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Numerical Impleme ntation of rsotropic
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I Introduction
Owing to its relative simpliciry isotropic consolidation is

often viewed as a basic tool for inferring the material parame-
ters of various constitutive models. While the respective con-
stitutive model is usually well defined and tested for the de-
scription of a certain type of soil, the values of the associated
material parameters are mostly lacking, leading to an exten-
sive laboratory program to determine them, On certain occa-
sions, howeve4 this problem can be confined to a single labo-
ratory test combined with numerical simulations. In particu-
lal this paper advocates the use of a simple isotropic consoli-
dation test to infer the basic material parameters describing
critical state models such as the modifred Cam clay model.

Among others, the modified Cam clay model has been
often the choice for constitutive models for a realistic repre-
sentation of the inelastic behavior of clayey soils, particularly
when the deformation of the solid phase is of the main
concern. Its selection has been promoted by the ability of the
model (with only minor modifications) to capture a number
of important phenomena associated with the soil-water inter-
action. Wth reference to consolidation, the need was long ago
highlighted for at least a bilinear form of the consolidation
line to account for the prior loading history (unloading from
a certain level of preconsolidation pressure prior to subse-
quent loading), which signif,rcantly affects the shape of the
pressure dissipation cuwe.

Successful implementation of the model further requires
a deformation dependent formulation of the coefficient of
permeabiliry. When expressed as a function of the actual void
ratio this can significantly improve the material response,
particularly when the degree of consolidation increases [8].
See also [4, 9] and Section 4 for further discussion. The above
requirements then give rise to five basic material parameters
to feed into the constitutive model. These parameters are
summarized in Section 2, which briefly reviews the theoretical
formulation of isotropic consolidation.

Manual tuning of these parameters is usually not very effi-
cient, and should be combined with a suitable and reliable
optimization technique to determine their values [0]. Here
the efficiency of the selected numerical technique for solving
the governing equations is of paramount importance. There-
fore, a critical evaluation of the efliciency of these methods,
discussed in Section 3, is one of the goals of this paper.

8

2 Governing equations
Referring to the experimental measurements carried out

in the triaxial apparatus, isotropic consolidation can be view-
ed as a one phase ow in a fully saturated deforming medium
undergoing small deformations. Neglecting the body forces,
the hydrostatic state of srress maintained during the experi-
mental measurement gives

or(x,y,z,t) = o r(x,y,z,) = o,(x, y,z,t) = c*(t), ( I )

where o, is the total mean stress. Following the Terzaghi-
-Fillunger concept of effective srresses this quantity can be
expressed in terms of thepore pressure p' and the effective
stresses benveen grains offI as

-cFo*=67;'-p'. (2)

Assuming full saturation (S,= l, [6]) the pore pressurep'
equals the pressure in the liquid phase p'. Referring to the
experimental conditions, the total mean stress remains con-
stant throughout the consolidation process. The assumed
stress homogeneiry together with Eq. (2) then provides

o*=of -i'=o (3)

where ( ' ) represents the time derivative a( 
) I at .

Thansport of the liquid phase throughout the soil sample
can be described by the following set of equations:
Transport eEtation

r =-E{gradpu, (4)J 
^,wI

where ,fl is the mass flux of pore water, y' = gp' is the spe-

cific weight of water, p' is the intrinsic mass density, and K
represents an instantaneous coefficient of permeability.

Balance equnfion reads

P- i, t divrl? =9. (5)

The volumetric strain e.. follows from the

Constitutiae eEntiun

e(t)-Vo K ,€r,=i1-a=-; :'_ h(-o;tr(rD, ":f , ":f; (6)
l+eg I+eg

e(t) - eo l"e,=ia-l=-;:tn(-of;1r), of .eff Q)
I-t €6 l-f 01y
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Fig. I : Bilinear form of the consolidation line

derived in the case of the modified Cam clay model llom the
bilinear consolidation line, Fig. l. The initial branch, often
referred to as the r - line, gives evidence of the previous
stress history and represents the effect ofoverconsolidation.
The slope discontinuity between the k and l, - lines can be

identified with the structural strength of soil given in terms
of a certain level of the effective mean stress ofitr (pre-

consolidation pressure).

