(v+ωt)

(
u′′ cosu− (u′2 + (v′+ω)2) sin u

)
,

z′′ = −R sin(v+ωt)
(
2u′(v′+ω) cosu+ v′′ sin u

)
+R cos(v+ωt)

(
u′′ cosu− (u′2 + (v′+ω)2 sin u

)
.
(7)

The first exerted force is the particle weight mg.
Since a vector of weight is down-directed, its projec-
tions onto an axis are

{0; 0;−mg}. (8)

The second exerted force is surface reaction ~N of a
segment, which is directed normal to a surface. All
the normal lines of a sphere are directed toward its
centre, that is why, their coordinates are equal to
parametric equations (1), having taken an opposite
sign and taking into account surface effect on a particle.
This vector is applied to a particle at its locating
point. It must be turned through angle ϕ = −ωt, so
that it corresponds to the point of its location on the
surface. After the turn, projections of a vector take
the following:

Nx = cosu,
Ny = − sin u sin(v + ωt),
Nz = − sin u cos(v + ωt). (9)

As may be inferred from (9), projections of a vector
differ from equations (5) by a sign and the absence of
radius R, since this is a unit vector.
The last one is the friction force f ~N , which is di-

rected opposite to the relative velocity ~V of particle
motion, that is to say, at a tangent to a relative tra-
jectory. Projections of a unit vector ~T , along which
velocity of a particle is directed, are determined by
dividing velocity components (2) by its modulus (3)
with further rotation through angle ϕ = −ωt:

Tx = u′ sin u√
u′2 + v′2 sin2 u

,

Ty = u′ cosu sin(v + ωt) + v′ sin u cos(v + ωt)√
u′2 + v′2 sin2 u

,

Tz = u′ cosu cos(v + ωt)− v′ sin u sin(v + ωt)√
u′2 + v′2 sin2 u

. (10)
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Now, we can write differential equations relative to
particle motion taking into consideration the exerted
weight force (8), surface reaction ~N and friction force
f ~N , which are vectored by unit vectors (9) and (10).
The vector equation m~w = ~F is written in pro-

jections on an axis taking into consideration that
projections of a vector of an absolute acceleration ~w
are represented by expressions (7):

mx′′ = N cosu− fN u′ sin u√
u′2 + v′2 sin2 u

,

my′′ = −N sin u sin(v + ωt)

− fN u′ cosu sin(v + ωt) + v′ sin u cos(v + ωt)√
u′2 + v′2 sin2 u

,

mz′′ = −mg −N sin u cos(v + ωt)

− fN u′ cosu cos(v + ωt)− v′ sin u sin(v + ωt)√
u′2 + v′2 sin2 u

.

(11)

Let us substitute, in (11), the expressions of other
derivatives from (7) and let us solve the system (11)
for other unknown functions u = u(t) and v = v(t),
as well as N = N(t). As a result of simplifications we
obtain:

u′′ = −fu′R(v′+ω)2 sin2 u+Ru′2−g sin u cos(v+ωt)
R
√
u′2 + v′2 sin2 u

+ cosu
(

(v′ + ω)2 sin u− g

R
cos(v + ωt)

)
,

v′′ = −fv′R(v′+ω)2 sin2 u+Ru′2−g sin u cos(v+ωt)
R
√
u′2 + v′2 sin2 u

+ g sin(v + ωt)
R sin u − 2u′(v′ + ω) cosu

sin u ,

N = m
(
R(v′ + ω)2 sin2 u+Ru′

2

− g sin u cos(v + ωt)
)
. (12)

