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Numerical Implementation of Isotropic
Consolidation of Clayey Soils

T. Janda, P. Kuklik, M. Sejnoha

This paper reports on implementation of several numerical techniques to solve a set of governing equations resulting from simple one
dimensional isotropic consolidation of soils that behave according to the Cam clay model. Three different methods of solving the equations of
consolidation, namely the collocation method, the finite volume method and the finate element method, are presented. Apart from evaluating
therr efficiency, which becomes particularly crucial when implementing these techniques in the framework of an optimization problem aimed
at tuning the model parameters, a set of parameters of a Cam clay model driving the time dependent response of the soils (deformation
dependent variation of the coefficient of permeability and preconsolidation pressure) is also discussed.

Keywords: Cam clay, coefficient of permeability, consolidation, finite volume method, void ratio, genetic algorithm.

1 Introduction

Owing to its relative simplicity, isotropic consolidation is
often viewed as a basic tool for inferring the material parame-
ters of various constitutive models. While the respective con-
stitutive model is usually well defined and tested for the de-
scription of a certain type of soil, the values of the associated
material parameters are mostly lacking, leading to an exten-
sive laboratory program to determine them. On certain occa-
sions, however, this problem can be confined to a single labo-
ratory test combined with numerical simulations. In particu-
lar, this paper advocates the use of a simple isotropic consoli-
dation test to infer the basic material parameters describing
critical state models such as the modified Cam clay model.

Among others, the modified Cam clay model has been
often the choice for constitutive models for a realistic repre-
sentation of the inelastic behavior of clayey soils, particularly
when the deformation of the solid phase is of the main
concern. Its selection has been promoted by the ability of the
model (with only minor modifications) to capture a number
of important phenomena associated with the soil-water inter-
action. With reference to consolidation, the need was long ago
highlighted for at least a bilinear form of the consolidation
line to account for the prior loading history (unloading from
a certain level of preconsolidation pressure prior to subse-
quent loading), which significantly affects the shape of the
pressure dissipation curve.

Successful implementation of the model further requires
a deformation dependent formulation of the coefficient of
permeability. When expressed as a function of the actual void
ratio this can significantly improve the material response,
particularly when the degree of consolidation increases [8].
See also [4, 9] and Section 4 for further discussion. The above
requirements then give rise to five basic material parameters
to feed into the constitutive model. These parameters are
summarized in Section 2, which briefly reviews the theoretical
formulation of isotropic consolidation.

Manual tuning of these parameters is usually not very effi-
cient, and should be combined with a suitable and reliable
optimization technique to determine their values [10]. Here
the efficiency of the selected numerical technique for solving
the governing equations is of paramount importance. There-
fore, a critical evaluation of the efficiency of these methods,
discussed in Section 3, is one of the goals of this paper.

8

2 Governing equations

Referring to the experimental measurements carried out
in the triaxial apparatus, isotropic consolidation can be view-
ed as a one phase ow in a fully saturated deforming medium
undergoing small deformations. Neglecting the body forces,
the hydrostatic state of stress maintained during the experi-
mental measurement gives

cx(x,y,z,t) = cy(x,y,z,t) = oz(x,y,z,t) =o,(1), (1)
where o, is the total mean stress. Following the Terzaghi-
~Fillunger concept of effective stresses this quantity can be
expressed in terms of the el e ¢’ and the effective

stresses between grains oy, as

o =l — e, @)

Assuming full saturation (S,=1, [6]) the pore pressure p'

equals the pressure in the liquid phase p*. Referring to the

experimental conditions, the total mean stress remains con-

stant throughout the consolidation process. The assumed
stress homogeneity together with Eq. (2) then provides

=6 _jpv =0 3)

Om

where (") represents the time derivative 6( ) / ot.

Transport of the liquid phase throughout the soil sample
can be described by the following set of equations:

Transport equation

w
JY :—Iiﬁ: grad p¥, 4)

where J is the mass flux of pore water, v = gp® is the spe-

cific weight of water, p" is the intrinsic mass density, and K
represents an instantaneous coefficient of permeability.