Differentiating Eq. (7) with respect to time gives the rate
of volumetric strain in the form

., /.\ i'(t) 7, b'U)
crtt", 

- r+ es * ^;nt' 
(8)

Substituting Eqs. (a) and (8) into Eq. (5) and taking into
account the actual triaxial set-up, in which only the bottom
face of the cylinder is drained, leads to

-+";ut,l 9 lrtry 
ael(rl 

l - b' (t) = o"l*)\ o.t oz )
It has been verified experimentally that in the case of iso-

tropic consolidation a simple power law written as [8]

K(t\ (e(i\'',)', =l -.-, | , (10)K6 \to )
represents the soil behavior fairly well. The dependence of
the actual void ratio r on the e{fective mean stress, Eq. (7), to-
gether with Eq. (10) provides

aKQ) = mK(A a?'(t). (')az eQ)c'f Q) az

Introducing Eq. (11) into Eq. (9) finally yields

b.(t\ =- 
K(r)(l + 4o) 

.
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lnfryl ."*u'fff (r2)

A similar equation can be derived for the unloading branch
when replacing l. by rc and ee by as in Eq. (12)

In(-off )

lreWl ."*u'affi)

3 Numerical implementation
The purpose of this section is to evaluate several numeri-

cal methods commonly used when solving the consolidation
problem. As mentioned above, the main objective remains
computational efliciency of individual numerical techniques.
Frrst, we recall the collocation method successfully imple-
mented in [8]. The implicit finite control volume scheme
combined with the finite difference method is explored next
[6]. Frnally, our attention is given to the finite element
method, which has proved to be an efficient tool particularly
when taking the volume changes of the porous skeleton into
account [2, 9].

Before proceeding with the present formulation of the
individual numerical techniques, we recall awell known draw-
back of standard formulation attributed to the point of slope

discontinuity along the bilinear consolidation line. This phe-
nomenon, evident fiom Fig. 2 (see also [7]), results in a typical

eo = 0.5, Ko = 2.0'10-to[ms-l

r = 0.01, l, = 0.'l

-0 1000 2000 3000 4000

Time [min]

Fig. 2: Time variation of pore pressure with no smoothing of the
bilinear consolidation line

double S type of curve where individual segments of this
curve are linked to a given slope of the bilinear consolidation
line. This, howeve4 is in contradictionwith actual experimen-
tal measurements.

To avoid numerical difliculties around the point of discon-
tinuity we equipped the original diagram in Fig. I with a cubic
parabola to smooth out the transition zone. The numerical
integration ofEqs. (12) and (13) is then carried out under cer-
tain simplifying assumptions. In particula6 we first introduce
an instantaneous modulus l" with corresponding initial void
ratio 0g displayed in Fig. 3. These parameters, evaluated at
the middle of the current time step, are then introduced in
Eqs. (12) and (13), thus replacing the original variables r, 1",

eo and eg, respectively. Furthermore, the pore pressure de-

pendent material parameters K and e are derived fiom an ini-
tial prediction ofpore pressure taken at the end ofthe current
time step. Details are given in Sections 3.1-3.3.
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Fig. 3: Bilinear form of the consolidation line with the definition
of an instantaneous modulus i

3.1 Nurnerical solution using the collocation
method

A suitable method for solving Eq. (12) combines the collo-
cation method alongwith a cubic spline approximation of the
pore pressure distribution. After discretization and introduc-
tion of instantaneous parameters i and i6 Eq. (12) becomes

nf (t1a) = -x 
^to.i(tj+r)rudty) 

+ r uB;(t1*t)* 
(,a)

+i1,(tp).
Further suppose an equidistant spread ofthe collocation

points with srep Ah = zi- zi_r. The cubic spline equation rhen
reads
l- r ?