Expressions (12) should be viewed as a system of the
first two equations. The third equation — surface
reaction — becomes known after solving the system
of the first two equations. It must be solved using
numerical methods.
Initial conditions of an integration are chosen pro-

ceeding from the point on a blade at which a particle
gets onto a surface. This point can be chosen within
the limits of the soil penetration depth a of a disk
and it is specified by initial coordinates u and v. At
u = arcsin(r/R) and at v = π the point is located
in the lowermost part of a disk, that is at depth a.
At u = arcsin(r/R) and at v = π − arccos((r − a)/r)
the point is located in such part of a blade, where it
meets a field surface. When choosing the parameter
v within the specified limits, we choose a point on a
blade at a digging depth of penetration.
The initial value of first-order derivatives u′ and

v′ determine the direction of the particle entering a
surface. At u = arccos(r/R)− const. and a change of
the independent value v, a circle — disk periphery —

is described on a surface. The derivative v′ represents
the angular velocity of particle sliding at the moment
of it getting onto a blade. Since, before entering a disk,
a particle is stationary, then, relative to a disk, which
rotates with angular velocity being ω = Vm cosα/r,
we assume v′ = −ω. If a disk rotated and a particle
remained in place, the velocity of sliding on a blade
would be stabilized, opposite to the direction of disk
rotation and would be equal to v′ = −ω. But it
happens only at the moment of particle getting onto
a blade, after that the particle is trapped by a surface,
moves along it and the angular velocity of sliding
decreases. Derivative u′ represents angular velocity
of particle motion along a coordinate line (angle) u,
that is to say, along the meridian, which goes from
the point on a blade to the centre of a disk. Let
us assume that linear velocity of particle motion in
a meridian line, which is determined by expression
Ru′, is equal to cross stream velocity component of
machine movement, that isVm sinα. Hence, we obtain
the initial value of u′ as u′ = Vm sinα/R.

3. Results
When conducting the research, it was assumed that
a machine moves at 9 km/h = 2.5m/s, an incidence
angle is α = 20°, design parameters of a disk are
R = 0.5m, r = 0.225m, tillage depth is a = 0.08m.
Using the deduced dependences, we determine ini-

tial conditions of the integration u = 0.47 rad; v =
2.27–π (depending on the depth, at which a particle en-
ters a disk blade); u′ = 1.72 s−1; v′ = −ω = −10.4 s−1.
As a result of a numerical integration of the sys-
tem (12) relative (following formulas (1)) and absolute
(following formulas (5)) trajectories of particle motion
have been made. They are shown in Figure 3a from
the view point, which direction is perpendicular to a
blade surface. Full lines show trajectories of absolute
motion of a particle, which gets onto a blade at a dig-
ging depth and dashed lines show relative trajectories,
that is to say, trajectories of a particle sliding on a
disk.

It is to be recalled that we have accepted a geomet-
ric model, according to which a disk rotates about a
horizontal axis but does not move on the field. In-
stead, a particle is delivered on it at an incidence at
the specified initial velocity Vm, which falls into two
components: longitudinal and transverse. Trajecto-
ries of sliding (dashed lines) are not interesting for
the investigation, but absolute trajectories (full lines)
give us an idea how particles move relative to the disk
projection, particularly their rise height.

Figure 3b illustrates absolute trajectories of particle
motion when they get onto a disk at the same pene-
tration depth as we have in the first case, but at an
incidence angle being of α = 30°. Initial conditions of
the integration are chosen according to this angle at
previous velocity of machine movement: u′ = 2.5 s−1;
v′ = −ω = −9.6 s−1. Figure 3b shows that the rise
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Figure 3. Projection of a disk and plotted trajectories of particle motion: a) absolute and relative trajectories at an
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Fig. 4. Kinematic characteristics of particle motion at α=30º, when it gets onto a blade at its contact 

point with a field surface (a peak trajectory in Fig. 2,b): 

а) a curve of angular velocity of particle sliding; b) a curve of absolute velocity of motion 

 