Balance equation reads
p¥ &, +divj¥ =0. (5)
The volumetric strain €, follows from the

Constitutive equation

D=8 _ K0 el peff | oeff ©)
ez, 144 (o' @) ou >3

e(t) - e A eff eff _ —eff
€,= =- In{-0,, (t)), o, <O (7)
(o), o <o
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Fig. 1: Bilinear form of the consolidation line

derived in the case of the modified Cam clay model from the
bilinear consolidation line, Fig. 1. The initial branch, often
referred to as the k — line, gives evidence of the previous
stress history and represents the effect of overconsolidation.
The slope discontinuity between the k and A - lines can be
identified with the structural strength of soil given in terms
of a certain level of the effective mean stress Gt (pre-

consolidation pressure).

Differentiating Eq. (7) with respect to time gives the rate
of volumetric strain in the form

L P8 ®)

l+eg l+eg of(r)’

Substituting Egs. (4) and (8) into Eq. (5) and taking into
account the actual triaxial set-up, in which only the bottom
face of the cylinder is drained, leads to

l+eg eff _a_ ap™(t) _ AW =
L OE EUR RO N

It has been verified experimentally that in the case of iso-
tropic consolidation a simple power law written as [8]

@ =(f£t_)jm, (10)

KO )

represents the soil behavior fairly well. The dependence of
the actual void ratio ¢ on the effective mean stress, Eq. (7), to-
gether with Eq. (10) provides

OK (1) _ _mK(t)r 6p1"(t)‘

11
& e(on() & .

Introducing Eq. (11) into Eq. (9) finally yields
- K(t)(1+e
pu(t):_ ( )(w 0).
YEA

w, 2 2

(12)

A similar equation can be derived for the unloading branch
when replacing A by x and ¢, by ¢ in Eq. (12)

[')w(t) . K(t)(1 + 50) .

s

2
|_me (3" | ey 070
e(t)( oz j o (1) &2 |

(13)

3 Numerical implementation

The purpose of this section is to evaluate several numeri-
cal methods commonly used when solving the consolidation
problem. As mentioned above, the main objective remains
computational efficiency of individual numerical techniques.
First, we recall the collocation method successfully imple-
mented in [8]. The implicit finite control volume scheme
combined with the finite difference method is explored next
[6]. Finally, our attention is given to the finite element
method, which has proved to be an efficient tool particularly
when taking the volume changes of the porous skeleton into
account [2, 9].

Before proceeding with the present formulation of the
individual numerical techniques, we recall a well known draw-
back of standard formulation attributed to the point of slope
discontinuity along the bilinear consolidation line. This phe-
nomenon, evident from Fig. 2 (see also [7]), results in a typical
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Fig. 2: Time variation of pore pressure with no smoothing of the
bilinear consolidation line

double S type of curve where individual segments of this
curve are linked to a given slope of the bilinear consolidation
line. This, however, is in contradiction with actual experimen-
tal measurements.

To avoid numerical difficulties around the point of discon-
tinuity we equipped the original diagram in Fig. 1 with a cubic
parabola to smooth out the transition zone. The numerical
integration of Eqs. (12) and (13) is then carried out under cer-
tain simplifying assumptions. In particular, we first introduce
an instantaneous modulus A with corresponding initial void
ratio é( displayed in Fig. 3. These parameters, evaluated at
the middle of the current time step, are then introduced in
Egs. (12) and (13), thus replacing the original variables «, A,
e, and g, respectively. Furthermore, the pore pressure de-
pendent material parameters K and ¢ are derived from an ini-
tial prediction of pore pressure taken at the end of the current
time step. Details are given in Sections 3.1-3.3.
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Fig. 3: Bilinear form of the consolidation line with the definition
of an instantaneous modulus A

3.1 Numerical solution using the collocation
method

A suitable method for solving Eq. (12) combines the collo-
cation method along with a cubic spline approximation of the
pore pressure distribution. After discretization and introduc-
tion of instantaneous parameters A and é éo Eq. (12) becomes

pw(tj+1)=—’<<”“)(“e"(‘f“‘“‘?”-

ywi(tjwz/?) (14)

Note that by using the above approximation we force
Eq. (12) to be fulfilled only at a certain points of colloca-
tion (2); Y() and M) then represent the first and second
derivatives of the unknown pore pressure at the i point,
respectively. Also note that the pore pressure dependent
material parameters K and ¢ are found from an initial pre-
diction of pore pressure p; (tj+1) at time t,,, Eq. (17).