2Mo-t 
* 2Mi + : M;*1= ft(0,-t -2F; + h*) . (19)

Combining Eqs. (19) and (18) then readily provides the
final tridiagonal system ofalgebraic equationsin the form

lr ' I

fi 
* s' a'"'- ft i a) ft lu,-'(rr*, 

) *

| . rl
+f2 -6rArcrr\ttu) 

oor- lri(/r*,) 
* 

,r0l
[r r I

* 
f 
, 

* s' rr 
" '"('1) fi lu 

+{t 1.t) =

8.
= fi fr,-,t(, i) - 2PtQ j)+ Pi.,r(r; )],

where

pr(t ) = r u p;(t 1) * 11. (t pt)

vo(t)= fi(rr(,,) - Fi-{t)) *

* {Q*o(,)+ uo-,(t,))

To complete the numerical procedure the following
boundary and initial conditions are supplemented in accor-
dance with the experimental set up

r{t1)=0, o,(t1)=0,
(23)

F;@)=-o-* o'{,010) i=2,...,n -r,
where n is the number of collocation points. The selected cu-
bic spline boundary conditions assume the form

( l5)
rrrt(t)=M,(t,)=0.

3.2 Numerical solution using the finite aolume
method

It is evident that a direct solution of Eq. (12) Ieads, in gen-
eral, to a nonlinear system ofequations. Therefore it appears
preferable to start by discretizing the governing equations,
which are then successively used in a single time step. In view
of the one-dimensional problem, Eq. (9), the set of governing
equations will be discretized using a three-layer model. The
individual layers (finite control volumes) have different thick-
ness, and diverse materials can be assigned to each layer. The
pore pressure is assumed to be constant inside each control
volume andwithin each time step, and to be equal to the pore
pressure at the so called grid-point, Fig. 4. Its position is pre-
scribed by a chosen parameter/.

Trarufer eqrnti,on

Application of the finite difference scheme converrs
Eq. (4) for the water flux throughout a layer i with thickness
Az. into the form

(2 1)

/99\
(14)

Note that by using the above approximation we force
Eq. (12) to be fulfilled only ar a cerrain points of colloca-
tion (i); Y,(t) and M,(1,) then represenr the first and second
derivatives 

-of 
the unknown pore pressure at the id point,

respectively. AIso note that the pore pressure dependent
material parameters K and e are found from an initial pre-
diction of pore pressure T;'(tp) at time 6u r-q. i7).
Accepting such assumptions allows the above equation to be
written in the form

bi (t 1.t) * "(t 1 a) rrr ;(ri*t ) = p(ri*, )
where

o,(r7*,) =. at,#tP 
"f,(t i),

F;(r;.r ) =. e' W* ;','l *rj f,o(, i)f ,

"fff(r7-r) = o^{i(tj)+ pyQjn)- fi(t,)
To solve Eq. (15) we further assume the generalized trape-

zoidal rule [5] and write

ii (t p) = fi(of 1,,.r) - To' (t p)),
T;'(t1-r)=Oi(t1,") + (r - )ttii(,i.t),
where I = Q - t i) I u ; Lt = t i *1- I ; is the time step. parame-
ter t should b6 thosen frorir r e(il2,l) to ensure numerical
stability. The most common choice is r = f2. When substitut-
ing Eqs. (16) and (17) into Eq. (15) we arrive ar

l0

(94\

(16)

(rry
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Fig. 4: A three layer model

ty =-+-(pi -pi-t)=-@.n\pi -FYt), eb)gAz;r" '- ''

where

| -r, . rgAzj-t , gLzi
, =(r - JA)?+ ri _ (26)
hzi K;_t K i

is the overall resistance between grid points (i - l) and i.

