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Abstract. The Kummer–Schwarz Equation, 2y′y′′′ − 3(y′′)2 = 0, has a generalisation, (n −
1)y(n−2)y(n) − ny(n−1)2 = 0, which shares many properties with the parent form (see Sinuvasan R,
Tamizhmani K M & Leach P G L, Algebraic and singularity properties of a class of generalisations of
the Kummer–Schwarz equation differ, Equ Dyn Syst (2016), doi:10.1007/s12591-016-0327-5) in terms of
symmetry and singularity. All equations of the class are integrable in closed form. Here we introduce a
new class, (n+q−2)y(n−2)y(n)− (n+q−1)y(n−1)2 = 0, which has different integrability and singularity
properties.
Keywords: Kummer-Schwarz; symmetries; singularities; integrability.

1. Introduction
In [12] we delineated the properties of the class of
equations

(n−1)y(n−2)y(n)−n(y(n−1))2 = 0, n = 2, 3, . . . (1)

in terms of symmetry, singularity and integrability.
The class (1) differed from the class with general
numerical coefficients in that the number of Lie point
symmetries was one greater for general values of n
(with n = 2 being an exceptional case). In the case of
the Kummer–Schwarz Equation [4] it was two greater,
being the six comprising the direct sum of two sl(2, R)
subalgebras.
Here we consider the generalisation

(n+ q− 2)y(n−2)y(n) − (n+ q− 1)y(n−1)2
= 0,

n = 2, 3, . . . , (2)

where q is a real number, subsequently to be more
precisely defined.
We examine (2) in terms of its Singularity Proper-

ties, Symmetry Properties and general Integrability.
We commence with the singularity properties of (2)
and see that a successful satisfaction of the require-
ments imposes a constraint on the permissible values
of q for the solution to be analytic. We turn to the
symmetry properties of (2) and find some unexpected
results. In terms of integrability there are no restric-
tions upon the value of q in a formal sense although
in practice there may be restrictions.

2. Singularity Analysis
We examine the sequence of equations introduced
above in terms of singularity analysis. We follow the

general method as outlined in [10, 14] with the modifi-
cation for negative nongeneric resonances introduced
by Andriopoulos et al. [1].

Theorem. The exponent of the leading-order term
and the resonances of the nth member of the sequence
of equations,

(n+ q− 2)y(n−2)y(n) − (n+ q− 1)(y(n−1))2 = 0,
n ∈ N, n > 1, (3)

are p = −q and s = −1, 0, q, 1 + q, . . . , n− 3 + q.

Proof. We substitute y = αχp, where χ = x − x0
and x0 is the location of the putative singularity. We
remove a common factor p2(p−1)2 · · · (p−n+3)2(p−
n+ 2). The values of p removed are all positive and
so of no relevance to the singularity analysis. The
remaining terms are

(n+ q− 2)(p−n+ 1)− (n+ q− 1)(p−n+ 2)

which, when put equal to zero, give the singularity to
be p = −q.
We write y = αχ−q + µχ−q+s and substitute into

(3). We remove the common factors χ−2 and obtain

(−q)(−q−1) · · · (−q−n+3)(−q+s)(−q+s−1) · · ·
· · · (−q+ s−n+ 3)

This immediately gives the resonances, s = q, q + 1,
. . . , q + n− 3, which are all positive. The remaining
terms are

(n+ q− 2)(−q−n+ 2)(−q−n+ 1)
+ (n+ q− 2)(−q+ s−n+ 2)(−q+ s−n+ 1)
− 2(n+ q− 1)(−q−n+ 2)(−q+ s−n+ 2).
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When this equated to zero, we obtain the two addi-
tional resonances s = −1, 0.
Apart from the generic resonance of −1 all of the

resonances are nonnegative numbers which contain
the positive number q. When the resulting expansion
make sense, the Laurent Expansion is a Right Painlevé
Series [2].

We illustrate the method with the fifth-order equa-
tion,

(q+ 3)y′′′y(5) − (q+ 4)(y(4))2 = 0. (4)

To determine the leading-order behaviour we set
y = αχp, where χ = x− x0 and x0 is the location of
the putative singularity. We obtain

(q+ 3)α2p2(p− 1)2(p− 2)2(p− 3)(p− 4)χ2p−8

− (q+ 4)α2p2(p− 1)2(p− 2)2(p− 3)2χ2p−8

which is zero if (q + 3)(p− 4) = (q + 4)(p− 3), i.e.,
p = −q. Note that the coefficient of the leading-order
term is arbitrary.

To establish the terms at which the remaining con-
stants of integration occur in the Laurent Expansion
we make the substitution

y = αχ−q +mχ−q+s.