The deduced model of particle motion only vaguely describes the real process. This model 

assumes that further motion of a particle, after it gets onto a surface, is performed due to the kinetic 

energy of a particle at the moment of its getting onto a disk surface. Practically, there are backup 

forces of adjacent particles, which make a particle move on a surface. It can be assumed that this 

backup force breaks friction resistance force, that is to say, these forces are equillibrated and, in this 

case, it is possible to adopt a friction coefficient f to be equal to zero. However, this is fair only at 

the stage of particle rise and at the stage of its downward motion backup force may act as 

decelerating force, which conflicts with a real process. Fig. 5,a shows enlarged trajectories of 

absolute particle motion for α=3º at f=0.3 (a full heavy line; the same trajectories in a scaled-down 

version are illustrated in Fig. 3,b) and at f=0 (a fine dashed line). Having analyzed these 

Figure 4. Kinematic characteristics of particle motion at α = 30°, when it gets onto a blade at its contact point
with a field surface (a peak trajectory in Figure 2b): a) a curve of an angular velocity of the particle sliding; b) a
curve of an absolute velocity of motion.

height of particles increases and the area of particle
dispersion on a disk surface increases as well.

Figure 4a shows a curve of angular sliding velocity
of a particle, which gets onto a blade at a point of its
contacting a field surface at α = 3° (a peak trajectory
in Figure 3b). From initial value v′ = −ω = −9.6 s−1,
the value of angular velocity decreases due to surface
friction and then it begins to increase when a particle
moves downward. The duration of such movement un-
til it reaches the lowest point is 0.26 s. Figure 4b shows
a curve of an absolute velocity of particle motion.

The initial value of the velocity equals to transverse
component Vm sinα = 1.25m/s, which corresponds to
the initial angular velocity u′ = Vm sinα/R = 2.5 s−1

at the point of its getting onto the surface. After this,
the velocity decreases, which corresponds to the rise
of a particle and then it increases again. In all the
examples, the coefficient of the particle friction on a
disk surface is assumed to be f = 0.3.

The deduced model of particle motion only vaguely
describes the real process. This model assumes that
further motion of a particle, after it gets onto a surface,
is performed due to the kinetic energy of a particle at
the moment of it getting onto a disk surface. Prac-
tically, there are backup forces of adjacent particles,
which make a particle move on a surface. It can be

assumed that this backup force breaks friction resis-
tance force, that is to say, these forces are equilibrated
and, in this case, it is possible to adopt a friction co-
efficient f to be equal to zero. However, this is fair
only at the stage of a particle rise and at the stage
of its downward motion, the backup force may act as
a decelerating force, which conflicts with a real pro-
cess. Figure 5a shows enlarged trajectories of absolute
particle motion for α = 3° at f = 0.3 (a full heavy
line; the same trajectories in a scaled-down version are
illustrated in Figure 3b) and at f = 0 (a fine dashed
line). Having analysed these trajectories, it can be
concluded that the value of friction coefficient has a
minor influence on the trajectory of the absolute mo-
tion. The increase of the coefficient of the soil friction
on a disk surface from f = 0 to f = 0.3 results in the
change of motion trajectories of soil particles at an
incidence angle of α = 30° in case when a disk rotates
at angular velocity being ω = 9.6 s−1 within the range
of 3–6%. But the same cannot be stated in relation
to a stationary disk, that is at ω = 0 (for example, the
one that is jammed). Figure 5b shows the absolute
trajectories at the same parameter values but for a
stationary disk. The increase of the coefficient of soil
friction on a disk surface from f = 0 to f = 0.3 results
in the change of motion trajectories of soil particles

205



S. F. Pylypaka, M. E. Klendii, O. M. Klendii Acta Polytechnica

trajectories, it can be concluded that the value of friction coefficient has minor influence on the 

trajectory of absolute motion. The increase of the coefficient of soil friction on a disk surface from 

f=0 to f=0.3 results in the change of motion trajectories of soil particles at an incidence angle being 

α=30º in case when a disk rotates at angular velocity being ω=9,6 s-1 within the range of 3…6%. 