Balnnce eqm,tion

Employing the generalized trapezoidal method provides
the time variation and the rate of volumetric strain in the
form, recall Eqs. (16) and (17),

1.t",;(t1*t)=;;(r,,'Qi.r) - 2,,,(,r.')), Q7)

2,,;(t1',) =r",i(ti)+(l - r) tt z,,i(t1) . (28)

Next, applying again the finite difference scheme yields
an incremental form of the balance equation (5) for layer I
A. .nw ,

ff; (r".,(,r.')-2,,'(r;.r))* (zg)

+ 1ia(t 1 *r) - li' (t, *1) = o.

State eqntion

Introducing Eqs. (16) and (27) into Eq. (8) gives

i-1
a

i+1
I

3.3 Nurnerical solution using the finite element
method

In view of the general solution of fluid-solid interaction
we recall the finite element method (FEM) often used to
solve differential equations similar to Eq. (9). Apart from
Eq. (9), which must be satisfied at any point inside the soil
body, the boundary value problem requires formulation of
the boundary conditions. To that end, the boundary is de-
composed into two parts, | =fp +Tn, with the following
boundary conditions:

Essentinl boundary cond;ition

p. = F., onl, ,

N atural boundary condition

t:+€ * a!- * 4 =s, on rn , (s4)
lu 'lw OZ

where q represents the prescribed fluxes. Fig. 5 shows the
boundary conditions pertinent to isotropic consolidation. In
this particular case, no fluid is transferred across the interface

f, and therefore g = 0 and also # =,

p*= 0 onfp

p*(t,z)

q=0onfq

Fig. 5: Boundary conditions

(30) To derive a set of finite element equations we start by in-
troducing the balance equation (9) and its natural boundary
condition (34) into the principle of virtual work, written as

if 
"+"7f 

?(*+.l- i.lap,a,*Jl ^l,L oz( oz ) l (35)

Integrating the first term in Eq. (35) by parts yields
HH

t 4!-! g- K';,ff ( a, -[ ap,, i"'a, * q6p"'(H )= 0. (36)
J Az y"')" "' Az J00

The next step employs the usual approximation of the
water pore pressure in the form

bt=Nndn,r (37)

N7, stores the element shape functions and d, is the
of nodal pore water pressures. After substituting the

lt

(33)

T
1.,
I

I

,,,0(t1*r)- G,,i(r;*r) = #fr*
ffiQrO1*t) 

-Ti'(t'-'))'

After combining Eqs. (30), (29) and (25) we arrrve at a set

of tridiagonal algebraic equations in the form
t

(hz i*)pi*1(t 1*r ) - | 
(h.i*r ) + (hz ;) +

L

- Lripo' . L(ti*tt'z) I
rA r + os(thN z) ;6lrt1rr*r) +

+1nz)pi-1(tp)=

=^###ffi,*p,.,1
At the onset of consolidation the initial condition, similar

to Eq. (23), reads
-tT.-.

P;(o)=-o, + ofi.!(o) i=\,...,n, (32)

where a is the number of finite control volumes.

(31)

where
vector



Acta Polytechnica Vol. 43 No. l/2003

above approximation inro Eq. (36) we identify the following
matrices, [6],

pmnzability matrix

H

. = Iffi *iiu(N7)-rya,, *L,p =Y,
0

compressibtlily matnx
U
alr

c =-lNfNodz.
J
0

Note that the last term in Eq. (36) drops out due to the
prescribed boundary conditions. Since Eq. (36) must be satis-
fied for any admissible virtual pore pressure W' *. arrive at
the following system of equations

capQjn) *F(t1r1)ae(17*r) =0 , (40)

gh,ere the material paramerers entering Eq. (38) to get marrix
f (tr+r) are evaluated under the same assumptions as in

Section 3.1.