The various values s may take are determined by those
values of s which make the coefficient of m so that
m is arbitrary. The coefficient of m is a fifth-order
polynomial the roots of which are

s = −1, 0, q, 1 + q, 2 + q.

3. Solution of the general
equation

Equation (2), up to a multiplicative constant, may be
written as

d2y(n−2)(x)−
1

n+q−2

dx2 = 0

which is readily integrated to give the general solution
of (2) as

y = (−1)n (ax+ b)−q

an−2(q+n− 3)(n−3) +
n−3∑
i=0

cix
i, (5)

where the notation (q+n− 3)(n−3) denotes the rising
Pochhammer Symbol and means q(q+1) · · · (q+n−3).
We note that the solution of (2) exists no matter

the value of q. Naturally the utility of the solution
depends upon the value of q because we are dealing
with values in the complex plane.

4. Symmetry Properties
The symmetry properties of (2) are rather complex
and to give an indication of the complexity we quote

the results for a small sample of equations. We com-
mence with n = 2 for which we obtain the symmetries,{ ∂

∂x
, y

∂

∂y
, x
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1
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with the algebra sl(3, R). The transformation to the
archetypal second-order equation (up to a multiplica-
tive factor) is y(x) → w(x)−q. The transformation
follows from inspection of the structures of the sym-
metries above.
In the case of the third-order equation, i.e., n = 3,

we obtain four possible algebraic structures. These
are { ∂
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corresponding to general q, q = 1, q = −2 and
q = − 1

2 . Clearly the latter two cases did not come
within the purview of the singularity analysis dis-
cussed above. For general q the algebra is A2 ⊕ A2
which can also be written as 2A2. (We make use of
the Mubarakzyanov Classification Scheme [5–8] (see
also [9, 11, 13]) throughout this paper.) In the case
of q = 1 we have the well-known Kummer-Schwarz
Equation with the algebra 2sl(2, R) or 2A3,8. For the
values of q −2 and − 1

2 the algebra is the same and is
the maximal algebra for a third-order equation. For
q = −2 the representation is the standard representa-
tion for y′′′ = 0. The representation for q = − 1

2 has
not been reported before. However, the latter result
follows from an interchange of x and y.

The fourth-order equation is the prototype for sub-
sequent equations and we find the symmetries{ ∂
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The five-dimensional algebra is A2⊕sA3,3. The lat-
ter subalgebra is also known as D⊕s T2, i.e., dilations
and translations in the plane.

The six-dimensional algebra is A3,3 ⊕s sl(2, R). We
note that these symmetries are the same as those of
y′′ = 0 apart from the two noncartan symmetries
typical of a linear second-order equation [3].
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The eight-dimensional algebra is the maximal al-
gebra for a forth-order scalar equation. This occurs
for q = −3. Then (2) is simply y(4) = 0 up to a
multiplier.

Unlike in the case of the third-order equation there
is no existence of an n+ 3-dimensional algebra.

This pattern of behaviour persists mutatis mutandis
for higher-order equations. The general nth-order
equation has three possible numbers of symmetries,
namely n + 1, n + 2 and n + 4. The algebras are
as delineated above. We note that the exceptional
property of the third-order equation, the possession
of a double sl(2, R) algebras, is indeed exceptional.

5. Conclusion
In [12] we considered a family of ordinary differential
equations

(n− 1)y(n−2)y(n) − n(y(n−1))2 = 0

as a natural generalisation of the well-known Kummer-
Schwarz Equation

2y′y′′′ − 3(y′′)2 = 0.

We reported the symmetries, singularity properties
and solutions for the members of the family. These
properties were remarkably robust throughout the
whole family except for the Kummer-Schwarz Equa-
tion itself which had the additional property of six
Lie Point Symmetries that makes it exceptional in the
class of third-order equations.

In this paper we have considered a variation on the
Kummer-Schwarz Equation and its natural generali-
sation to higher-order equations by the inclusion of a
parameter q to give the nonlinear family

(n+ q− 2)y(n−2)y(n) − (n+ q− 1)(y(n−1))2 = 0.

There is no a priori constraint upon the value of
q. Apart from some special values noted in §3 the
value of q does not influence the symmetry properties,
i.e., in general the number of symmetries is the same
independently of the value of q. However, when one
considers the singularity analysis, q must necessarily
be positive to enable the existence of a singularity,
indeed a positive integer for the usual analysis to
apply. The value of q affects only the leading-order
term. Independently of the value of q the resonances
take the values −1 and 0. Thereafter the value of q
enters into the values of the resonances.
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