But the same cannot be stated in relation to a stationary disk, that is at ω=0 (for example, the one 

that is jammed). Fig. 5,b shows absolute trajectories at the same parameter values but for a 

stationary disk. The increase of the coefficient of soil friction on a disk surface from f=0 to f=0.3 

results in the change of motion trajectories of soil particles at an incidence angle being α=300 in 

case when a disk is jammed within the range of 12…20%. 

It is worth mentioning that the trajectories, which are plotted using dashed lines in Fig. 5,a 

and Fig. 5,b and absolutely the same. It means that when there is no friction, that is to say, a surface 

is perfectly smooth, an absolute trajectory does not depend on the value of angular velocity of its 

rotation. Friction forces influence the trajectories of particle motion on a stationary disk and a 

moving one. In both cases the trajectories the differ within the range of 4…7%. at the stage of 

particle rise and they differ within the range of 12…18%. at the stage of particle downward 

movement. This can be explained by the fact that friction forces on a moving disk draw a particle in 

the direction of its rotation. 

 

        

a                                                                       b 

Fig. 5. Disk segments with plotted absolute trajectories of particle motion at incidence angle α=30º 

and various friction coefficients (a full line at f=0.3 and a dashed line at f=0): 

а) a disk rotates at angular velocity being ω=9.6 s-1;б) a disk is stationary (ω=0) 

 

Investigation of the kinematic parameters of movement of soil particles on the inner surface 

of disk working body that rotates around a horizontal axis and moves at an angle of attack in 

relation to the movement of the unit, facilitates the design of disk tillage tools working bodies. 

Also investigation of such motion by the example of a separate particle allows understanding 

the nature of particle movement and determining the influence of the parameters of disk mounting 

on their behavior. 

On the basis of field experiments it has been determined that, the production process quality 

of tillage machine meets agrotechnical requirements.  

In the process of the experimental studies of a spherical cultivating disk the following 

parameters were variable: angular velocity of disk rotation ω=0...10 s-1; an incidence angle of disk 

α = 20º...30º and friction coefficient f = 0.2…0.4. After processing numerical values, regression 

equations, which define the area of particle dispersion S according to the change of the above 

mentioned parameters, have been obtained: 

9.97 3.46 1.76 4.64S            .   (13) 

Figure 5. Disk segments with plotted absolute trajectories of particle motion at an incidence angle of α = 30° and
various friction coefficients (a full line at f = 0.3 and a dashed line at f = 0): a) a disk rotates at an angular velocity
of ω = 9.6 s−1; b) a disk is stationary (ω = 0).

Having analyzed regression equations (13) was the constructed response surfaces and their 

two-dimensional sections, which are illustrated in Fig.6, 7 and 8. 

 

  
 

a                                                                              b 

Fig. 6. Change dependence of the area of particle dispersion S on an incidence angle of disk α 

and friction coefficient f as functional ( , )S F f  
 

 

  
 

a                                                                           b   

Fig. 7. Change dependence of the area of particle dispersion S on an incidence angle of disk α 

and an angular velocity of disk rotation ω as functional ( , )S F    
 

The analysis of the surfaces reveals, that the area of particle dispersion S changes within the 

range of 70·10-4…130·10-4 (m2) depending on the change in design and kinematic parameters and 

process variables of a screw and on loose material characteristics within the following limits: on an 

incidence angle of disk α = 20º...30º; an angular velocity of disk rotation ω=0...10 (s-1); friction 

coefficient f = 0.2…0.4. It has been determined, that an incidence angle of disk α increase, the area 

of particle dispersion S increases as well in 1.81 times; an angular velocity of disk rotation ω 

S,  10-4 m2 
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f 
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Figure 6. The change dependence of the area of particle dispersion S on an incidence angle of a disk α and friction
coefficient f as functional S = F (α, f).

at an incidence angle of α = 300° in case when a disk
is jammed within the range of 12–20%.