We usually require the material parameters, including the
coeflicient of permeability, to be constant within a given ele-
ment. Eqs. (7) and (10) suggest that the volumetric strain is
constant as well. When assuming a linear approximation of
the pore pressune, the vector ofnodal pore pressure values of
the it element becomes

..7(o,o)'={apr,dpz},. (4r)

The constant effective mean stress offr in the i'h element

is then given by

ot#=o_ @+d

4 Numerical results
Before proceeding with the results derived fiom the pre-

sented formulation we draw the readers attention to lig. 6,
which manifests several drawbacks associated with the solu-
tion of the consolidation problem when applied to rhe stan-
dard Cam clay model. The solid line shows results derived ex-
perimentally. The theoretical predictions were derived as-
suming the material parameters listed in Thble l. The
dash-dotted line follows from numerical calculations assum-
ing the linear consolidation line (virgin soil) and the deforma-
tion dependent coefficient of permeability, while the dashed
line was found from the bilinear consolidation line, but keep-
ing the coeflicient of permeability constant. Clearly, neither
the deformation dependent variation of the coeffrcient of

(3e)

(38)

(42)

6(L
5
I
o
th
E

o
I

For the sake of consistencv. the volumetric strain e-. and
the water pore pressure p' should be of the same trde,
(recall Eq. (8)). Here, the desirable consistency of the solu-
tion is achieved by applying so-called selective integration
to integrate the compressibility matrix (one-point Gauss'
quadrature).

Once the discretization in space has been performed Eq.
(40) represents a set of ordinary differential equations in time,
which can be integrated numerically, t2l. To proceed, con-
sider again the generalized trapezoidal rule such that

ioQp) = j;(ooQ,.,) -ap(tp)), (43)

Vo(t1',) =ap(,i) +(r-r)ttio(t1) . (44)

Substitution of Eq. (a3) into Eq. (40) finally leads to a sys-

tem oflinear algebraic equations given by

"rt" 
* "tF(r7.,)) dpQin)=]c 70Q1.). (4b)

The initial condition prescribing the water pore pressure
at the beginning of loading, I = 0 takes the form

itap=d;p(O)=-cn+";fi(O), i=1,...,n, (46)

where n is the number of elements.

t2

Time [min]

Fig. 6: Time variation of pore pressure

Table i: Material parameters

rc [kPa] l" [kPa] eg Ko lrrls] afitr g<ea1 m

0.01 0.1 u.5 5.0 l0e 40 6

permeability nor the bilinear form of the consolidation line
can itself describe the true consolidation process and there-
fore both of them should be taken into consideration when
simulating transport of water in soft soils.

In a nutshell, the first assumption essentially labels soils as

being normally consolidated from their virgin state, which
further contributes to a rather slow initial phase of the process
of consolidation, Iig. 6 (dash-dotted line). In their natural
state, however, soils are usually in overconsolidated states,
due to unloading from the original stress state (e.g., water
table fluctuation). To account for the prior loading history we
introduce the influence zone variation as a function of a

certain level of the effective mean stress, usually referred to as

structural strength. This level of the effective mean stress can
be identified with preconsolidation pressure. In the present
formulation, the structural strength is introduced through a
bilinear shape of the consolidation line [8], []. The effect
of this step becomes evident when examining Eq. (12). In
particulal a lower value of l" at the initial stage increases the
coefficient of permeability, leading to an acceleration of the
consolidation process at this stage, a phenomenon observed
in the experiments.

- 
experiment

-- m=0,":f=-4okpa
.-' m=0, aff=okea
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The second shortcoming comes fiom the originally as-

sumed constant value of the coe{Iicient of permeability, re-
sponsible for an abrupt increase in the rate ofconsolidation as

the effective mean stress developed during consolidation
becomes appreciable, Frg.6 (dashed line). Howeveq this stage
of consolidation is associated with a significant deformation
of the skeleton, leading to a decrease in the volume of the
pores and subsequently to an decrease in the coeffrcient
of permeability. Based on our extensive numerical investiga-
tions of isotropic consolidation [8], we proposed an exponen-
tial relation between the coeffrcient of permeability and the
actual void ratio represented by Eq. (10). Note that this
relationship was suggested by the authors based solely on
numerical results. Nevertheless, it conforms with an experi-
mental observation, [9] pp. 138, fairly well.