Accepting such assumptions allows the above equation to be
written in the form

ﬁf”(tﬁl) + a(tj+1)Mi(tj+l)=B(tj+l) (15)

where
E(tﬁl)(l + éo(tj+At,/2 ))

)= B ) o)
) -0 ) i)

Y 7»(15]+At/2)

oi(ty) = o55()+ ()~ (s)

To solve Eq. (15) we further assume the generalized trape-
zoidal rule [5] and write

7 _ 1 Tw

bi (tj+1)—T—M(Piw(tj+1)—ﬁi (tj+1))’ (16)
B(tj) =pF (41) + Q- 0)AH (tj11) (17
where ¢ = Y —1; )éAt At =1;,) — 1] is the time step. Parame-
ter T should be chosen from 1 €(1/2,1) to ensure numerical

stability. The most common choice is T =1/2. When substitut-
ing Egs. (16) and (17) into Eq. (15) we arrive at

10

Piw(tj+1) =-1 Alaz‘(ij+1)Mz(’fj+1) +1T A'f‘ﬁi('fﬁl) % (18)
+ ‘Ziw(t]'_'_l ) .
Further suppose an equidistant spread of the collocation

points with step Ah=z-z,_,. The cubic spline equation then
reads

1 3
§Mi—l +2M; +§Mi+l =W(ﬁi—l =24 fiua ) - (19)

Combining Eqgs. (19) and (18) then readlly provides the
final tridiagonal system of algebraic equations in the form

{é + 37 Atai—l(tﬁl)m Mi—l(tj+l) +

[2 vt (1) =g JM ()

(20)
+,:% +3TAL ai+1(t]~+1)ALh2}Mi+1(tj+l) =
Sz [Ba()-22(5) + R ()]
where
B(4;) =waebi(t;)+ B (1) ®D
1 w w
v(t) = 73 (2() - pia(t)) + 22)

+ %h(QMi(tj) +Mia(t))

To complete the numerical procedure the following
boundary and initial conditions are supplemented in accor-
dance with the experimental set up

h(ty)=o p(i)=0 (29)
$:(0)=-c,, + o (0) i=9,..

where 7 is the number of collocation points. The selected cu-
bic spline boundary conditions assume the form

My(t;)=M,(1;)=0. (24)

3.2 Numerical solution using the finite volume
method

It is evident that a direct solution of Eq. (12) leads, in gen-
eral, to a nonlinear system of equations. Therefore it appears
preferable to start by discretizing the governing equations,
which are then successively used in a single time step. In view
of the one-dimensional problem, Eq. (9), the set of governing
equations will be discretized using a three-layer model. The
individual layers (finite control volumes) have different thick-
ness, and diverse materials can be assigned to each layer. The
pore pressure is assumed to be constant inside each control
volume and within each time step, and to be equal to the pore
pressure at the so called grid-point, Fig. 4. Its position is pre-
scribed by a chosen parameter f.

Ln =1,

Transfer equation

Application of the finite difference scheme converts
Eq. (4) for the water flux throughout a layer i with thickness
Az into the form
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Fig. 4: A three layer model
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& ~Tia (Pz ‘Pz—l) =—(hz; (i _pi—l)’ (25)
where

1 ghz; ghz;

— =l ) B [ 26
hz; (=fi) K;-| b K; =

is the overall resistance between grid points (¢ — 1) and i.

Balance equation

Employing the generalized trapezoidal method provides
the time variation and the rate of volumetric strain in the
form, recall Egs. (16) and (17),

&,i(tjn)= %(%,i(‘jﬂ) - { ) 27

zv’i(tj'+l)=€U,i(lj)+(1—‘f) At év,i(lj)’ (28)
Next, applying again the finite difference scheme yields
an incremental form of the balance equation (5) for layer ¢

AW
A:f[ (ev,i (tj+l )_ ?tl,i(tj'+l)) + (29)
+]izil(tj+l) -sz(ljn) =0.

State equation

Introducing Egs. (16) and (27) into Eq. (8) gives

M(tjeare
e,,,,-(lj+1) - Zuri(tj+l)=_H§T'](2ifl)2—)' (30)

1 W) Tw,
.m(f’i (tj+1) = p; (tj+1)).

After combining Egs. (30), (29) and (25) we arrive at a set
of tridiagonal algebraic equations in the form

(hli+1)l’i"il(tj+1) - [(hlm) +(hz;) +

_ Azip" i(tj+Alx2) 1 -

-EIA 1+ éo(tjmz ,2) csg(lj)};b;’(tﬁl) + 81
+ (hz)pa(tj) =
= AZz‘pw 5"(£j+At"2) 1

TAL 1+ éo(z]w,?) osh(t;) P (tj)-

At the onset of consolidation the initial condition, similar
to Eq. (23), reads
ff
p7(0) =—Opy + ofn,i(o)

where 7 is the number of finite control volumes.