It is worth mentioning that the trajectories, which
are plotted using dashed lines in Figure 5ab are ab-
solutely the same. It means that when there is no
friction, that is to say, a surface is perfectly smooth,
an absolute trajectory does not depend on the value
of an angular velocity of its rotation. Friction forces
influence the trajectories of particle motion on a sta-
tionary disk and a moving one. In both cases, the
trajectories differ within the range of 4–7%. at the
stage of a particle rise and they differ within the range
of 12–18%. at the stage of a particle downward move-
ment. This can be explained by the fact that friction
forces on a moving disk draw a particle in the direction
of its rotation.
The investigation of the kinematic parameters of

the movement of soil particles on the inner surface of
a disk working body that rotates around a horizontal
axis and moves at an angle of attack in relation to
the movement of the unit, facilitates the design of the
disk tillage tools working bodies.

Also investigation of such motion by the example of

a separate particle allows understanding the nature of
particle movement and determining the influence of
the parameters of disk mounting on their behaviour.

On the basis of field experiments, it has been deter-
mined that the production process quality of a tillage
machine meets the agrotechnical requirements.
In the process of the experimental studies of a

spherical cultivating disk, the following parameters
were variable: the angular velocity of disk rotation
ω = 0 − −10 s−1; the incidence angle of the disk
α = 20°–30° and the friction coefficient f = 0.2–0.4.
After processing numerical values, regression equa-
tions, which define the area of particle dispersion S
according to the change of the above mentioned pa-
rameters, have been obtained:

S = 9.97 + 3.46α+ 1.76ω − 4.64αω. (13)

Having analysed the regression equations (13) re-
sponse surfaces and their two-dimensional sections,
which are illustrated in Figures 6, 7 and 8, were con-
structed.
The analysis of the surfaces reveals, that the area

of particle dispersion S changes within the range of
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Having analyzed regression equations (13) was the constructed response surfaces and their 

two-dimensional sections, which are illustrated in Fig.6, 7 and 8. 

 

  
 

a                                                                              b 

Fig. 6. Change dependence of the area of particle dispersion S on an incidence angle of disk α 

and friction coefficient f as functional ( , )S F f  
 

 

  
 

a                                                                           b   

Fig. 7. Change dependence of the area of particle dispersion S on an incidence angle of disk α 

and an angular velocity of disk rotation ω as functional ( , )S F    
 

The analysis of the surfaces reveals, that the area of particle dispersion S changes within the 

range of 70·10-4…130·10-4 (m2) depending on the change in design and kinematic parameters and 

process variables of a screw and on loose material characteristics within the following limits: on an 

incidence angle of disk α = 20º...30º; an angular velocity of disk rotation ω=0...10 (s-1); friction 

coefficient f = 0.2…0.4. It has been determined, that an incidence angle of disk α increase, the area 

of particle dispersion S increases as well in 1.81 times; an angular velocity of disk rotation ω 
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Figure 7. The change dependence of the area of particle dispersion S on an incidence angle of a disk α and an
angular velocity of the disk rotation ω as functional S = F (α, ω).

increase, S decreases in 1.36 times; within the range of change in friction coefficient f, the change in 

S is insignificant. 

 

  
 

a                                                                           b 

Fig. 8. Change dependence of the area of particle dispersion n S on an angular velocity of disk 

rotation ω and friction coefficient f as functional ( , )S F f  

 

CONCLUSIONS. A mathematical model of soil particle motion on a disk operating 

element, which rotates about a fixed horizontal axis, has been developed. The results of numerical 

solution of the equations have shown that when an incidence angle increases, the rise height of 

particles and the area of particle dispersion on a disk surface increase as well. The duration of such 

a movement until it reaches the lowest point is 0.26 s. The initial value of velocity equals to 

transverse component sin
m

V  =1.25 m/s, which corresponds to initial angular velocity 

1sin 2,5
m

u V R s     at the point of its getting onto the surface. After this, the velocity 

decreases, which corresponds to the rise of a particle and then it increases again. Friction coefficient 

does not significantly influence the trajectory of particle motion. However, if a disk is stationary, it 

contributes more to the formation of a trajectory of particle motion. When there is no friction an 

absolute trajectory does not depend on the value of angular velocity of its rotation. Friction forces 

influence the trajectories of particle motion on a stationary disk and a moving one. In both cases the 

trajectories are the same at the stage of particle rise and they differ at the stage of particle downward 

movement. This can be explained by the fact that friction forces on a moving disk draw a particle in 

the direction of its rotation. 