This set of numerical experiments also served to examine
the individual numerical techniques. The results were rather
inconclusive as to what method should be preferred, since all
methods performed equally well in this very specific consoli-
dation problem. Thus the fact that the finite volume method
is usually more stable ruled the selection of this method for
the subsequent numerical program, which provides a qualita-
tive description of the above mentioned requirements.

First, the influence of the bilinear consolidation line trig. l,
is investigated. The location of the slope discontinuiry on the
r - l, line corresponds to a given value of the structural
strength of the soil. This value can be estimated using, e.9.,
the Casagrande method [3J. Tne results for various values of
the structural strength offtare plotted in lig. 7, assumrng tn

equal to 6. It is evident that increasing the magnitude of ofitr

speeds up the rate of consolidation in the hrst stage quite
substantially.

Time [min]

Fig 7: Time variation of pore pressure

The second objective aims at slowing down the consolida-

tion process in the second stage of consolidation associated

with a decreasing volume of pores due to skeleton deforma-
tion. This phenomenon is taken into account by incorporat-
ing Eq. (10) into the numerical procedure. Results forvarious
va$es of exponent m and for a given structural strength

o#' = -30 kPa are presented in Fig. 8. The dash-dotted line

shows a rather gradual decrease in the pore pressure profile
with increasing time, which is in better agreement with exper-

imental observations.

Time [min]

Fig. 8: Time variation o[ pore pressure

500 600 700 800

Time [min]

Fig. 9: Time variation of pore pressure

Frg. 9 then summarizes the present theory. First, recall that
the dotted line was obtained without taking into account the
bilinear consolidation line. In such a case, a rather high value
of rz locks up the numerical procedure at the beginning of
consolidation. The dashed line then re ects incorporation of
both requirements. Up to now a simple trial and error proce-

dure was employed to derive optimal values of rz and of;" .

Furthermore, reproducing laboratory data requires that
we supply, apart fiom the structural strength parameters

@li' ,* ), the following material parameters: the initial void

ratio ag, the initial coeflicient of permeability Ko, the swell-

ing index r and the compression index 1,. The last two

material parameters and the starting value of precon-
solidation pressure could be specified fiom the steady state

response corresponding to the diagram shown in Fig. l. This,

however, would require carrying out a number of isotropic

consolidation tests for several predefrned levels of isotropic

pressures attained at the end of the consolidation process,

while measuring at the same time the change in volumetric
strain Aer. Such an approach would become not only time
consuming but also burdened by an additional experimental
error associated with the difficulty of measuring Aer. Also,
the determination of 7s and Kowould require additional labo-

ratory tests. A simple solution to this problem, however,

is offered by following the steps of mixed experimental and

numerical methods. In such a case, combining the experi-

'=-la'o
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mental measurements and numerical computations in a suit-
able optimization environment provides an eflicient tool for
inferring the desired parameters fiom a single laboratory
test. This issue is discussed in [0].

5 Conclusions
The present paper was concerned with an effect of

structural strength in the computational model of isotropic
consolidation in which the skeleton deformation is governed
by the modified Cam clay model. Several numerical rech-
niques to solve the isotropic consolidation problem were
explored. The finite volume method seems to perform
best in the present problem of one dimensional isotropic
consolidation.

Both the numerical results and the experimental data
proved the need to incorporate the structural strength of soils
and the time variation of the coefiicienr of permeability
into the computational model. An independent experimental
observation confirmed the exponential form of the relation-
ship benveen the coefficient of permeability and the current
void ratio proposed by the authors.
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