= (32)

3.3 Numerical solution using the finite element
method

In view of the general solution of fluid-solid interaction
we recall the finite element method (FEM) often used to
solve differential equations similar to Eq. (9). Apart from
Eq. (9), which must be satisfied at any point inside the soil
body, the boundary value problem requires formulation of
the boundary conditions. To that end, the boundary is de-
composed into two parts, I’ :l"p + T, with the following
boundary conditions:

Essential boundary condition

p¥=p", onl,, (33)
Natural boundary condition
5 eff w
“’#"L @_Hj:o, onT,, (34)
ALYy 32

where g represents the prescribed fluxes. Fig. 5 shows the
boundary conditions pertinent to isotropic consolidation. In
this particular case, no fluid is transferred across the interface
- op”
I, and therefore g =0 and also —5— =0.
4

—? p"=0onIp

H/2

= p%(t,Z)

Fig. 5: Boundary conditions

To derive a set of finite element equations we start by in-
troducing the balance equation (9) and its natural boundary
condition (34) into the principle of virtual work, written as
H

[[ctoor 2/ 27). pelspr s
Yk oz oz
0

~ eff
J %0 g% 2l spr(H)=0.
A Yw oz H

(35)

T

Integrating the first term in Eq. (35) by parts yields

H

AR LW ~ w .

[ B kot B -[spirazgaptan 0. s0
oy 0z

0 0

The next step employs the usual approximation of the
water pore pressure in the form

P =Nyd,, 37

where N, stores the element shape functions and d,, is the
vector of nodal pore water pressures. After substituting the

11
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above approximation into Eq. (36) we identify the following
matrices, [6],
permeability matrix

H

1+¢ ff T aNk
P=|—2CKo"(N,) N,dz, N}, =—02F 38)
wax w(Np) Ny bt =, (38)
compressibility matrix
H
_ T
c_—fN,,diz. (39)
0

Note that the last term in Eq. (36) drops out due to the
prescribed boundary conditions. Since Eq. (36) must be satis-
fied for any admissible virtual pore pressure &” we arrive at
the following system of equations

Cdp(tj+1) + i;(lj+1)dp(lfj+1) =0, (40)

where the material parameters entering Eq. (38) to get matrix
P(t]-+1) are evaluated under the same assumptions as in

Section 3.1.

We usually require the material parameters, including the
coefficient of permeability, to be constant within a given ele-
ment. Egs. (7) and (10) suggest that the volumetric strain is
constant as well. When assuming a linear approximation of
the pore pressure, the vector of nodal pore pressure values of
the 1" element becomes

(dip )T ={dy, diﬂ}i . (41)

The constant effective mean stress csfg in the i element

is then given by
e (dpr + dl’Q)i

eff
Oim =On 9

(42)

For the sake of consistency, the volumetric strain €, and
the water pore pressure p* should be of the same order
(recall Eq. (8)). Here, the desirable consistency of the solu-
tion is achieved by applying so-called selective integration
to integrate the compressibility matrix (one-point Gauss’
quadrature).

Once the discretization in space has been performed Eq.
(40) represents a set of ordinary differential equations in time,
which can be integrated numerically, [2]. To proceed, con-
sider again the generalized trapezoidal rule such that

dy(tjs1) = %A, (CYCRYRCACR) ol

dy(170) =dy(t;) + (1-7) Atdy(t;) - (44)
Substitution of Eq. (43) into Eq. (40) finally leads to a sys-
tem of linear algebraic equations given by

(0 F(50))dy(11.0) -—CT(ta). @)

The initial condition prescribing the water pore pressure

at the beginning of loading, { = 0 takes the form
d;p =d;(0)=-0,, + ofa(0), i=L...n, (46)

where 7 is the number of elements.
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4 Numerical results