For the purpose of the quality of soil loosening conducted multivariate experiment to 

determine the area of soil dissipation. On the basis of field experiments it has been determined that, 

the production process quality of tillage machine meets agrotechnical requirements. The analysis of 

the surfaces reveals, that the area of particle dispersion S changes within the range of 70·10-

4…130·10-4 (m2) depending on the change in design and kinematic parameters and process 

variables of a screw and on loose material characteristics within the following limits: on an 

incidence angle of disk α = 20º...30º; an angular velocity of disk rotation ω=0...10 (s-1); friction 

coefficient f = 0.2…0.4. It has been determined, that an incidence angle of disk α increase, the area 

ω, s-1 

ω, s-1 

S,  10-4 m2 f 

f 

Figure 8. Change dependence of the area of particle dispersion S on an angular velocity of disk rotation ω and
friction coefficient f as functional S = F (ω, f).

70 · 10−4–130 · 10−4 m2 depending on the change in
design and kinematic parameters and process variables
of a screw and on loose material characteristics within
the following limits: on an incidence angle of a disk
α = 20°–30°; an angular velocity of the disk rotation
ω = 0−−10 s−1; the friction coefficient f = 0.2–0.4.
It has been determined that when an incidence angle
of a disk α increases, the area of particle dispersion S
increases as well 1.81 times; when an angular velocity
of a disk rotation ω increases, S decreases 1.36 times;
within the range of the change in the friction coefficient
f , the change in S is insignificant.

4. Conclusion
A mathematical model of soil particle motion on a
disk operating element, which rotates around a fixed
horizontal axis, has been developed. The results of the
numerical solution of the equations have shown that

when the incidence angle increases, the rise height of
particles and the area of the particle dispersion on a
disk surface increase as well. The duration of such
movement until it reaches the lowest point is 0.26 s.
The initial value of the velocity equals to transverse
component Vm sinα = 1.25m/s, which corresponds to
the initial angular velocity u′ = Vm sinα/R = 2.5 s−1

at the point of it getting onto the surface. After
this, the velocity decreases, which corresponds to the
rise of a particle and then it increases again. The
friction coefficient does not significantly influence the
trajectory of particle motion. However, if a disk is
stationary, it contributes more to the formation of
a trajectory of particle motion. When there is no
friction, an absolute trajectory does not depend on the
value of the angular velocity of its rotation. Friction
forces influence the trajectories of particle motion
on a stationary disk and a moving one. In both
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cases, the trajectories are the same at the stage of
the particle rise and they differ at the stage of the
particle downward movement. This can be explained
by the fact that friction forces on a moving disk draw
a particle in the direction of its rotation.

For the purpose of the quality of soil loosening, we
conducted a multivariate experiment to determine
the area of the soil dissipation. On the basis of field
experiments it has been determined that the produc-
tion process quality of a tillage machine meets the
agrotechnical requirements. The analysis of the sur-
faces reveals, that the area of particle dispersion S
changes within the range of 70 · 10−4–130 · 10−4 m2

depending on the change in design and kinematic pa-
rameters and process variables of a screw and on loose
material characteristics within the following limits: on
an incidence angle of a disk α = 20°–30°; an angular
velocity of the disk rotation ω = 0–10 s−1; the friction
coefficient f = 0.2–0.4. It has been determined that
when an incidence angle of a disk α increases, the
area of particle dispersion S increases as well 1.81
times; when an angular velocity of a disk rotation ω
increases, S decreases 1.36 times; within the range of
the change in the friction coefficient f , the change in
S is insignificant.
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