Before proceeding with the results derived from the pre-
sented formulation we draw the readers attention to Fg. 6,
which manifests several drawbacks associated with the solu-
tion of the consolidation problem when applied to the stan-
dard Cam clay model. The solid line shows results derived ex-
perimentally. The theoretical predictions were derived as-
suming the material parameters listed in Table 1. The
dash-dotted line follows from numerical calculations assum-
ing the linear consolidation line (virgin soil) and the deforma-
tion dependent coefficient of permeability, while the dashed
line was found from the bilinear consolidation line, but keep-
ing the coefficient of permeability constant. Clearly, neither
the deformation dependent variation of the coefficient of

300;"' 1 (ER2) RZEARI0ARA) | BLEZERRRRES | EERAIZAREE: " A SRR | Eade

250F . ... _._._.
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"=+ m=6,0,=0kPa 7

Pore pressure [kPa]
o
o
I
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50F |

0- Nl ]
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L IO enTT | i)
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Fig. 6: Time variation of pore pressure

Table 1: Material parameters

« [kPa] | A[kPa] | ¢y | Ko[mys] | & [kPa] | m

0.01 0.1 0.5 | 5.010° 40 6

permeability nor the bilinear form of the consolidation line
can itself describe the true consolidation process and there-
fore both of them should be taken into consideration when
simulating transport of water in soft soils.

In a nutshell, the first assumption essentially labels soils as
being normally consolidated from their virgin state, which
further contributes to a rather slow initial phase of the process
of consolidation, Fig. 6 (dash-dotted line). In their natural
state, however, soils are usually in overconsolidated states,
due to unloading from the original stress state (e.g., water
table fluctuation). To account for the prior loading history we
introduce the influence zone variation as a function of a
certain level of the effective mean stress, usually referred to as
structural strength. This level of the effective mean stress can
be identified with preconsolidation pressure. In the present
formulation, the structural strength is introduced through a
bilinear shape of the consolidation line [8], [1]. The effect
of this step becomes evident when examining Eq. (12). In
particular, a lower value of A at the initial stage increases the
coefficient of permeability, leading to an acceleration of the
consolidation process at this stage, a phenomenon observed
in the experiments.
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The second shortcoming comes from the originally as-
sumed constant value of the coefficient of permeability, re-
sponsible for an abrupt increase in the rate of consolidation as
the effective mean stress developed during consolidation
becomes appreciable, Fig. 6 (dashed line). However, this stage
of consolidation is associated with a significant deformation
of the skeleton, leading to a decrease in the volume of the
pores and subsequently to an decrease in the coefficient
of permeability. Based on our extensive numerical investiga-
tions of isotropic consolidation [8], we proposed an exponen-
tial relation between the coefficient of permeability and the
actual void ratio represented by Eq. (10). Note that this
relationship was suggested by the authors based solely on
numerical results. Nevertheless, it conforms with an experi-
mental observation, [9] pp. 138, fairly well.

This set of numerical experiments also served to examine
the individual numerical techniques. The results were rather
inconclusive as to what method should be preferred, since all
methods performed equally well in this very specific consoli-
dation problem. Thus the fact that the finite volume method
is usually more stable ruled the selection of this method for
the subsequent numerical program, which provides a qualita-
tive description of the above mentioned requirements.

First, the influence of the bilinear consolidation line Fig. 1,
is investigated. The location of the slope discontinuity on the
K — A line corresponds to a given value of the structural
strength of the soil. This value can be estimated using, e.g.,
the Casagrande method [3]. The results for various values of
the structural strength G, are plotted in Fig. 7, assuming m

equal to 6. It is evident that increasing the magnitude of Ef,,ff

speeds up the rate of consolidation in the first stage quite
substantially.
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Fig 7: Time variation of pore pressure

The second objective aims at slowing down the consolida-
tion process in the second stage of consolidation associated
with a decreasing volume of pores due to skeleton deforma-
tion. This phenomenon is taken into account by incorporat-
ing Eq. (10) into the numerical procedure. Results for various
values of exponent m and for a given structural strength
_eﬁ =-30 kPa are presented in Fig. 8. The dash-dotted line

shows a rather gradual decrease in the pore pressure profile
with increasing time, which is in better agreement with exper-
imental observations.
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Fig. 8: Time variation of pore pressure
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Fig. 9: Time variation of pore pressure

Fig. 9 then summarizes the present theory. First, recall that
the dotted line was obtained without taking into account the
bilinear consolidation line. In such a case, a rather high value
of m locks up the numerical procedure at the beginning of
consolidation. The dashed line then re ects incorporation of
both requirements. Up to now a simple trial and error proce-
dure was employed to derive optimal values of m and & ('Sm

Furthermore, reproducing laboratory data requires that
we supply, apart from the structural strength parameters
(8mff, m ), the following material parameters: the initial void

ratio g, the initial coefficient of permeability K, the swell-
ing index k and the compression index A. The last two
material parameters and the starting value of precon-
solidation pressure could be specified from the steady state
response corresponding to the diagram shown in Fig. 1. This,
however, would require carrying out a number of isotropic
consolidation tests for several predefined levels of isotropic
pressures attained at the end of the censolidation process,
while measuring at the same time the change in volumetric
strain A ¢, . Such an approach would become not only time
consuming but also burdened by an additional experimental
error associated with the difficulty of measuring Ae¢, . Also,
the determination of 25 and K, would require additional labo-
ratory tests. A simple solution to this problem, however,
is offered by following the steps of mixed experimental and
numerical methods. In such a case, combining the experi-
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mental measurements and numerical computations in a suit-
able optimization environment provides an efficient tool for
inferring the desired parameters from a single laboratory
test. This issue is discussed in [10].

5 Conclusions

The present paper was concerned with an effect of
structural strength in the computational model of isotropic
consolidation in which the skeleton deformation is governed
by the modified Cam clay model. Several numerical tech-
niques to solve the isotropic consolidation problem were
explored. The finite volume method seems to perform
best in the present problem of one dimensional isotropic
consolidation.

Both the numerical results and the experimental data
proved the need to incorporate the structural strength of soils
and the time variation of the coefficient of permeability
into the computational model. An independent experimental
observation confirmed the exponential form of the relation-
ship between the coefficient of permeability and the current
void ratio proposed by the authors.

Acknowledgments

Financial support for this project was provided by
Ministry of Education projects No. MSM:210000001 and
MSM:210000003, and by GACR 103/02/0688/A.

References

[1] Asaoka, A., Nakano, M., Noda, T.: Super loading yield sur-
face concept for the saturated structured soils. NUMGE 98,
edited by A. Cividini, Udine (Italy), 1998, Vol. 14,
p. 233-242.

[2] Bittnar, Z., Sejnoha, J.: Numerical methods in structural me-
chanics. New York: ASCE Press, 1996.

[3] Bowles, J. E.: Foundation analysis and design. New York:
McGraw-Hill, 1996.

14

[4] Dluzewski, J. M.: Large strain consolidation for elasto-plastic
soils. NUMGE 98, edited by A. Cividini, Udine (Italy):
1998, p. 473-482.

(5] Hughes, T. J. R.: The Finite Element Method, Linear Static

and Dynamic Finite Element Analysis. New Jersey: Prentice
Hall, Inc., 1987.

[6] Krejct, T., Novy, T., Sehnoutek L., Sejnoha,].: Structure -
-subsoil interaction in view of transport processes in porous
media. CTU Reports, Prague, 2001, Vol. 5, p. 1-81.

[7] Kuklik, P., Mares, J., Sejnoha, M.: The structural strength
of soil from the isotropic consolidation point of view.
APCOM 99, edited by C. M. Wang, K. H. Lee, K. K. Ang,
Singapore, 1999, Vol. 2, p. 797-802.

[8] Kuklik, P., Mares, J., Sejnoha, M.: Evaluation of the modi-
fied cam clay model with reference to isotropic consolidation.
CTU Reports, Prague, 1999, Vol. 3, p. 47-54.

[9] Lewis, R. W, Schrefler, B. A.: The finite element method in
static and dynamic deformation and consolidation of porous me-
dia. Chichester (New York): Wiley, 1998.

[10] Janda, T., Kuklik, P., Sejnoha, M: Mixed experimental and
numerical approach to evaluation of material parameters of
clayey soils in a review for publication in International
Journal of Geomechanics.

Doc. Ing. Milan Sejnoha, Ph.D.
phone: +420 224 354 494

fax: +420 224 310 775

e-mail: sejnom@fsv.cvut.cz

Doc. Ing. Pavel Kuklik, CSc.
phone: +420 224 354 486
kuklikpa@fsv.cvut.cz

Tomads Janda
Department of Structural Mechanics

Czech Technical University in Prague
Faculty of Civil Engineering
Thékurova 7,

166 29 Prague 6, Czech Republic




	Scan 8
	Scan 9
	Scan 10
	Scan 11
	Scan 12
	Scan 13
	Scan 14

